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Abstract

In the contezt of the dynamical systems of classical
mechanics, we introduce two new notions called “al-
gorithmic fine-grain and coarse-grain eniropy”. The
fine-grain algorithmic entropy is, on the one hand, a
stmple variant of the randomness tests of Martin-Léf
(and others) and is, on the other hand, a connect-
ing link between description (Kolmogorov) complezity,
Gibbs entropy and Bollzmann eniropy.

The coarse-grain entropy is a slight correction to
Boltzmann’s coarse-grain eniropy. Its main advantage
is its less partition-dependence, due to the fact that al-
gorithmic entropies for different coarse-grainings are
approrimations of one and the same fine-grain en-
tropy. It has the desirable properties of Boltzmann
entropy in a somewhal wider range of systems, in-
cluding those of interest in the “thermodynamics of
computation”.

1 Introduction

This paper assumes some familiarity with the no-
tions of computabilitly and description (Kolmogorov)
complexity. A good survey of the latter is [2].

Coarse-graining The physical model considered in
the present paper is that of classical mechanics: it is
defined by a phase space Q2 and a dynamics U* giving
the point U'w on an orbit at time ¢, where the trans-
formation U* preserves the volume measure L (like in
Liouville’s Theorem). In case of a container of “ideal”
gas consisting of n simple molecules, the state space
is the 6n-dimensional Euclidean space given by the
positions and moments of each molecule.

A thermodynamical system is characterized by a
relatively small number of parameters (functions of
the state) called macroscopic parameters ug, . . ., u,.
The canonical example is a certain quantity of gas
in a container, with the macroscopic parameters of
volume, temperature, energy and pressure. A micro-
scopic state is the completely specified state. A macro-
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scopic state is determined by the macroscopic parame-
ters and it determines only the (by far) most probable
behavior and properties of the system and only when
the system is in equilibrium.

We will assume that each macroscopical parameter
u; takes only a finite number of values: a macroscopi-
cal parameter that is originally a real number will only
be taken to a certain precision agreed in advance. This
gives a partition of the state space into cells

Q:UI‘u

corresponding to macrostates where u =
(u1,...,um). Finer and finer partitions P; of the
phase space can be introduced by adding more macro-
scopic parameters and more precision. The parti-
tion interpretation of a macrostate is called coarse-
graining.

Coarse-graining solves the paradox of irre-
versibility: in a mechanical system, any evolution
seems just as possible as the corresponding reverse
evolution, and at the same time, the world seems to be
full of irreversible phenomena (examples omitted). To
reconcile the two pictures when we say that a certain
transformation from state a to state b is reversible
this statement refers to macrostates; what is meant
is that the reverse transformation exists for most mi-
crostates within the macrostate 'y, as measured by
volume. Now asymmetries are quite possible.

Another possible interpretation of a macrostate is
as a certain distribution v over microscopic states. It
is possible (but not always done) to require v to be
a probability distribution, given by a density function
p(w) with [ p(w)L{dw) = 1. Gibbs called such a dis-
tribution an ensemble. The ensemble pr(w) corre-
sponding to a macrostate I' is defined as 1/L(I') for
w €T and 0 elsewhere.

Coarse-grained entropy The Boltzmann entropy
of a cell T is log L(T'). This quantity depends on the
choice of the partition: indeed, another digit of pre-
cision will decrease it by about log10. In the typical
classical examples, this difference is negligible com-
pared to the volumes in question. In nontypical sys-
tems, partition dependence can lead to paradoxes: we




will show that the Maxwell demon paradox is one of
these.

We propose a new quantity

H(T') = K(T') + log L(T) (1.1
called coarse-grained algorithmic entropy to replace
Boltzmann entropy. Here, K(I') is the description
(Kolmogorov) complexity of the cell T (to be defined
later). This quantity is closely related to the one in-
troduced by Zurek, and we will return to their rela-
tion. The term K(T') is typically negligible compared
to the Boltzmann entropy log L(T'); however, the new
entropy is less partition-dependent since it is an ap-
proximation to a certain partition-independent quan-
tity H(w) = Hr(w) which we call (fine-grained) al-
gorithmic entropy.

