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Abstract

We address certain questions concerning tnvertible
cellular automata, and we present new resulls in this
area. Specifically, we explicitly construct a cellular au-
tomaton in a class (residual class) previously known
not to be empty only via a nonconstructive existence
proof. This class contains cellular automata that are
wnvertible on every finite support but not on an infi-
nite lattice. Moreover, we show a class that contains
invertible cellular automate having bounded neighbor-
hood, but whose inverses constitute a class of cellular
automata for which there isn’t any recursive function
bounding all the neighborhood.

1 Introduction

Computational models satisfying physical laws are
the object of several recent studies [8, 3]; of particular
interest are invertible models [5, 8]. Cellular automata
represent one of the best models of parallel computa-
tion; the study of invertibility in cellular automata is
of great interest in modelling physics.

Several theoretical results concerning invertibility
in cellular automata have been presented ([2, 9, 10,
12, 13, 15, 18]), some leading to open questions.

e In [18], the existence of a peculiar class (resid-
ual class) of cellular automata had been predicted
but, until now, no such cellular automata had
been exhibited. Here we explicitly construct a
cellular automaton in this class, i.e., a cellular au-
tomaton that is invertible on every finite support
but is not invertible on an infinite support.

o It is known [18] that for the class of all invertible
cellular automata, an upper bound to the radius
of the inverses cannot be found. We investigate
the meaning of this constraint, exhibting a class
of invertible cellular automata whose inverse local
maps have neighborhood that cannot be bounded
by any recursive function.

We construct these cellular automata starting from
a space tiling technique introduced by Robinson in
[14]. More precisely, using a variant of Robinson’s
technique, we discuss a particular set of local maps
which had first been presented by Kari in [9, 10] and
we prove that this set has the above mentioned prop-
erties.
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2 Infinite cellular automata

2.1 Cellular automata

A cellular automaton is a set of identical finite
automata (also called cells) locally connected to each
other in a uniform way.

In this paper, we consider two kinds of cellular au-
tomata, depending on their support, that is, the grid
containing the cells:

o if the cells are located in the infinite d-dimensional
lattice (that is, Z9), we have a proper cellular
automaton;

o if the support is a d-dimensional toroidal array
(torus) of period (or size) n along all dimensions
(that is, Z2), we have a toroidal cellular automa-
ton.

The state g of each cell varies according to a uni-
form, deterministic local function defined on the set
of neighborhood states. The neighborhood, a set N
of displacements, specifies the relative positions (with
respect to the cell to'be updated) of the cells used by
the local function. By radius of a cellular automaton,
we mean the radius of its neighborhood. In this pa-
per, we use the Moore neighborhood, consisting of a
cell and the eight adjacent cells in a two-dimensional
grid.

Hence, a complete description of a cellular automa-
ton (both for the infinite and the finite case) can be
given by defining:

e the support space,
o the state set @ of the cells,

e the neighborhood N,
o the local function f: Q¥ — Q.

The pair A = {neighborhood, local function) will be
called local map or rule.

The cells change their states in a parallel, syn-
chronous way. The local function determines a global
function F acting on the space ¥ of all possible con-
figurations.




2.2 Invertibility

A cellular automaton is invertible if its global func-
tion is bijective. The invertibility of a cellular au-
tomaton is an important issue in modelling reversible
physical phenomena.

Here we give a brief summary of the main results
about cellular automata invertibility.

The invertibility of a cellular automaton is a prop-
erty of its global function, while the cellular automa-
ton itself is described in terms of a local map; Richard-
son proved that the bijectivity (i.e., invertibility) of a
cellular automaton’s global function implies the exis-
tence of an inverse local map.

Theorem 2.1 [13] If the global map of a cellular au-
tomaton is injective, then it is invertible, and its in-
verse is the global map of a cellular automaton as well.

In other words, if the global map is injective then
it is also surjective and the inverse global process can
be described in local terms. Richargson’s proof is not
constructive: it does not give any procedure for finding
the inverse local map. However, given two cellular
automata it is possible to decide if they are one the
inverse of the other:

Lemma 2.1 [18] There is an effective procedure for
deciding, for any two locals maps X and X defined
on the same set of configurations, whether the corre-
sponding global maps F' and F' are the inverses of one
another.

