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Abstract

This paper continues the study of the power of
oracles to separate quantum complezity classes from
classical (including probabilisiic and nondeterminis-
tic) complezity classes, which we initiated in an ear-
lier paper [5]. The new results are that, under ap-
propriate oracles, (1) there is a decision problem that
can be solved in polynomial time on the quantum com-
puter, which would classically require exzponential time
tn the worst case even on a nondeterministic computer
(in particular QP € NP relative to this oracle), and
(2) there is a decision problem that can be solved in ez-
ponential time on the guantum computer for which any
deterministic classical computer would require double
exponential time on all but finitely many instances.

1 Review of earlier results

In a bold paper published in the Proceedings of
the Royal Society, David Deutsch put forth in 1985
the idea that a quentum computer could in principle
carry out a large amount of computation in parallel
on a single piece of hardware by using the principle of
quantum superposition [6, 7]. Later, he and Richard
Jozsa exhibited a problem that the quantum computer
could solve exponentially faster than any deterministic
classical computer [8]. However, that problem admits
more than one valid solution on most instances, and
therefore it does not fit the usual mold in computa-
tional complexity theory of considering the difficulty
of computing functions or of deciding set membership.
(Nevertheless, we pointed out in [5] that their problem
can be recast as a decision problem in the context of
premise problems [10].)
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The main contribution of [5] was to interpret the
result of Deutsch and Jozsa in the light of oracle com-
putations, that is computations that can be performed
with the help of arbitrarily complex oracles capable of
instantly answering a precise set of questions. The di-
rect oracle interpretation of their result is the existence
of an oracle under which there is a decision problem
that can be solved in linear time on the quantum com-
puter, yet any deterministic classical computer would
require exponential time on infinitely many instances
to solve the same problem. In particular, this im-
plies that PX c QPX for some oracle X, where P
denotes as usual the class of decision problems that
can be solved with certainty in worst-case polynomial
time by a classical deterministic computer, whereas
QP denotes the class of decision problems that can be
solved with certainty in worst-case polynomial time by
the quantum computer, and the superscript X denotes
the oracle whose availability we assume.

One might be tempted to think at first that the
quantum computer gets its advantage over classical
deterministic computers not from the use of quantum
superposition, but merely from the much more mun-
dane availability of randomization, which is inherent
to quantum computation. After all, it is generally be-
lieved that randomized computers enjoy a computa-
tional advantage over classical computers, even if the
randomized computer is required to have zero proba-
bility of yielding an erroneous result. To defuse this
uninteresting interpretation, we also claim in [5] an or-
acle under which there is a decision problem that can
be solved in linear time on the quantum computer,
yet any probabilistic classical computer that is never
allowed to make mistakes would require expected ex-
ponential time on infinitely many instances to solve
the same problem. In symbols, QPY g ZPPY for
another appropriate oracle Y, where ZPP is the clas-
sical class of decision problems that can be solved in
expected polynomial time by probabilistic computers
that are not allowed to ever make mistakes [9].



2 New results

In this paper, we offer two new results along the
lines of [5]. Under the same oracle Y that we had used
to separate QP from ZPP, we show that the quan-
tum computer can solve in linear time some decision
problems that cannot be handled in polynomial time
even by nondeterministic computers.! In symbols,
QPY ¢ NPY. The result is in fact stronger: we have
a decision problem that is in QPY which is neither
in NPY nor in co-NPY. (Recall that NP denotes
the class of decision problems that can be solved in
polynomial time by a nondeterministic computer; a
problem is in co—NP if its complement is in NP.)
Even better: any classical nondeterministic algorithm
for our problem would require exponential time on in-
finitely many inputs. (We give below the construction
of Y because it was omitted from [5].)

One unfortunate aspect of the results mentioned
so far is that although classical computers (including
probabilistic and nondeterministic) must take much
more time than the quantum computer on these prob-
lerns, this is merely true on infinitely many instances.
This is not entirely satisfactory because it turns out
that these problems are classically easy on the vast
majority of instances. To get a stronger result, we
need to consider harder problems (quantum exponen-
tial time), which are much harder classically. Specif-
ically, we show the existence of yet another oracle
under which there i1s a decision problem that can
be solved in exponential time by the quantum com-
puter so that any classical deterministic computer that
solves it would have to run for double exponential time
on all but finitely many inputs. It should be noted
that simulating this use of the quantum computer with
classical parallelism would require the availability of
a double exponential number of processors since ex-
ponentially. many processors running for exponential
time can only perform an exponential amount of work.