The paper explores the basic properties of fine-
grained and coarse-grained algorithmic entropy. Fine-
grain algorithmic entropy is a simple variant of the
randomness tests of Martin-Lof (and others). Its inte-
gral over a Gibbs ensemble is close to the so-called
Gibbs entropy. It possesses a simple conservation
property that, together with coarse-grained algorith-
mic entropy, is helpful in explaining the Maxwell de-
mon paradox as well as some other physical situations
and models not handled well by Boltzmann entropy.
Explanation of the entropy increase property for the
new coarse-grained entropy does not rely on the huge
volume differences in cells the way it does in the case
of Boltzmann’s entropy.

We hope that the new quantity extends the possi-
bilities of the kind of reasoning involving entropy to a
wider range of systems (in particular, large computers
in which it is not clear whether the whole memory con-
tent should be considered macroscopic or microscopic
information).

Before introducing the new notions we recall the
basic facts of the theory of complexity and random-
ness.

2" Complexity

Given some computer F', let Nr(y) be the length
of the shortest program (measured in bits) that causes
F to output string y. We will require the program
to be self-delimiting: no endmarker is allowed. The
machine-dependence of this concept is limited since
there is a machine G on which the function Kg(y)
is optimal within an additive constant: i.e. for every
other machine F there is a constant cp such that for
all £ we have K¢(z) < Kp(z) + cp. The notation

£(z) € g(a).

will mean that for some constant ¢ and for all z we

have f(z) < g(z) + ¢. The notation < will mean the
same with a multiplicative constant. The notation

+ + . .
% means that both < and > hold. With this nota-
tion, the invariance theorem’s formula can be written

as Kg(z) < Kpsx). The function A (z) = Kg(z) is
called the complexity of the natural number = con-
ditional on the information y. (This is the modified
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version of the Kolmogorov-Solomonoff complexity in-
vented by Levin and Chaitin.)

The conditional complexity K(x | y) is defined by
leaving y everywhere as a parameter. The elementary
properties of the complexity function are discussed in
several expositions, and we will not dwell on them. Let

us just mention that K(n) b3 logn + 2loglogn, and

K(f(z) | y) b3 K(z | 9(y)) : K (z) for any computable
functions f, g.

The function K(zx) is not computable, but it has
a certain weaker property. Let Q be the set of ratio-
nal numbers. We call a function f(z) from natural
numbers to real numbers upper semicomputable
if there is a computable sequence f,(z) with rational
values such that f,(z) \, f(z). It is easy to see that
Kﬁx | ¥) is upper semicomputable. We will need the
following important theorem of Levin.

52.1) Coding Theorem Let us consider the class of
ower semicomputable functions f(z,y) with the prop-

f(z,y) < 1. The function 2~ Xl¥) js an
this class and is maximal in it, to within
In other words, for each

erty that
element o
a multiplicative constant.

element f of this class, we have 2~ K(=l¥) ; flz,y).

3 Randomness

Notions of computability can be introduced over
the space Q if some sequence of neighborhoods, called
open cells (e.g. Cartesian products of rational inter-
vals) is fixed. We will assume that the transformation
group U! as well as the invariant volume measure L
are computable.

For a probability space 2 and a fixed increasing se-
quence 2, of subsets of £ whose union is the whole
space, define the set M(Q) as the set of measures
p over Q such that p(2,) < oo. A nonnegative
lower semicomputable function f,(w, y) over the space
M(Q) x 2 x Y is a (parametrized) test of random-
ness or, shortly, test with respect to a parameter y, if
for all p,y we have

/hwwmwASL

Here is some motivation for the case of probability
measures. For a moment, forget the parameter y. If
a certain casino claims that it draws elements from
according to the distribution g then it must accept the
following deal:

1. I prove that f,(w) is a test of randomness;
2. 1 offer two dollars for a game, and ask for w;
3. my payoff is f,(w).

If the casino owner indeed draws according to u then
the test property implies that my expected payoff is at
most a dollar, so she even makes more than a dollar
of profit on average. My strategy is to try to find
some nonrandomness in w, (without seeing w first) by




making an acceptable test function f,(w) as large as
possible.