Early investigators conjectured that invertible cel-
lular automata could not be computational universal
(1, 4]. Toffoli {15] proved the existence of univer-
sal invertible d-dimensional cellular automata when
d > 1 ; Morita and Harao [12] proved the existence of
computation universal cellular automata in the one-
dimensional case.

For many years a major challenge has been deciding
whether or not a given cellular automaton is invert-
ible. For the one-dimensional case Amoroso and Patt
proved that

Theorem 2.2 (2] There is an effective procedure for
deciding whether or not an arbitrary one-dimensional
cellular automaton, given in terms of a local map, is
invertible.

In other words, the class of invertible one-
dimensional cellular automata is recursive. Concern-
ing multidimensional cellular automata, the class of
invertible cellular automata is recursively enumerable
(see [18] for a proof); however recently Kari proved
that, for d greater than one, the class of invertible
d-dimensional cellular automata is not recursive:

Theorem 2.3 {9, 10] There is no effective proce-
dure for deciding whether or not an arbitrary two-
dimensional cellular automaton, given in terms of lo-
cal map, s invertible. Thus, in general, the invertibil-
ity of a cellular automaton s undecidable.
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Figure 1: Colors are replaced by arrows.

The proof is based on transformation from another
undecidable problem — the tiling problem on the in-
finite two-dimensional lattice [14].

The invertibility of a cellular automaton consid-
ered on toroidal finite supports has been proved to
be co-NP-complete [6]; the same result of complete-
ness, arise also in the average-case complexity theory

(7.

Alongside these theoretical results, there have been
technological, architectural and algorithmic develop-
ments (see [11, 16, 17, 19]); as a result cellular au-
tomata have become a very productive tool for mod-
elling and carrying out parallel computation.

3 A Tiling technique

In the present section we summarize some results
and definitions used in [10] to prove Theorem 2.3. In
particular, since it is used for proving our results, we
briefly describe a finite set of tiles having the follow-
ing properties: they cover an infinite two-dimensional
grid, and they define a path through all the elements
of this grid. Moreover we prove that this set of tiles
cannot be used to tile a finite toroidal support of any
size.

A tile is a square with colored edges. Formally,
given a finite set C of colors, a tile set is a subset
7 C C* and a 7-tile is any ordered quadruple ¢ of C4.

A tiling (denoted as 7-tiling) of a fixed grid (support
space) using the set 7, is a mapping from the sites of
the grid to the set of tiles.

By correct tiling we mean a tiling such that edges
of adjacent tiles have the same color.

Using colors, labels, or numbers to distinguish dif-
ferent kinds of tile edges is just a matter of convention.
In what follows we adapt the concept of edge color as
done in [10].

We replace each color with one or more arrows
pointing inwards or outwards from an edge. In other
words each edge is tagged by the heads and tails of
different arrows (see Figure 1). Two adjacent edges
match correctly if each head meets, in the adjacent
tile, the tail of an identical arrow.

Let us further generalize the concept of color by
assigning labels to the corners as well. If we call the
four corners of a tile NE, NW, SW and SE, a passage
is a pair (ain, @out), where both a;, and a,y: (Which
denote, respectively an inward direction and an out-
ward direction) belong to the set {NE,NW SW,SE}
(see Figure 2).
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Figure 2: (a) Corners, (b) (SW,SW) and (NE,SE)
passages, (c) Paths.

The corner NW is naturally called opposite to SE,
NE opposite to SW.

With this formulation, the concept of “tile color”
has been generalized to one of “arrows and passages”
According to these definitions, a tiling is correct if

e each arrow head meets an equal arrow tail.

o for each passage (ain,aoyut) the neighbour tile in
the aoy: direction is “colored” with a passage
whose inward direction is the opposite of asy:.

If one of these two conditions doesn’t arise, we say
that a tiling error occurs.

We define a path as a sequence (possibly cyclic)
of consecutive passages pi,...,pi,... associated with
neighbouring cells, such that the outward direction of
pi 1s equal to the opposite of the inward direction of
pi+1 (see Figure 2¢).

A complete description of the set 7x of 160 tiles de-
fined in [10] is given in Appendix A. This set has three
very interesting properties expressed by the following
lemmas.

