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Abstract

Nanometer structures in semiconductor heterojunc-
tion systems have been studied now for several years
and have conclusively shown evidence for quantum in-
terference phenomena and granular effects due to the
finite number of electrons and impurities. Various
proposals have been made for novel devices based on
such effects which would serve as the basis for terabit
memories and ultra-dense processing elements. Here
a discussion is given of the application of a general-
ized mode maiching scheme as a computational tool
for investigaling arbitrary quanium waveguide struc-
tures and discontinuilies. Results are presented for
the nonlinear conductance properties of multiple bend
structures, lateral resonant tunnel structures, and
nonequilibrium transport through quantum dot struc-
tures. Comparison is made to various experimental re-
alizations of these structures where complications due
to undesired inhomogeneities such as boundary rough-
ness and impurities play a significant role.

1 Introduction

The theoretical transport properties of quantum
waveguide structures with discontinuities have been
modeled by a variety of different numerical meth-
ods. These include nearest-neighbor tight-binding
schemes [1]-[3], mode-matching methods [4]-[7], and
the finite element method [8]. In the present work, the
modal analysis method based on the mode-matching
technique is developed, and some of its typical charac-
teristic properties are discussed. In the application of
the modal analysis technique to quantum waveguides,
the analogy to electromagnetic guided-wave structures
is utilized. Convergence problems occurring with the
mode-matching technique as applied to step disconti-
nuities are discussed. Non-uniform quantum waveg-
uide structures, which are composed of junctions and
uniform waveguide sections, are analyzed by utiliz-
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ing an extended generalized scattering matrix tech-
nique. The technique is applied here to study double-
bend structures with right- angled and rounded cor-
ners. The calculated low-temperature conductance ex-
hibits resonance peaks which compare to experimen-
tal measurements in split-gate AlGaAs/GaAs two-
dimensional gas (2DEG) structures with bend discon-
tinuities. The technique is further extended to trans-
port through pinched quantum dot structures in which
resonant tunneling occurs. A gate-controlled negative
differential conductance is predicted much in analogy
to the conventional double barrier structure.

2 Theoretical Model

The method presented here has been described in
detail elsewhere [12]. It is assumed that the elec-
tronic motion inside the quantum waveguide is coher-
ent (i.e. no inelastic scattering), and that the elec-
tronic states are governed by the time-independent
Schrodinger equation in the effective mass approxima-
tion
2m*
Vi + "
with arbitrary lateral potential confinement V(z). In
(1), E represents the total electron energy, and the
effective mass m* is assumed to be isotropic. For sim-
plicity, the system is assumed to be completely con-
fined in the vertical growth direction, with only the
ground state occupied for quantization in this direc-
tion.

The general wave solution for this two-dimensional
waveguide structure is given as a superposition of
propagating and evanescent modes

b= (ane® + b)) g, (2) (2)

(E=V)$=(Vi+kp—k}) =0 (1)

with
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where the transverse eigenfunctions ¢, and the (com-
plex) phase constants S, depend on the lateral po-
tential profile. Only the hard-wall case with infi-
nite potential walls and zero potential between the
walls is considered here, although the technique is eas-
ily extended to more complex lateral potential pro-
files [9]. For uniform hard-wall waveguides of width
w, the transverse eigensolutions are sinusoids of the
form sin(nwz/w), and ky = 0.

In order to apply the modal analysis technique
to non-uniform quantum waveguides, the structure
is first decomposed into junctions and uniform wave-
guide sections. Figure 1 illustrates an arbitrary junc-
tion which connects N quantum waveguides. Across
the interfaces AS;(i =1,..., N) between the uniform

Figure 1: An arbitrary junction connecting N uniform
quantum waveguide sections

waveguides and the discontinuity region, the continu-
ity of the wave function and its normal derivative must
be fulfilled. These continuity equations are solved
for the scattering parameters by employing the mode-
matching technique which requires the orthogonality
of the eigensolutions ¢,, in the uniform waveguides as
well as in the discontinuity region. The requirement
of orthogonal eigenfunctions in the discontinuity re-
gion, however, limits the applicability of the mode-
matching technique to junctions for which such solu-
tions are available.