It can be shown that among all randomness tests,
there is a certain one, denoted by ¢,(w | y) and called
a universal test, that takes only values of the form
2" for (possibly negative) integers n and is maximal
to within a multiplicative constant, i.e. that has the
property that for all other tests f,(w,y), we have

fulw,y) < tu(w | ).

This test is a close relative of the universal tests of
Martin-Lof and Levin and can be used as a criterion
of randomness. (The property that ¢ takes only values
2" is only for convenience.)

In the gambling interpretation, the universal test
is, in some sense, optimal. Its existence is surprising.
E.g., if w is supposed to be a sequence of coin tosses
then I could make my test function large for those w's
in which the frequency of 1's is at least 60% (since
their probability is small): this way, I would profit
from a certain kind of cheating the casino might at-
tempt. Alternatively, I can make f larger on many
other improbable sets of sequences. The universal test
anticipates and combines all these strategies.

The algorithmic (fine-grained) entropy of w
with respect to p is defined as

Hy(w|y) = —logtu(w | y).

We will delete p from the subscript when it is obvious
from the context.

H can take arbitrarily large negative values, even
—ooc. In other words, an object can be infinitely non-
random, though the measure of such objects has prob-
ability 0. For a finite measure p, the function H,(w)
is bounded from above. For infinite measures, it can
also take arbitrarily large positive values; but it will
never be co.

Let H,(w) = Hyu(w | 0) where Y is chosen as the
one-element set {0}. If both Q and Y have measures
4, v then we define

Hu,u(wa y) = Huxu((wa y))
where p x v is the product measure.

Here are some additional easy properties of Hﬂw).
If f 1s a computable function then the following holds:

Hulw 19) € Halo | 1(0)).
We have
plw: Hiw)<m} < 2™ (—co<m<o0), (3.1)
Hylw & —log/T”"'"‘“"”u(dw)-
The first inequality states that H(w) is large only
with small probability. The second one is needed for

the addition theorem, stated later. For the volume
measure L in the phase space of a dynamical system,
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we define H(w) = Hr(w) as the fine-grained algorith-
mic entropy of a state w. Let

Epm={w:Hw)<m}.

In (3.1), we have shown L(E,,) < 2™ for all m. For
finite space volume L(£2), this implies that

L(Eiog L(2)-m)/L(R) <277, (3:2)

i.e. the proportial volume of the set of those points
where algorithmic (fine-grained) entropy is not close
to its maximum is very small.

4  Additivity

Complexity has the following additivity property,
due in various forms to Kolmogorov, Levin. Gacs,
Chaitin:

K(z,y) £ K(y) + K(2 |y, K(y),
This property, in an appropriate form, generalizes for
algorithmic entropy, as shown by Vovk and Vyugin.

We spare the reader the general form in the present
abstract. A simple corollary is

+
Hy(x,y) < Hy(y) + Hu(z | y).
The symmetric quantity
I(z,y) = K(z) + K(y) = K(z.y)

is called the mutual information between the ob-
jects z,y. It generalizes to

Luw(z,y) = Hu(z | v) + Hy(y | p) — Hyu(2,y).
(with respect to the measures p, v). A related quantity

is
L(y:z)=Hy(z)— Hy(z |y)

which is the information that y carries about z with
respect to u. When p is obvious from the context we
omit it from the subscript. The complexity addition
theorem is equivalent to the following relation between
the two kinds of information:

Iz, y) t I(z, K(z) : y)

which also generalizes to algorithmic entropy. The
right-hand side can be interpreted as the information

“that the pair (z, K'(z)) carries about y. For elements

y of a countable set Y, the inequality

+ '
L(y:z) < Ky (4.1)
can be proved. It says that an object cannot carry
more information about a string than its own com-
plexity.