3 Notation

Let ¥ denote the binary alphabet {0, 1}. As always,
X" denotes the set of n—-bit strings and ¥* denotes
the set of all finite length bit strings. We use a stan-
dard bijection o between * and the integers, such as

11t was Charles H. Bennett who pointed out to us that our
original construction of oracle Y and set S € QPY such that
S @ ZPPY also achieved S ¢ co-NPY unintentionally! Here,
we modify slightly our previous constructionin order to separate
QP directly from NP rather than going through co-NP.
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o(z) = bin(lz) — 1, where “12” denotes string z with
a “1” appended in front of it and bin(y) is the inte-
ger whose binary representation is y. For instance,
o(010) = bin(1010) — 1 =9. Let p: N — X* be the
functional inverse of o.

Consider a set X C X*. We say that B(X) holds if

for all n either X N X" = @ or there are exactly 2"~}
strings in X N X”. The set Sx is defined as

Sx = {I" | X nE" = §}.

In other words, Sx contains only strings of ones, and
1" € Sx if and only if there are no strings of length n
in X. (We had used the “unary complement” of this
definition in [5].) When we need the same information
in an exponentially more compact form, we use

Vx = {x e | X Nx°® = p}.

The original result of Deutsch and Jozsa [8] implies
that Sx can be recognized in linear time on the quan-
tum computer if oracle X is available, provided B(X)
holds [5]. Therefore, Vx can be recognized in expo-
nential time on the quantum computer under the same
conditions since ¢ € Vx if and only if 19(®) € Sx.

Let Mq, M,,... be a standard enumeration of all
deterministic Turing machines and let Ny, Ny, ... be
a standard enumeration of all nondeterministic Tur-
ing machines. Finally, let @ : N — N be an arbi-
trary function such that for each integer i there are
infinitely many integers n such that a(n) = ¢ (for ex-
ample, you could take one projection of the standard
pairing function). Let p : N — N be defined recur-
sively as p(1) = 1 and p(n) = 2°("~1) for n > 1.

4 Quantum can beat nondeterminism

Theorem 1. There exists an oracle relative to which
there is a set that can be recognized in worst-case lin-
ear time by the quantum computer, yet any nonde-
terministic Turing machine that accepts it must take
exponential time on infinitely many nputs.

Proof. We shall construct the oracle in stages. At the
end of stage n, it will be defined on all strings of length
less than p(n+1). Initially, set Y3 = 0. At stage
n > 1, simulate every path of nondeterministic ma-
chine Ng(n) on input 1#(") with oracle Y, for up to
2¢(n)=1 steps for each path.

o If there is a path that makes the machine ex-
ceed 2¢(m)~1 gteps, or if the machine rejects, set
Y,1+1 = Y, and go to the next stage.



e If the machine accepts within 2¢()-1 steps, se-
lect an arbitrary accepting path and let Q,, be
the set of oracle questions asked along that path.
Because of the time bound on the computation,
note that ), contains no more than 2¢(")-1
questions, and none of these questions can be
of length greater than 2¢(")=1  But there are
2¢(") strings of length p(n), and therefore we can
form aset R, C £°() such that R, N Q, = 0 and
the number of elements in R, is exactly 2¢(?)~1,
Let Y41 = Y, U R, and go to the next stage.

Let Y = J,5; Ya. Note that B(Y) holds because we
took care at each step of either putting nothing in Y,
or of putting in exactly half the strings of a given
length (and we never put in strings of the same length
more than once). Therefore, the quantum computer
can accept Sy in linear time given Y as oracle. Con-
sider now an arbitrary nondeterministic Turing ma-~
chine N; that purports to accept language Sy . By def-
inition of ¢, there are infinitely many integers n such
that ¢ = a(n). For any such n we claim that N; us-
ing oracle Y must take more than 2¢(”)~1 steps on in-
put 1°(®)_ To prove this claim, consider what happens
when we run N; on input 1#(®) but with oracle ;.

o If at least one path of the computation of Niy" on
19(%) takes more than 2¢(®)=1 gteps, by construc-
tion Y,4+1 = Y, and therefore Y and Y,, agree on
all strings of length smaller than p(n+1) = 2¢("),
But then the first 2°(®) steps of any computa-
tion of N; on input 1#(®) are identical regardless
of whether Y or Y,, is used as oracle since the
machine cannot formulate questions long enough
to distinguish between these oracles within that
time. Therefore, using oracle Y as well, there is at
least one path of the computation of N; on 1#(n)
that takes more than 2¢(")~1 steps.