As a result of the application of the mode-matching
method, a generalized scattering matrix (GSM) is ob-
tained which characterizes the junction [10]. It is ev-
ident that the GSM is of infinite order, and there-
fore it must be suitably truncated (which is equiva-
lent to truncating the modal expansions) for numer-
ical solutions. The analysis of a junction can be ad-
vantageously simplified by applying a decomposition
method developed by Kithn [11] for the characteri-
zation of multiport metallic waveguide circuits. As

170

illustrated in Fig. 2, the discontinuity region is de-
composed into N open cavity regions. The solution
of the wave function is obtained as a superposition of

Figure 2: Decomposition of the junction discontinuity
region

the partial wave solutions in each cavity. To obtain
the generalized scattering parameters of a composite
structure consisting of junctions and uniform waveg-
uide sections, the individual GSMs are combined by
employing an extension of the GSM technique [10] as
described in Ref. [12]. The advantage of the extended
GSM technique is that the number of modes'that are
coupled between adjacent junctions can be chosen in-
dependently from the number of modes retained in the
calculation of the scattering parameters characteriz-
ing the junctions. From the transmission coefficient
the two-terminal conductance of a nonuniform quan-
tum waveguide structure in the limit of negligible bias
voltage and zero temperature is computed as [13]-[17]

G:gz_zz:rn(E,) (4)

where T,,(Ey) is the transmission coefficient from in-
put mode n to all propagating modes at the out-
put, evaluated at the Fermi energy. For the case of
nonzero electron temperature, the conductance can
be obtained from the zero-temperature conductance
with the temperature-dependent Landauer-Biittiker
formula [18] as

df(E)

G(T)=- ~BE Y

(E,T=0dE (5

where f(E) is taken as the Fermi-Dirac distribution
function.
3 Convergence Properties

For the correct computation of the generalized scat-
tering parameters of a quantum waveguide junction, it




must be understood how the truncation of the infinite
wave function expansions influences the solution. In
the GSM calculation for metallic step discontinuities,
different converged results may be obtained for differ-
ent ratios of modes retained on either side of the step
discontinuity [19], [20]. This convergence problem, re-
ferred to as relative convergence, has been found to be
related to the violation of the field distribution at the
edge of metallic boundaries [19]. Theoretical studies
have shown that the correct converged result is ob-
tained if the ratio of modes on each side of the step
is taken the same as the ratio of the corresponding
waveguide widths.

The influence of the number of modes retained in
the wave function expansions is illustrated in Fig. 3 for
a step discontinuity in a quantum waveguide assuming
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Figure 3: Convergence of T} through a step disconti-
nuity shown in the inset with w; = 10nm, w, = 20nm,
¢ =0, E = 100meV. The ratio of modes retained on
either side is defined as R = Ny/N;.

hard wall boundaries, where the total transmission T}
from the lowest mode to all propagating modes at the
output is shown. A convergence to different end val-
ues for different mode ratios cannot be seen from this
plot. However, it is found from Fig. 3 and further cal-
culations not shown here that the fastest convergence
is obtained for ratios in the number of modes on each
side close to approximately 1.5 times the ratio of the
corresponding widths. This result is similar to con-
vergence investigations on planar waveguides {21] and
coupled finlines [22]. To appreciate the improvement
in the rate of convergence which may be obtained with
the proper choice of the mode ratio, the following sim-
ple comparison is made. As seen in Fig. 3, 200 modes
are needed with R = 1 to obtain a value with an abso-
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lute error of less than approximately 4.0 x 10~¢. Simi-
larly, the necessary number of modes for a mode ratio
of 1.5 times the width ratio giving the same maximum
absolute error is 17 in the narrow guide and 51 in the
wide guide, which corresponds to a reduction to less
than 1% of the CPU time for the case with mode ratio
R=1.

4 Conductance Through Bend Discon-
tinuities

It is well known from the study of electromagnetic
waveguides that bend discontinuities give rise to scat-
tering of incident waves which may exhibit resonance-
like behavior. In quantum structures, experimental
studies have been reported on double bend structures
realized in split-gate high mobility heterojunction lay-
ers [23], [24]. In these studies, the double bend is
realized by patterning the metal gate over a two-
dimensional electron gas structure. When biased to
depletion under the gates, a one dimensional channel
is formed between the gates in which the double bend
is defined. Figure 4 shows a schematic of an ideal dou-

Figure 4: Schematic of an ideal double bend waveguide

ble bend quantum waveguide in which L., is the center
to center distance between the uniform input waveg-
uides to the bend. Figure 5 shows the measured con-
ductance versus gate voltage from Ref. [24] at 50mK
for the lowest plateau for two different values of L...
In the split-gate structure used, more negative gate
bias pinches off the one-dimensional channel, effec-
tively decreasing the width of the channel. As shown,
a number of resonance peaks are evident, particularly
in the longer bend compared with a nominal straight
waveguide (shown in the inset).
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Figure 5: The experimental conductance versus gate
bias of a double bend structure at 50mK. Curves A
and B are for L., = 177 and 293nm, and are offset
in conductance by 2e2/h and e?/h, respectively. The
inset shows the conductance at 50mK of the device
with L. = 0 (after Wu et al. [24])