5 Randomness, complexity,

grained entropy

Let Q0 be the set of of all elements of 2 that do not
belong to the boundary of any open cell. Let M%(Q)
be the set of measures u such that p(QO{ =0 If
Q is the interval [0, 1) and cells are rational subinter-
vals then elements w of Q° can be expressed as infi-
nite strings of bits: just use the binary representation.
There is a family of cells corresponding to this repre-
sentation: for binary string s of length n, the cell T,
is the set of states w first n bits w; are those in s.

This representation can be generalized to arbitrary
phase spaces €2, by choosing the appropriate cells T,:
divide Q in half, then each half again in half, etc., in
such a way that each point of €y is eventually the
intersection of all the subdivisions containing it. If s
has length n then ', will be called a canonical n-
cell, or simply canonical cell, or n-cell. For each n,
the canonical n-cells form a partition P, of Qo with
2" elements.

We will generally assume that the partition chosen
is also “natural”. The bits w;,ws,... could contain
information about the point w in decreasing order of
importance from a macroscopic point of view. For ex-
ample, for a container of gas, the first few bits may de-
scribe, to a reasonable degree of precision, the amount
of gas in each left half of the container, the next few
bits may describe the amounts in each quarter, the
next few bits may describe the temperature in each
half, the next few bits may describe again the amount
of gas in each half, but now to more precision, etc.
From now on, whenever I' denotes a subset of 2, it
means a canonical cell. From now on, for elements of
QO we can talk about the n-th bit w,, of the descrip-
tion of w: it is uniquely determined. Let

coarse-

Wt =Wy W

The Coding Theorem 2.1 implies that if & runs on a
discrete space then Hy(z) % K(z). More generally,

Hy(z) £ K(z | p) + log p(z).

There is a similar characterization of tests over arbi-
trary spaces. Let us denote

Hy(D) = K(T | ) + log u(T)
for canonical cells T.
(5.1) Test Characterization Theorem For a
computable measure u in M°(Q), we have

H,(w) £ inf H,(T). (5.2)

The constant in & here depends on g. This is the
promised connection between the coarse-grained algo-
rithmic entropy K(T') + log L(I') and the (partition-
independent) fine-grained algorithmic entropy Hp(w).
In the special case when Q is the set of natural num-
bers and p is the counting measure this theorem is
equivalent to the Coding Theorem 2.1.
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(5.3) Remark An interesting application where a
related formula is used is the “minimum description
length” principle (MDL) theory of statistics. There,
instead of the description complexity K(z), often the
codeword length C(z) of some other coding (univer-
sal over some class of measures) is considered, and the
quantity C(T)+log u(T') is called the redundancy. In
these statistical applications, the presence or absence
of u in the condition makes a difference. ¢

The Test Characterization Theorem, in the form

Hi(w) % inf K (w") + log L(Tun) (5.4)

says that the fine-grained algorithmic entropy H(w) =
Hp(w) with respect to the invariant volume measure L
can be essentially expressed as K(w")+log L(T,») for
a certain n: so, it is the sum of the Boltzmann entropy
for the partition P, plus the description complexity
of the macroscopic description w™. For the systems
and partitions of interest in physics, the additive term

K(w™) onis typically negligible compared to the
other one since the total number of macroscopic cells
is typically small compared to the volume of the large
cells.

In “practice”, to find the “right” n we should keep
increasing it, i.e. include (the program for) more and
more bits of w into the macroscopic description as long
as the complexity increase buys greater decrease in
the Boltzmann entropy log L([‘wn§ (our a priori un-
certainty about w).

The following theorem says that, for most elements
w of a cell T, the value of H,(w) cannot be much higher
than H,(T).

(5.5) Stability Theorem

p{weT: Huw) < Hy(T)=K(I(T))—m} < 2™ u(T).

We can also interpret this theorem as saying that if
some elements of the cell are (sufficiently) random
then most of them are (sufficiently) random. Note
that the difference K({(I')) is less than 2logn for T'yn.

6 Entropy increase properties
Fine-grain nondecrease As stated in the Intro-
duction, we are considering an isolated physical sys-
tem with state space 2 whose development is de-
scribed by a transformation group U?. We also as-
sume that U'w is computable as a function of the pair
w and t. We assume the existence of a computable
invariant measure L (the “Liouville measure”): it has
the property that L(U'A) = L(A) for all ¢ and all
measurable sets A. Under suitable conditions, the ex-
istence, computability and even uniqueness of L can
be proven.