Lemma 3.1 [10] An arbitrarly large square grid can
be correctly tiled with the set 7. From Koenig’s infin-
ity lemma, one can then correctly tile the entire plane
Z2,

The correct tiling of arbitrarly large square grids
(squares for simplicity) is obtained by a recursive con-
struction that, given the correct tiling of a square of
side 2" — 1, determines the correct tiling of a square
of side 27*! — 1. A schematic representation of this
construction is shown in Figure 3.

Lemma 3.2 [10] In every tiling of the plane from the
set 7x, only two types of path may arise:

o FEither the path has a tile for which there is a tiling
error in its neighborhood,

e or the path visits all the tiles of an arbitrary large
square.

The property of tiling arbitrarly large squares is
trivial to achieve; it is the property expressed in 3.2
that makes this set of tiles really interesting. In other
words, whatever square we tile with the set 7k, either
this tiling induces a continuous path trough all the

145

“

Figure 3: Construction of a correct tiling for a square
of dimension 7.
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Figure 4: A correct tiling for a 2¥~! x 2%~1 square in-
cluding the planar representation of a torus (shaded).

tiles, or the fact that the path will not cover the entire
square is locally recognizable through a tiling error.
The path induced by the passages has the shape of
the Hilbert curve (see Figure 11). We remark that the
set of tiles 7 is indepengent on the size of the square
that ones wants to tile.

The set 7k resembles that presented by Robinson
[14] as an example of tiles that permit only non-
periodic tiling: neither Robinson’s tiles nor the set 7k
can be used to tile correctly a torus. In fact, refering
to Figure 3, a tiling error must occur when the space
is wrapped around by joining together opposite edges
since some arrow heads meet other heads instead of
tails. In the following lemma we formalize this result,
using the construction of (2® — 1) x (2" — 1) squares
with the set 7k given in Appendix A.

Lemma 3.3 The set of tiles 7 does not permit cor-
rect tiling for tori of any size.

Proof. (By contradiction) Suppose that there is a cor-
rect tiling for a torus of size n. This tiling is equivalent
to a correct periodic tiling of period n for the infinite
lattice. Let ¢ be a single cross of the torus (which
always exists, since in every correct tiling each 2 x 2




square must have a single cross). From Lemma A.1, ¢
is in a XY-(2™ —1)-square constructed as explained in
Appendix A; since the entire plane is tiled correctly, m
is as large as we want. Thus we can find the smaller k&
such that there exists a XY-(2% — 1)-square including
our planar representation of the torus (see Figure 4).
Since n > 2¥—! — 1, the torus must include the central
cross of the square (A in figure) as well as part of the
arms leaving from it; thus, when the space is wrapped
around, a tiling error is encountered. O

4 A cellular automaton in the residual

class
Here we exhibit a first constructive example of cel-
lular automaton in the residual class.
As described in [18] a cellular automaton on a infi-
nite support can be:

e injective and surjective (invertible);
e not injective and not surjective (nonsurjective);
e surjective but not injective (properly surjective).

It is impossible for a cellular automaton to be injec-
tive but not surjective [13]. When the local map is
considered on a finite support, the three classes listed
above have the following behaviours (see Figure 5):

e invertible cellular automata remain invertible;

e nonsurjective cellular automata remain nonsur-
Jective;

o properly surjective cellular automata can yield ei-
ther invertible or nonsurjective finite cellular au-
tomata.

The class of cellular automata that are invertible on

every finite support but noninvertible on an infinite

support is called residual class. The residual class

cannot be empty [18] but no examples of cellular au-

tomaton in this class had been shown until now.

4.1 A specific noninvertible cellular au-
tomaton

Using the set of tiles defined in §3, we construct a
cellular automaton in the residual class.

We tag each passage of the tiles 7x with a binary
digit; let us consider the cellular automaton having
as states these modified tiles and performing, at each
step, the XOR between bits of adjacent cells along the
path induced by the passages. Formally:

Definition 4.1 The two-dimensional cellular au-

tomaton Ax is defined by:
States: Each state consists of two components

o Atilet € 7K (tile component)

e One bit (0 or 1) for each passage of t (bit compo-
nents)
Neighborhood: Moore.
Local function: The local function does not change the
tile component.
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o If there is no tiling error in the neighborhood of a
cell, then the function performs the XOR between
the bit of each passage of the cell and the bit of
the corresponding next passage in the path (see
Figure 6).

o If there is a tiling error, the bits remain un-
changed.

