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Preface)

The ideasand conceptsof physicsare best expressedin the language of mathe-
matics. But this language is far from unique. Many different algebraicsystems
exist and are in use today, all with their own advantages and disadvantages.In
this bookwe describewhat we believeto be the most powerful availablemathe-
matical system developedto date.This is geometric algebra,which is presented
asa new mathematical tool to add to your existingset as either a theoretician or

experimentalist. Our aim is to introduce the new techniquesvia their applica-
tions, rather than as purely formal mathematics. Theseapplicationsare diverse,
and throughout we emphasisethe unity of the mathematics underpinning each
of these topics.

The history of geometric algebrais one of the more unusual tales in the de-
velopment of mathematical physics. William Kingdon Clifford introduced his

geometricalgebrain the 1870s,building on the earlier work of Hamilton and
Grassmann. It is clearfrom his writing that Clifford intended his algebrato
describethe geometric propertiesof vectors, planesand higher-dimensionalob-

jects.But most physicistsfirst encounter the algebrain the guise of the Pauli
and Dirac matrix algebrasof quantum theory. Few then contemplate using these
unwieldy matricesfor practicalgeometric computing. Indeed,some physicists
comeaway from a study of Dirac theory with the view that Clifford's algebra
is inherently quantum-mechanical. In this bookwe aim to dispelthis belief by

giving a straightforward introduction to this new and fundamentally different

approach to vectors and vector multiplication. In this language much of the
standard subject matter taught to physicistscan be formulated in an elegant
and highly condensedfashion. And the portability of the techniques we discuss
enablesus to reach a range of advanced topicswith little extrawork.

This book is intended to be of interest to both studentsand researchersin
physics.The early chaptersgrew out of an undergraduate lecture coursethat we

have run for a number of years in the PhysicsDepartment at CambridgeUni-)
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PREFACE)

versity. We are indebtedto the studentswho attendedthe early versionsof this

course,and helpedto shapethe material into a form suitablefor undergraduate
tuition. Theseearly chaptersrequire little more than a basicknowledgeof linear

algebraand vector geometry, and some exposureto classicalmechanics.More
advanced physicalconceptsare introduced as the bookprogresses.

A number of themes run throughout this book.The first is that geometric
algebra enablesus to expressfundamental physicsin a language that is free from

coordinatesor indices.Coordinatesare only introduced later, when the geom-
etry of a given problem is clear.This approach gives many equations a degree
of clarity which is lost in tensoralgebra.A secondtheme is the way in which

rotations are handled in geometric algebra through the useof rotors. This ap-
proach extendsto arbitrary spacesthe ideaof using a complexphaseto rotate in

a plane.Rotor techniquescan be appliedin spacesof arbitrary signature and are

particularly well suited to formulating Lorentz and conformal transformations.
The latter are central to our treatment of non-Euclideangeometry. Rotors also

provide a framework for studying Lie groupsand Lie algebras,and are essential
to our discussionof gauge theories.

The third theme is the invertibility of the geometricproductof vectors, which

makesit possibleto divideby a vector. This ideaextendsto the vector derivative,
which has an inverse in the form a first-order Green'sfunction. The vector
derivative and its inverseenableus to extendcomplexanalytic function theory
to arbitrary dimensions.This theory is perfectly suited to electromagnetism,
as all four Maxwellequations can be combined into a single spacetimeequation
involving the invertible vector derivative. The samevector derivative appears
in the Dirac theory, and is central to the gauge treatment of gravitation which

dominates the final two chaptersof this book.
This bookwould not have beenpossiblewithout the help and encouragement

of a large number of people.We t,ffiink StephenGull for helping initiate much
\\

of the researchdescribedhere, for his constant advice and criticism, and for use
of a number of his figures. We also thank David Hestenesfor all his work in

shaping the nlodern subjectof geometric algebra and for his constant encour-

agement. Specialmention must bemade of our many collaborators,in particular
JoanLasenby,Anthony Challinor, Leo Dorst,Tim Havel, Antony Lewis,Mark

Ashdown, Frank Sommen,Shyamal Somaroo,Jeff Tomasi,Bill Fitzgerald, Youri

Dabrowskiand Mike Hobson.Specialthanks also goesto Mike for his help with

Latexand explainingthe intricaciesof the CUPstyle files. We thank the Physics
Department of CambridgeUniversity for the use of their facilities, and for the

range of technical advice and expertisewe regularly calledon. Finally we thank

everyone at CambridgeUniversity Presswho helpedin the production of this

book.
CD would also like to thank the EPSRCand SidneySussexCollegefor their

support,his friends and colleagues,all at Nomads HC,and above all Helen for)
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not complainingabout the lost eveningsas Iworkedon this book.Ipromiseto
finish the decoratingnow it is complete.