These properties imply that the function 9-HU'w)
is a parametrized randomness test. From this, it can
be derived that

H(U'w) ; Hwl|t)y= Hw) - I{t :w).




This is, in essence, our entropy nondecrease formula
since the term I(f : w) can be shown to be generally
very small. Alas, it 1s also an entropy nonincrease
formula, giving

—I(t:w) S HU) ~ HWw) S It : U'w).  (6.1)

According to this, the only amount of decrease we
will ever see in H(U*w) is due to the information that
the value of the time ¢t may have on w, which is very
small for all simple moments of time. But the amount
of increase is also only due to the information that ¢
may have on U'w. Technically, the nondecrease prop-
erty can be better seen from the following theorem,
which says that entropy is smaller by m + K(T) than
its present value only in a fraction 2™ of all times
between 0 and T'.

(6.2) Entropy Nondecrease Theorem Let A be
the length (Lebesgue) measure, and let T be a rational
value of time. We have

Mte[0,T]: HU'wW) < Hw)= K(T)-m} < 2~™T.

Gibbs ensembles Another accepted model of a
macrostate is a certain distribution v over microscopic
states given by a density function (ensemble) p(w)
with respect to the volume measure L. Let us require
J p(w)L(dw) = 1. We can ask what is the probability
density to find it in state w at time t +¢3? Let us call
this new ensemble p’.

The classical definition of Gibbs entropy of a prob-
ability distribution with density function p(w) over L
is

Gp) = - / p(w) log p(w) L(dw).

In the special case when p is the macrostate-ensemble
we have G(pr) = log L(T'), i.e. the Gibbs entropy is
the same as the Boltzmann entropy. Liouville’s Theo-
rem implies G(p') = G(p), i.e. that the Gibbs entropy
of an ensemble does not change at all in an isolated
system during evolution. This shows that in case of
the evolution of isolated nonequilibrium systems, the
evolution of a Gibbs ensemble does not express ad-
equately what we consider thermodynamic behavior.
The problem is that even if at the starting time ¢ the
Gibbs ensemble was something simple, it can develop
in time ¢ into a very complicated density function that
does not correspond to any reasonable macroscopic de-
scription. Ensembles that are invariant in time retain
their usefulness, however, for equilibrium systems.

The following relation shows that the Gibbs entropy
is the average of algorithmic entropy:

A+

/ Hy(w(do) & - / —p(w) log p(w)pu(dw)

A+

/H,,(w)u(dw) + K(|logv(2)]).
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The increase of coarse-grained entropy Let us
now consider the much more speculative problem of
approach to equilibrium, i.e. the argument that the
algorithmic Boltzmann entropy H™(U'w) must indeed
increase fast if it is far from its upper bound log L(2).

There is a classical argument to show that in a
nonequilibrium system, Boltzmann entropy can be ex-
pected to increase fast until it almost reaches its upper
bound log L(2). The argument relies on two prop-
erties. The property that we will call Noncompen-
sation Condition says that in the partitions of inter-
est, the “large cells” dominate the space so much that
even the union of all “small” cells taken together is
small. It holds for typical systems simply because
the total number of cells is small compared to the
volumes of interest. With algorithmic coarse-grain
entropy, in this condition, “large” must be replaced
by “small-entropy”, and then it is always satisfied.
Indeed, the set {w : H*(w) < m} is contained in
Em = {w : H(w) < m}, which, according to (3.2),
has volume at most 2=™L(Q).

The second property needed for entropy increase,
which we will call the Weak Mixing Condition, says
that if the system starts from a state in a not very
small cell then after a time ¢, it is unlikely to end up
in any small union of cells. However plausible, this
condition can be rigorously proved only in some spe-
cial cases. For coarse-grained algorithmic entropy, the
condition remains just as difficult to prove but our
framework may allow to formulate the mixing prop-
erty in a sharper way.