Ak is noninvertible and has an interesting property:

Lemma 4.1 [10]
The cellular automaton Ag

1) is noninvertible on the infinite support zZ2;

2) for each pair of distinct configurations c; and c3
having the same image under the update function
(F(c1) = F(cz)), the tile component of both c;
and cy constitute a correct tiling of the plane.!

Proof. From Lemma 3.1 one can choose two configura-
tions ¢; and ¢p with the tile components constituting
a correct tiling of the plane; thus the local function
performes the XOR between each bit and the next bit
in the space covering path. If the bit components are
set to 0 in ¢p and to 1 in ¢y, the images of both these
two configurations under the update function coincide
with ¢g itself; hence Agk is not invertibie.

If ¢y # c2 and F(c1) = F(cz), there must be a cell
Z whose states ¢, and ¢, respectively in ¢; and cg, are
different. The local function f must change at least
one of ¢; and ¢2; however, the tile components of these
states must be the same, since they are not changed
by f. According to Definition 4.1, there cannot be a
tiling error in the neighborhood of Z (otherwise the
bits would remain unchanged), f computes the XOR
between bits of adjacents passages, thus also the bits
in the cell that follows ¥ along the path, must have
different states. By iterating such a process, since a
correct path visits every cell (Lemma 3.2), the absert
is proved. O

4.2 From infinite to finite support

Here we prove that the noninvertible cellular au-
tomaton Ak defined above becomes invertible when
considered on finite toroidal supports. Thus Ax is a
constructive example of a cellular automaton in the
residual class.

The noninvertibility of Ak on an infinite support
comes from the noninjectivity of the XOR operator; if
the path, defined by the passages, is an infinite one, we
can’t know the predecessor of a configuration (see Fig-
ure 6). Nonetheless if we could know the predecessor
of at least one cell then we could also determine the
predecessor of the cell that follows in the path, and
iteratively determine all the other cell predecessors;
thus the cellular automaton becomes invertible.

The invertibility of Ak on a finite support follows
from the fact that, on a torus, the set of tiles 7 always

1 This property has been called almost injectivity in [10].
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Figure 5: Invertibility for CA.

leads to a tiling error (Lemma 3.3): from a given con-
ﬁgura,tlon we can reconstruct the previous one start-
ing from a cell (there is at least one) where the local
function doesn’t change the state since the tiling is not
correct. Formally:

Theorem 4.1 The two-dimensional cellular automa-
ton Ak is in the residual class.

Proof. We still call Ak the toroidal cellular automaton
obtained from the local map of Ak defined in Defini-
tion 4.1. From Lemma 3.3, for any n, for any con-
figuration of Ag on the toroidal support 2,2 there
must be a tiling error due to the tile component of the
states. From the second property of Lemma 4.1, given
two configuration ¢; and ¢ such that F(c;) = F(cz)
it must be that ¢; = ¢z, otherwise the tiling would be

correct. Thus Ak is injective on any toroidal support.
m]

The proper surjectivity of Ak (see Figure 5) follows
from the the fact that Ak is noninvertible on infinite
support and becomes invertible on finite supports. In-
dipendently of this result, it can be proved that:

Theorem 4.2 The two-dimensional cellular automa-
ton Ak 1is properly surjective.

Proof. By lemma4.1, Ax is not injective on the infinite
support Z2. However, Ak is surjective; indeed, let ¢ be
a configuration of AK and n be a positive lnteger on
any path p = (py,.. ,pn) of length n (passing through
the cells 1 = 1,. we denote as (z},...,z}) the
bits associated with t. e passages in p at time ¢; then,
all possible situations can be easly reduced to the fol-
lowing two cases:

1. Thecellsi =1,...,n—1 have no tiling errors and
cell » has a tiling error; then, in the predecessor
of ¢, z, must have the same value of that in ¢
(see Definition 4.1). Moreover, for any ¢t > 0 and
1=1,...,n—1, in the XOR function

t_ i1 -1
zi=1z;, DTy,

the value xt 1

is uniquely determined by z! and
A From these facts, by a backward-iterative
procedure, it is easy to correctly define all the bit

values of p in the predecessor of c.
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Figure 6: Bits along a path.