o If NY* rejects 1¢(*) within 2¢(*)~! steps, ¥ and
Y, agree on all strings of length smaller than 2¢("*)
just as in the previous case. By the same argu-
ment, N; behaves identically on input 19(%) re-
gardless of whether it uses oracle Y or Y,,. There-
fore N; rejects 1°(") also with oracle Y. But N} is
assumed to recognize Sy, and hence 10(n) ¢ Sy,
which means that Y N £#() £ §. This is impossi-
ble since by construction no strings of length p(n)
are put into Y in this case.

o If NY accepts 1°(®) within 2¢(*)~1 steps, con-
sider the accepting path used in stage n of the
construction of Y. The set R, is designed so
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that it contains none of the oracle questions asked
along this path. Since Y, and Y differ on strings
of length smaller than 2¢(") only in that the
strings in R, belong to Y but not to ¥,,, the same
accepting path of N; on 1¢(") exists when oracle Y
is used. Although N} and N* could behave dif-
ferently on all other paths, one accepting path is
enough for a nondeterministic machine to accept,
and therefore N} accepts 1¥("). But again N} is
assumed to recognize Sy, and hence 1#(?) € Sy,
which means that Y N £¢(®) = @. This is impossi-
ble since by construction 2¢(")~1 strings of length
p(n) are put into Y in this case.

Only the first case remains possible, and thus by Sher-
lock Holmes’ principle it is the truth. But that case
implies that NY on 1¢(®) takes more than 2¢(*)-1
steps on at least one of its computation paths. Since
this occurs for infinitely many values of n, any nonde-
terministic Turing machine that accepts Sy with ora-
cle Y must spend exponential time on infinitely many
inputs. |

Corollary. There exists an oracle Y such that

QPY ¢ NPY Uco-NPY.

Proof. Consider the oracle Y constructed in the proof
of Theorem 1. We already know that Sy € QPY.
Since any nondeterministic Turing machine that ac-
cepts Sy must take exponential time on infinitely
many inputs, it follows that Sy ¢ NPY. This proves
that QPY ¢ NPY. Because QP is closed under
Boolean operations, it is clear that the complement
of Sy testifies to the fact that QPY ¢ co-NPY.
To prove the theorem, however, we need a single set
that is in QPY but in neither NPY nor co-NPY.
We leave it for the reader to verify that

Sy =Sy u{0™ | 1" ¢ Sy}

is such a set. [ |

5 Faster almost everywhere

The set Sy constructed in the previous section is
very sparse indeed: for any n it contains at most
one string among all strings of length between n
and 2" — 1. Moreover, deciding Sy is easy on most
inputs even without using oracle Y: any z € £* that
contains at least one 0 is automatically outside of Sy .



We shall see in this section that, relative to an ap-
propriate oracle, there is a set that is exponentially
harder to solve deterministically than quantumly on
all but finitely many instances.

Theorem 2. There ezxists an oracle relative to which
there is a set that can be recognized in worst-case ez-
ponential time by the quantum computer, yet any de-
terministic Turing machine that accepts it must take
double exponential time on all but finitely many in-
puts.

Proof. We shall construct an oracle Z such that B(Z)
holds and any deterministic Turing machine that rec-
ognizes Vz using Z as oracle requires double exponen-
tial time on all but finitely many inputs. This con-
struction is inspired by Manuel Blum’s beautiful 1967
proof of his compression theorem. We shall construct
oracle Z in stages. At the end of stage n, the ora-
cle will be defined on all strings of length up to n.
The key ingredient is that we keep track of a list of
cancelled machines. Intuitively, whenever a machine
is cancelled, we have made sure that it does not ac-
cept Vz correctly given Z as oracle. Machines that
have not yet been cancelled are called live.

Initially, none of the machines are cancelled and
Z3 =B (for a technical reason we start at stage 3).
At stage n > 3, run each of My, My,... , M, on all
the inputs p(m) for 1 < m < n, using oracle Z,, for
a maximum of 2"~!/n? steps on each run. (Recall
that p is our bijection from the integers onto ¥*.)
Let @, stand for the set of all oracle questions asked
during those runs. Note that @}, contains at most
nxnx (271/n%) = 2"~! questions.

o If none of the live machines using oracle Z,
stop within 27~!/n? steps on input p(n), set
Zp41 = Zn and go to the next stage.

o Otherwise, let ¢ be the smallest integer such that
M; is live and stops within 27~ /n? steps on input
p(n) using oracle Z,.

If MiZ" rejects p(n), set Z,41 = Z,, cancel
machine 7, and go to the next stage.

— Otherwise, let R, be an arbitrary sub-
set of £ containing exactly 2”1 elements
such that @, N R, =0 (which is possible
since (), contains at most 2"~! elements).
Set Zp41 = Zn U R,, cancel machine 7, and
go to the next stage.