In the following two (arguably exotic) examples
the coarse-grained algorithmic entropy is preferable to
Boltzmann entropy.

(6.3) Example Take a large container filled with
ideal gas and a few large balloons. At start, the bal-
loons are fixed. Then we release them. They gain en-
ergy from collisions with the gas molecules until they
achieve the average energy appropriate to their num-
ber of degrees of freedom.

It is reasonable to count the positions of the bal-
loons to the macrostate of the system. The volume of
the cell will be essentially determined by the energy
of the system consisting of the gas alone. This energy,
and hence the Boltzmann entropy, becomes smaller by
the amount transferred to the balls. &

This example becomes less ridiculous if we replace
balloons by the memory of a computer. For a while,
it will still be reasonable to count the content of the
memory as part of the macroscopic description since
bits can be individually observed and manipulated.
However, as the size of a site storing an individual
bit decreases, there will come a point where it is not
reasonable to consider the memory state as part of
the macroscopical description. The communication
of two computers, one with “macroscopic” memory
and the one with “microscopic” memory, leads to the
Maxwell demon paradox. This shows the necessity of
the smooth transition between macroscopic and micro-
scopic transitions exhibited by algorithmic entropy.




In terms of our scheme, we are talking about in-
creasing n (refining the partition). The additive term
K (w") which is so insignificant for small values of n,
gains in significance in this process and makes the
transition continuous. Ignoring it, by defining entropy
just as log L(w™), is bound to lead to paradoxes.

The following system also defies Boltzmann entropy
but submits to algorithmic coarse-grain entropy.

(6.4) Example: the baker’s map Let  be the
set of doubly infinite binary sequences w
. ..w_jwowiws ... with the shift transformation
(U'w); = wiye over discrete time. Let us write
W" = W_|n/2| " *-Win/2]-1. The n-cells have the form
I',». Let the volume L be such that all n-cells have
the same volume 277",

Since all n-cells have the same measure no matter
what fixed precision we choose, the Boltzmann en-
tropy of Utz does not increase with ¢. The quantity
H?(U'z), however, can be shown to increase fast for
all typical sequences, between times time 0 and n, lin-
early from —n to 0.

We can also use independent biased coin tossings
or any stationary process for the measure, and ob-
tain similar results. For such processes, there is an
“asymptotic equidistribution property” guaranteeing
that most volume will be taken up by n-cells of about
the same size 27" (where h is the so-called “entropy
rate”). &

In typical physical systems, the partitions given by
the canonical cells have no simple connection with the
computable transformation group U* of our dynamical
system. In particular, they are not “generated” from
the first partition into I'g and I'y by U* the way they
are in the baker’s map.

Algorithmic entropy can also be used to relate the
growth the the Kolmogorov-Sinai entropy of a dy-
namic system to the growth rate of complexity.

The example of the shift transformation suggests
that in chaotic systems, the parameter n can often be
made a function of ¢ as long as it grows slower than
linearly with ¢. Thus, if limy_ n(t)/t = 0 then in the
baker’s map with the uniform distribution,

H*W(U'w)

will approach log u(Q2) almost as fast as if we held n
constant. The growth of n(¢) seems a good measure

of the mixing of U*.

The paradox of typicality The notion of a typical
object is an informal one, and the present remark calls
attention to the fact that our intuition concerning the
properties of typical objects may be misleading. Con-
sider the space of infinite 0-1 sequences obtained by
tossing a biased coin, with probabilities 1/3, 2/3. We
would consider typical those sequences in which the
relative frequency of 0’s tends to 1/3. On more re-
flection, we would consider those sequences w typical
that also satisfy all other criteria or randomness, and
are random according to Martin-Lof’s definition, or,
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equivalently, which have Hp(w) > —oc where p is the
appropriate coin-tossing measure.

Consider now a dynamical system with the volume
measure L. The (fine-grained) entropy nondecrease
property, which can also be considered a randomness-
conservation property, guarantees that the above de-
fined typicality is “conserved”: the evolution of a sys-
tem takes typical states into typical ones.