2. None of the cells ¢ = 1,...,n have tiling errors;
then, by Theorem 3.2, the path p continues into
a cell n 4+ 1 having a bit 2,41 associated with
the passage pn,y1. Then, for any value of z,41,
it is not hard to determine all bit values of p in
the predecessor of ¢ by making use of the same
procedure mentioned in the first case.

The proof is complete by observing that the local
function f¥ (and thence the global one) is different
from the identity only on the bits of passages. O

5 Unbounded neighborhood

Here we define a class of invertible cellular au-
tomata for which the neighborhood of the inverse is
not bounded by any recursive function (nonreciprocal

property).
Toffoli and Margolus observed that:

Theorem 5.1 [18] There cannot ezist a recursive
function f(X) defined on the local maps of the two-
dimensional cellular automata and bounding the neigh-
borhoods of all the inverse cellular automata.

Proof. If this function existed, given a local map A we
could sequentially generate all the local maps with a
radius bounded by f(}), and by Lemma 2.1 we could
check if one of these maps is the inverse of A\. On reach-
ing f(A), either we found an inverse or we can conclude
that A is not invertible. But this contradicts the unde-
cidability of cellular automata invertibility (Theorem
2.3). m|

This result can be easily extended to any class of
cellular automata for which is undecidable whether a
cellular automaton is invertible. Thus, the class of
cellular automata used in [10] to prove Theorem 2.3
has the nonreciprocal property.

Showing a class that is “small” and still has the
nonreciprocal property is useful in understanding the




nature of the theoretical result of Theorem 5.1. We
give a different proof, without using the result in Theo-
rem 2.3, of the non reciprocal property for the class in-
troduced in [10], emphasizing the reason of this prop-
erty.

We modify the cellular automaton Ak (see Defini-
tion 4.1), redefining the tile components in such a way
that a tiling error is always encountered. In this way,
we force the local function to be the identity for at
least one cell.

Definition 5.1 Given a set of tiles Terror that does not
tile correctly the two-dimensional space, we consider
the cellular automaton Apnv defined by:

States: Each state is a pair (t,q) where t € Terror and
q ts an element of the state set defined in 4.1.
Neighborhood: Moore.

Local function: The local function operates as the

function of Ak except that, when checking for tiling
errors, it also consider the state component given by
the set Terror-

It can be easily proved, as done in [10] for different
goals, that

Lemma 5.1 The cellular automaton Ainv is invert-
ible.

Proof. If we suppose, by contradiction, that Ainv is
noninvertible, by the same reasoning used for proving
the second statement of Lemma 4.1 we can prove that
Terror admits a correct tiling of the plane. But this is
false, and thus the lemma is proved. (]

Thus, Ajnv is invertible. However, in order to ex-
plicitly obtain the predecessor of a cell & we must fol-
low the path originating from Z until a tiling error is
encountered. When we find a tiling error in a cell §,
since the local function in § is the identity, we know
the predecessor of ¥, by going backwards along the
path, we can find the predecessor of . This is the
only way to construct the inverse; it follows that the
radius of the neighborhood must be large enough to
recognize the nearest tiling error.

For each set of tiles that does not admit a correct
tiling of the plane, we can define a cellular automaton
in a way similar to what used for Ajnv; thus we obtain
a class of cellular automata, denoted by INV.

Since we can’t predict where a tiling error even-
tually occurs, the radii of the inverses of the cellular
automata in INV cannot be bounded by any recursive
function.

The following formalizes this result.

Theorem 5.2 The radius (IN~1|) of the inverses of
the cellular automata in INV cannot be bounded by
any recursive function.

Proof. Let us denote by f~! the local function of the
inverse of a cellular automaton in INV.