Let Z =|J,,53 Zn. Note that B(Z) holds because we
took care at each step n of either putting nothing in Z,
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or of putting in exactly half the strings of length n.
Therefore, the quantum computer can accept Sz in
linear time, and thus V7 in exponential time, given Z
as oracle.

Consider now an arbitrary deterministic Turing ma-
chine M; that purports to accept language Vz when
given Z as oracle. The first claim is that it is not
possible for M; ever to be cancelled. To show this,
assume for a contradiction that it is cancelled at some
stage n. In this case, the construction of Z makes sure
that M; using oracle Z, rejects input p(n) if and only
if there are no strings of length n in Z, which means
that p(n) € Vz. Therefore, M; does not recognize Vz
when 1t uses oracle Z,,. To reach the desired contra-
diction, note that all the questions asked by M; on
input p(n) under oracle Z,, find their way into @, for
all m > n and therefore the final oracle Z will not dif-
fer from Z,, on any of those questions, which implies
that M; does not recognize Vz when it uses oracle Z
either, contrary to our assumption. (We started at
stage 3 to make sure that 27! /m? > 2"~1/n? for all
m>n>3)

Let ng be large enough that all machines of index
smaller than ¢ that will eventually be cancelled have
been cancelled by stage ng. Consider any n > ng.
We know that machine M; cannot be cancelled at
stage n. Since no machine of smaller index is can-
celled at that stage either, it must be that M; using
oracle Z, spends more than 2"~ !/n? steps on input
p(n). By an argument similar to the one above, this
behaviour applies also when the final oracle Z is used.
But the length of p(n) is logarithmic in n and therefore
2"=1/n? is doubly exponential in the length of p(n).
Because p is onto 2*, we conclude that if M,;Z accepts
Vz it must take at least double exponential time on
all sufficiently large inputs. |

6 Leaping out of BPP

One important open question that was mentioned
in [5] has not been addressed so far in this paper.
Even though we have showed that, in appropriate rela-
tivized settings, QP includes decision problems lying
outside of both NP and co—NP, and quantum ex-
ponential time includes problems that are really hard,
our results are rather disappointing to anyone who be-
lieves that probabilistic algorithms that can make mis-
takes are essentially as satisfactory in practice as error-
free deterministic or probabilistic algorithms, provided
the probability of error can be brought down effi-



ciently below any preset threshold. Indeed, all the
problems we have considered can be solved just as
efficiently by such bounded-error probabilistic algo-
rithms as they can by the quantum computer. For in-
stance, whenever B(X) holds, Sx € BPP and Vx can
be solved in bounded-error probabilistic exponential
time.? In other words, we were able to reach outside
of NP with QP, but not outside of BPP. (Consult [9]
for the classical definition of BPP.)

This is exactly what Ethan Bernstein and Umesh
Vazirani have achieved very recently [4]: they have
constructed an oracle relative to which QP ¢ BPP.
In fact, relative to this oracle, they have discovered a
decision problem that is in QP but that is not even
in AM, the powerful Arthur-Merlin class invented by
Laszlé Babai, which generalizes simultaneously NP
and BPP [1]. These are exciting times!

7 Conclusion and open questions

Many questions concerning quantum computing
remain wide open. What can be proved about the
power of the quantum computer in the real world
(when oracles are not available)? Even proving that
P C QP (strict inclusion) is currently beyond hope
because Bernstein and Vazirani have also proved that
QP C PSPACE (recall that P @ PSPACE is one
of the major outstanding open questions of classi-
cal computational complexity theory). Nevertheless,
a reasonable goal might be to prove that P C QP
or BPP C QBPP under the assumption that one-
way functions exist. Another approach concerns the
C=-Pfhalf] class introduced in [5].

An open question concerning oracles is to ob-
tain almost-everywhere hardness for probabilistic or
nondeterministic classical computers concerning prob-
lems exponentially easier for the quantum computer.
(The techniques used in Theorems 1 and 2 are incom-
patible.) Lacking this, how about almost-everywhere
hardness for deterministic computers concerning a
problem in QP? What about the power of QBPP?

It is true that the quantum computer is beyond
current technology, but this should not discourage re-
search into quantum computing. Indeed, quantum
physics has been used successfully for purposes closely
related to computation in a prototype that demon-
strates the technological feasibility of quantum cryp-

21n fact, Sy is even in co—~RP but note that Sy, even
though it is in BPP, belongs to neither RP nor co-RP.
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tography [2, 3]. Ten years ago, quantum cryptography
was still pure science-fiction!
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