There is, however, another, similarly attractive idea
of typicality, which we will call “local typicality”,
which is not conserved. Consider a given partition
P, and a given cell ' in this partition. Let us call
those states w of the cell T' “locally typical” whose
fine-grained entropy H(w) = Hp(w) is close to the
coarse-grained entropy H"(w) = log L(T')+ K(T'). We
know from the Stability Theorem 5.5, that most points
of each cell (in terms of the measure L) are typical
in this sense. However, local typicality is not con-
served. Indeed, assume that coarse-grained entropy
increases for most points, and that the coarse-grained
entropy of T is low. Then for most points w in I' (and
hence for most locally typical points), their coarse-
grained entropy increases, so Ulw belongs to a cell
[’ with much higher coarse-grained entropy. At the
same time, the fine-grained entropy H(U'w) does not
change too much with respect to H(w). So, the lo-
cally ty!)ical state w turns into a locally nontypical
point U*w. The reason is that w was a locally typical
point of a “nontypical” cell, and it is still carrying this
history. (However, as long as only the macroscopic in-
formation embodied in the cell I' is available for in-
spection and manipulation, this history is inaccessible
to later observers.)

The non-conservation of local typicality eliminates
a potentially attractive “principle”: namely that the
state we have at present is locally typical. Consider
the present state of a container of gas after a wall
was removed that had confined the gas to one half.
In a usual macroscopic description (partition), the
coarse-grained entropy of the present state will be
much larger than what it was before the wall removal.
Since the fine-grained entropy is approximately the
same (since it did not change much), the present state
is actually highly nontypical.

The refuted principle is attractive since, together
with the Boltzmann Entropy Increase Property {or its
counterpart using algorithmic coarse-grained entropy)
it could be used to prove that entropy increase is not
only likely to occur but will occur. One possible sub-
stitute of the principle is the introduction of proba-
bilistic perturbations, see e.g. [?].

We prefer to say that the entropy increase properly
relates strictly only to the presenl macroscopic state
of our system, and does not assert directly anything
aboul the present microscopic state.

7 Maxwell’s demon

Entropy balance Let A’ and Y, be two systems
where Y is considered the environment from which X
is temporarily isolated. In order to to “do something”
to X, we couple it with Y, giving rise to a joint Hamil-
tonian and a joint transformation U/*(£,7). Let us as-
sume that, being in classical mechanics, the impulses



and momenta of the joint system are simply the im-
pulses and momenta of the two subsystems, therefore
the Liouville measure on X XY is, even in the coupled
system, the product of the original Liouville measures
Ly, Ly in the subsystems. We will denote the trans-
formations in the joint system again by U(£,n). Let

(&,m) = U¥€,n), and
AH(E) = H(&)— H(E).
(7.1) Entropy Balance Theorem

AH(E) + AH(n) 3 16, m) — 16,m) = (¢ : €, ).

Since the last term is generally negligible this the-
orem says that if the two systems were originally in-
dependent (i.e. I(£,n) =~ 0) then a decrease in the
entropy of £ must be accompanied by an increase in
the entropy of 7.

The entropy balance theorem is not new, of course,
for Boltzmann entropy. But its present form makes it
useful for the treatment of Maxwell’s demon.

Maxwell’s demon and Landauer’s thesis
Maxwell’s demon is a being sitting at a tiny door
between two compartments of gas and letting the
molecules through selectively in a way as to achieve
entropy decrease in the container.

The typical explanations assume either that the
door will heat up and begin to work randomly after a
while, or that in order to make its observations, the de-
mon must descend into this world more than she cares
to and interact energetically with the molecules; this
heats her up, making it harder and harder for her to
concentrate. These explanations introduce additional
physical assumptions which are alien to the general
mathematical nature of the second law (increase of
disorderg‘ Several such explanations are refuted by
more refined models (see [1]).