The neighborhood N~! must contain at least one
tiling error; that is, every cell, in the backward evolu-
tion, must have at least one tiling error in its neighbor-
hood in order to compute its next state. Indeed, let
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Figure 7: A tiling error in the neighborhood of the
inverse.

us assume by contradiction that N~! does not always
contain a tiling error (with respect to the 7x compo-
nent or the Terror componemi). Thus, there exists a
configuration in which a cell & has a correct tiling (for
both 7K and Terror components) in its neighborhood.
For simplicity we call N~1 the neighborhood of Z. By
Lemma 3.2, the path passing on Z must leave this
neighborhood and reach a cell § which is adjacent to
N-1. Without loss of generality, let us suppose that
there is a tiling error (there must always exist one)
in the cell § (more precisely, in the part of its neigh-
borhood which is outside N~=1); thus the bits in § are
not changed by the local function. Let us consider the
configuration in which all bits in N~! are 0. The pre-
decessor of Z in the forward evolution of the cellular
automaton is f~1(N~1); let us suppose that this value
is 0 and consider the configuration in which the bit in
7 is 1 (see Figure 7). Under these conditions, all the
bits that preceed § in the path that goes from ¥ to
must be 1 (see Figure 7), also bit in £ must be 1, but
this is a contradiction.

Similar arguments can be applied if we suppose
FFIN-HY =1

Finally, since the set of tiles 7x admits a correct
tiling of the plane and the tiling problem is undecid-
able on 22, the thesis is proved. (]

68 Conclusions

The existence of families of invertible toroidal cellu-
lar automaton having an inverse local map with large
and complex interactions could determine a set of one-
way functions having practical applications in cryp-
tography. Indeed, knowledge of the direct local map
(the cryptor) gives no sufficient informations (to the
cryptoanalist) on the inverse local map (the decryp-
tor) (see also [7]). In terms of dynamical system the-
ory, the results shown in this paper imply the existence
of reversible dynamical systems having local and sim-
ple interactions but whose inverses have almost-global
interactions.
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A Kari’s tiling technique 1 T e 7
Here we present in detail the set 7k of tiles defined S
in [10] and used in our results. N
. . . S SE N } SE
Arrows Different kind of arrows (see §3) are distin- ! "y M NN

guished by drawing them in different ways and
by labelling them with different tags. Thus we
have the set of labelled arrows shown in Figure
10. This set permits the recursive construction
of correct tilings for arbitrarly large squares (see
Figure 9). Each of these tiles also has two diag-
onal errows as shown in Figure 8. The diagonal
arrows force the horizontal and vertical arms to
alternate on each diagonal row of tiles.

Passages If we denote a tile by the label of its arrow;
we have that:

e Double crosses must have the passages
NW,NE),(NE,SE),
E,SW),(SW,NW)};

¢ Single crosses must have one of the following
six passage sets:
{(XY,XY)} such that
XY € {NE,NW SE,SW};
NW,SE;,(SE,NW ;
NE,SW), (SW,NE)}.

e no passage for any type of arms.

In Figure 11 the path induced by a correct tiling on a
square of dimension 7 is shown.

In a (2" - 1) x (2" — 1) square correctly tiled by the
recursive costruction sketched in Figure 3, the tile in
the middle is always a double cross (see Figure 3 and
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(22 ~-1) -SW-square (22 -1)-SE-square

(2 -1)-square

Figure 9: Correct tiling: Arms are drawn without
“secondary” arrows and without labels.

Figure 9); we denote this square by (12" —1)-XY-square
where XY is the label of the central double cross.

The set 7k is such that, given a (2" — 1)-square tiled
correctly, the tiles immediately outside the square are
the ones that allow the correct tiling to be extended
to a (2"+1 — 1)-square.

In a correct tiling every 2 x 2 block of tiles contains
a single cross. Thus, if we consider each final tile
consisting of one of all possible correct 2 x 2 blocks
of elementary tiles, we obtain a path visiting the en-
tire plane (Lemma 3.1); the following technical lemma
proves this result.

Lemma A.1 [10] Lett be a single cross on the plane.
Consider the path that goes via t. Suppose that there
are no tiling errors in any of the 4™ tiles that precede
and the 4™ tiles that followt on this path. Thent be-
longs to a XY-(2" — 1)-square (XY can be as usual,
NE, NW, SE or SW) whose single crosses are all vis-
ited by the path.




va
N

N
7

7-NW-square

Figure 11: A correct path: the path is drawn without
direction.
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