The modal analysis technique has been applied
to study double bend structures [24] with differ-
ent center-to-center lengths L.. as defined in Fig. 4.
Figure 6 shows the calculated zero-temperature con-
ductance versus channel width (rather than gate volt-
age) of a double bend with L, = 177nm and L. =
293nm, respectively, corresponding to the structures
measured in Fig. 5. The electron density was taken as
2.85 x 10''em~2 in both cases as was determined ex-
perimentally from magneto-transport measurements.
Also included in the figures is the conductance in the
absence of the bend discontinuities which, as expected,
shows an ideal staircase behavior. The calculated con-
ductance versus channel width for the double bend
structures shows a strong resonance behavior in the
first plateau. The region with zero conductance is
due to a single right-angle bend as was shown pre-
viously [7], [12]. The resonance peaks in the conduc-
tance are caused by electron wave interference in the
cavity region between the cascaded bends. A compar-
ison of the calculated conductance for L., = 177nm
and L., = 293nm (Fig. 6) shows an increased number
of resonance peaks for the double-bend structure with
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Figure 6: The computed conductance at 0K for two
double-bend structures with L., = 177 and 293nm.
The dashed line shows the ideal behavior without the
bends.

the larger value of L... This correlates qualitatively
with the experimental data in Fig. 5.

The effect of a finite temperature on the conduc-
tance of a double-bend structure is demonstrated in
Fig. 7. With increasing temperature, the sharper res-
onance peaks are washed out more rapidly than the
broader peaks, effectively reducing the total number
of resonance peaks in the lowest plateau. The conduc-
tance peaks are almost entirely eliminated for temper-
atures around 4.2K. The finite temperature causes an
averaging of the transmission coefficient over a nar-
row energy range around the Fermi level. This aver-
aging may also represent the effect of non-ideal elec-
tron reservoirs where the electron energy is broadened
around the Fermi level due to inhomogeneities [25].

Qualitatively, the calculated conductance versus
gate voltage shows similar behavior to the experimen-
tal data. As is obvious, however, several notable dif-
ferences appear. One is that the peak to valley ratio
of the calculated resonance peaks is much larger than
that measured experimentally. As seen in Fig. 7, one
can partially account for this effect by assuming an
effective temperature greater than the lattice temper-
ature, although this is difficult to justify, even with im-
purity broadening for the high mobility samples stud-
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Figure 7: The calculated conductance for L., =
293nm at finite temperature

ied experimentally. A more likely reason is that the
right-angle bends shown in Fig. 4 are an idealization of
the actual potential seen by electrons. Since the chan-
nel is defined electrostatically by reverse biased Schot-
tky barriers, the actual bend potential experienced by
the electrons is expected to be rounded as indicated
by the inset of Fig. 8. There, semi-circular bends are
shown, for which the conductance may be obtained
by applying a mode-matching theory similar to that
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Figure 8: Calculated conductance for rounded versus
square corners. Curve A is the conductance for semi-
circular bens while curve B is the corresponding right-
angle bend result for L. = 177nm. The inset shows
a schematic of the double-bend with rounded corners.

for right-angle bends [26]. Fig. 8 shows a comparison
of the conductance for a double-bend structure with
rounded corners and right-angled corners. It can be
seen that the position of the conductance resonances is
nearly independent of the type of bend used. However,
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the peak-to-valley ratio of the resonances is noticeably
reduced with rounded bends. In addition, the broad
dip to zero conductance due to a single right-angle
bend is not present for curved bends. The conduc-
tance of the actual experimental structure is expected
to lie somewhere between the extreme cases of a right-
angle bend and a curved bend with rounded corners
shown in Fig. 8.

A further difference between the theoretical and ex-
perimental conductance is that the peak conductance
experimentally is less than the plateau conductance,
2e%/h, whereas the peak theoretical conductance with
or without rounding always approaches the quantized
conductance limit. In order to explain this behav-
ior, additional back-scattering must be present which
reduces the ideal conductance below 2¢%/h. One pos-
sible source of such scattering is boundary roughness
due to irregular gate electrodes. Such irregularities
are impossible to avoid using state of the art lithog-
raphy techniques. The theoretical effect of boundary
roughness in quantum waveguides has been reported
elsewhere [27].

5 Lateral Transport Through Quan-
tum Dots

Resonant tunneling through double barrier hetero-
junction structures has been studied now for a num-
ber of years [28], [29]. There negative differential re-
sistance (NDR) is exhibited in the I-V characteristics
when the Fermi level in the emitter is biased through
the quasi-bound state(s) formed in the well between
the two barriers. The same principle should be realiz-
able in lateral double barrier structures fabricated in a
similar fashion to the quantum waveguides discussed
in Section 4 [30).