A convincing modern solution emerged in a prin-
ciple announced by Landauer (see [1]). Let us model
the demon as some computer-controlled device inter-
acting with the gas. She seems to be able to de-
crease the Boltzmann entropy of the gas only at the
expense of the increase of her own information con-
tent. Landauer introduced a principle saying that in
order to erase a bit of information, a certain minimal
amount (kT log 2) of heat dissipation into the environ-
ment (and, of course, investment of the corresponding
amount of work into the system) is necessary: hence
entropy decrease occurs only as long as the demon
keeps filling up with more and more information.

sove
(7.2) Remark In order to that the erasure re-
sults in heat dissipation, Landauer argues that the era-
sure must be a general operation that decreases the
phase space of the computer memory.

I find it difficult to interpret the increase of H(7n)
universally as heat dissipation. Consider a memory
¢ consisting of a row of pendulums swinging transver-
sally. The bit 1 means that the pendulum swings while
the bit 0 means it does not. Let the “environment” g
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be an identical row of pendulums, each of which hangs
motionless originally. Now we can use 7 to erase the
memory by moving it next to £ in the right moment.
The change in 7 is obviously reversible, so there is no
heat dissipation. {

Using our framework, the demon paradox occurs
since the state of demon’s memory was implicitly con-
sidered part of the macroscopic description of the joint
system gas-demon: the quantity of information in it
failed to contribute to the classical Boltzmann entropy.
Since this device is able to decrease the Boltzmann en-
tropy of the gas at the expense of the increase of the
information content of its memory (without increasing
its own Boltzmann entropy), it is able to decrease the
Boltzmann entropy of the total system. Our solution
eliminates the paradox by including the information
content (complexity) of the macroscopic description
into the expression for entropy. It should be consid-
ered as the rigorous formulation of the more special
and informal principles of Landauer and Zurek.

Zurek [8] saw that the Maxwell’s demon para-
dox and Landauer’s thesis are two sides of the same
interaction between an information-processing ma-
chine (the demon) and a classical thermodynamic sys-
tem. The demon turns entropy into information, the
information-erasure operation turns information into
entropy. Zurek constructed an entropy-like quantity
specifically for this situation and argued that it is
non-increasing. He created a special macroscopic vari-
able d (without actually distinguishing macroscopic
and microscopic), whose value is equal to the demon’s
memory state. He defined then a quantity called
“physical entropy” associated with such a system that
is essentially Z(a,d) = B(a)+ K(d) where B(a) is the
Boltzmann entropy of the classical part. This can be
seen as essentially the same as B(a,d) + K(a,d). In-
deed, B(a,d) = B(a) since the demon’s macroscopic
and microscopic states are the same. Also, we can
delete a from K{(a, d) since we are interested in situa-
tions in which d contains much more information than
a.

Zurek argues that if, at constant temperature T,
the system is brought from state (ai,d;) to state
(a1, d>) then the amount of work obtained is at most
Z(as,ds)— Z{ay,dy). For this, he tacitly assumes that
the work gained from the operation of the system can
be separated into the work obtained from bringing
the classical machine from a; to a, and into the work
bringing the memory from d; to d>. With this assump-
tion, the second law indeed implies the upper bound
T(B(ay) — B(a1)) on the first kind of work and Lan-
dauer’s principle implies the bound T'(K(dz) — K(d1))
for the second kind of work.

Formally, our coarse-grained algorithmic entropy
looks similar to Zurek’s but is defined more generally,
and has many connections to various different defini-
tions of entropy (for ensembles as well as cells) and
also to the theory of randomness. In particular, the
above bound can be proven without the tacit assump-
tions.

Let £ be the gas whose entropy the demon is trying
to decrease. We also count the whole state 7 of the




demon into her macroscopic description. As it is usual
with classical machines, we can assume that there is
an n such that H"(§) is close to H(E? but n (and
therefore K(£™)) is still negligibly small with respect
to H(), and therefore

H(€) ~ log L(T¢x).

The entropy balance theorem guarantees that go-
ing from (£,7n) to (€', 7'), the decrease in the sum

H(€) + H(n) will be small. Since H™(€') $ H(¢')
this implies that any decrease in H™(£), 1.e. the Boltz-
mann entropy of the machine, must be compensated
by an increase in H(n) =~ K(7), i.e. the information
content of the demon’s memory (this is the Maxwell’s
demon direction) and vice versa (this is the Landauer
thesis direction).
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