Figure 9 shows a schematic of a ’quantum dot’ in
which the shaded regions represent the gate electrode
in a split-gate high electron mobility sample. The dot
is defined by an input and output constriction which
couple to external emitter and collector regions. We
have previously modeled the transport properties of
this system using the mode matching theory described
in Section 2. To model the emitter and collectors,
uniform waveguides are assumed in which the width
is made sufficiently wide to not influence the conduc-
tance through the dot. It should be noted that the pro-
cess of using wide input leads increases the numerical
load by increasing the number of input modes which
need to be retained in the mode-matching method,
and thus there is an upper limit to the width which




Figure 9: Quantum dot structure with input and out-
put constrictions. Dimensions shown are in nanome-
ters.

may be employed practically. Figure 10 shows the
transmission coefficient as a function of energy in equi-
librium for the curve labeled 0. The quantum dot
dimensions have been chosen to correspond to typi-
cal dimensions that could be realized using electron

Total Transmission

Energy (meV)

Figure 10: Total transmission as a function of energy
for different emitter-collector bias voltages for the lat-
eral quantum dot structure shown in Fig. 9 (after
Weisshaar et al. [30])

beam lithography. The calculated transmission coeffi-
cient shows a strong resonance peak below the lowest
conductance plateau associated with lateral tunneling
through the quasi-bound state of the dot. Above this
energy, the transmission approaches unity through the
first mode. This unity transmission in turn gives rise
to a plateau conductance of 2¢?/h in agreement with
the experimental measurement of the non-addition of
quantized ballistic conductance for phase coherent sys-
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tems [31]. The calculated result agrees quite well with
the measured conductance through the same split gate
structure reported by Dzurak et al. [32].

As a bias is applied between the emitter and collec-
tor (left and right wide regions), the solution changes
as potential is dropped across the structure. Here
for simplicity, self-consistent effects associated with
charge storage are neglected, and the applied voltage
is assumed to drop linearly across the structure. The
curves labeled other than 0 in Fig. 10 represent the
transmission coefficient for the bias voltages shown.
As is evident, the asymmetry in the barriers causes the
resonance peak to diminish, while the transmission in
the continuum continues to exhibit a unity value.

The corresponding current-voltage characteristics
at various lattice temperatures are calculated using
the finite temperature formula (5) as shown in Fig. 11.
The I-V characteristics exhibit NDR for lattice tem-
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Figure 11: I-V characteristics at different tempera-

tures for the double constriction structure shown in
Fig. 9 (after Weisshaar et al. [30])

peratures up to 5K, above which thermal broadening
smears out the resonance sufficiently to eliminate the
effect. If the structure in Fig. 9 is realized using metal
gates above a two-dimensional electron gas, then the
dimensions may be changed with gate bias, giving in-
dependent control of the NDR.

If transport through the quantum dot is not coher-
ent, then the quantized conductance is reduced be-
low the ideal 2¢2/h as was shown by Kouwenhoven
et al. [33]. Recently, nonlinear transport through a
quantum dot has been measured which shows strong
instabilities in the I-V characteristics giving rise to S-
type negative differential conductance (SNDC) [34].
This behavior cannot be explained by the coherent



transport mechanism discussed above in connection
with lateral resonant tunneling. Rather, the explana-
tion corresponds to the incoherent or sequential case
which goes beyond the simple Landauer-Biittiker for-
malism [35]. In this explanation, electrons trapped in
the quantum dot are driven out of equilibrium by the
current passing through the dot. Energy is transferred
to the dot electrons through e-e scattering which in
turn raises the effective electron temperature there.
Using a sequential tunneling model, and determining
the electron temperature independently from energy
balance considerations, the experimental bistability of
the current-voltage characteristics may be reproduced
theoretically as shown in Fig. 12. There the theoret-
ical and experimental I-V characteristics are shown
for two different gate biases on the contacts forming

3 - : :
i
; * Vg=2.95V Ref. 1
v Vg=-2.6 V Ref. 1
2 - ]
—~ | a)N=170
3 bo 3o mv b) N=155
3 - $g=49 mV
11 \: 0=3.3 1
it
i
i
0 2 .
0 50 100 150 200 250
Vas (mV)

Figure 12: Calculated and experimental current volt-
age characteristics through a quantum dot structure
exhibiting SNDC for two different gate biases (after
Goodnick et al. [35])

the dot (somewhat similar to that shown in Fig. 9).
The fit parameters shown correspond to the number
of electrons in the dot, N, the potential barrier in the
constrictions to electrons entering the dot, @, and a
parameter characterizing the reduction in barrier with
potential drop across the constriction. The electron
temperature in the dot is near the lattice tempera-
ture in the high impedance regime, but rises quickly
to several hundred Kelvin in the low impedance state.
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