AL thanks Joanand his children Robert and Alison for their constant enthu-

siasmand support,and their patiencein the faceof many explanations of topics
from this book.)

Cambridge
July 2002)

O.J.L.Doran
A.N.Lasenby)
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Notation)

Thesubjectof vector geometry in general, and geometric algebrain particular,
suffers from a profusion of notations and conventions. In short, there is no

single convention that is perfectly suited to the entire range of applicationsof

geometricalgebra. For example,many of the formulae and results given in

this book involve arbitrary numbers of vectors and are valid in vector spaces
of arbitrary dimensions.Theseformulae invariably look neater if one doesnot
emboldenall of the vectors in the expression.For this reasonwe typically choose
to write vectors in a lowercaseitalic script,a, and more general multivectors in

upper caseitalic script,M. But in someapplications,particularly mechanicsand

dynamics, one often needsto reserve lower caseitalic symbols for coordinates
and scalars,and in thesesituations writing vectJrs in bold face is helpful. This
convention in adoptedin chapter 3. (/

For many applicationsit is useful to have a notation which distinguishesframe
vectorsfrom general vectors. In thesecaseswe write the former in an upright

font as {ei}.But this notation looksclumsy in certain settings, and is not
followed rigourously is some of the later chapters. In this bookour policy is to
ensurethat we adopt a consistentnotation within each chapter,and any new or
distinct features are explainedeither at the start of the chapter or at their point
of introduction.

Someconventionsare universally adoptedthroughout this book,and for con-
veniencewe have gatheredtogether a number of thesehere.)

(i) The geometric (or Clifford)algebrageneratedby the vector spaceof sig-
nature (p, q) is denoted9(p,q). In the first three chapterswe employthe
abbreviations 92 and 93 for the Euclideanalgebras9(2,0)and 9(3,0).In

chapter 4 we use9n to denoteall algebras9(p,q) of total dimensionn.
(ii) The geometric productof A and B is denotedby juxtaposition,-AB.

(iii) The inner productiswritten with a centreddot, A.B.The inner product
is only employedbetween homogeneousmultivectors.)

Xll1)))



NOTATION)

(iv) The outer (exterior)productis written with a wedge,A A B.The outer
productis alsoonly employedbetween homogeneousmultivectors.

(v) Inner and outer productsare always performed before geometric prod-
ucts. This enablesus to removeunnecessarybrackets.For example,the
expressiona.be is to be read as (a.b)c.

(vi) Angled brackets
(-\302\245)p

are usedto denotethe result of projectingonto the
terms in M of gradep.The subscriptzero is droppedfor the projection
onto the scalarpart.

(vii) The reverseof the multivector M is denotedeither with a dagger,Mt, or
with a tilde,M. The latter is employedfor applicationsin spacetime.

(viii) Linear functions are written in an upright font as F(a) or h (a). This
helpsto distinguish linear functions from multivectors. Someexceptions
are encountered in chapters13and 14,where caligraphic symbols are
usedfor certain tensorsin gravitation. The adjoint of a linear function is
denotedwith a bar, h (a).

(ix) Lie groupsare written in capital, Roman font as in SU(n). The corre-
spondingLie algebra is written in lowercase,su(n).

Further detailsconcerningthe conventionsadoptedin this bookcan be found
in sections2.5and 4.1.)
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Introduction)

Thegoalof expressinggeometricalrelationshipsthrough algebraicequations has
dominated much of the developmentof mathematics..This line of thinking goes
back to the ancient Greeks,who constructeda set of geometric laws to describe
the world as they saw it.Their view of geometry was largely unchallengedun-

til the eighteenth century, when mathematicians discoverednew geometrieswith

different propertiesto the Greeks'Euclideangeometry. Each of thesenew geome-
tries had distinct algebraicproperties,and a major preoccupationof nineteenth

century mathematicians was to placethese--geCill1etrieswithin a unified algebraic
framework. Oneof the key insights in this processwas made by W.K. Clifford,
and this bookis concernedwith the implications of his d}scovery.

Beforewe describeClifford's discovery (in chapter 2) we have gathered to-

gether some introductory material of use throughout this book.This chapter
revisesbasicnotions of vector spaces,emphasisingpictorial representationsof
the underlying algebraicrules-a theme which dominates this book.The ma-
terial is presentedin a way which sets the scenefor the introduction of Clifford's

product, in part by reflecting the state of play when Cliffordconductedhis re-
search. To this end, much of this chapter is devoted to studying the various

products that can be defined between vectors. These include the scalar and
vectorproductsfamiliar from three-dimensionalgeometry,and the complexand

quaternion products. We also introduce the outer or exteriorproduct, though

this is coveredin greater depth in later chapters.The material in this chapter is

intended to be fairly basic,and thoseimpatient to uncoverClifford'sinsight may

want to jump straight to chapter 2.Readersunfamiliar with the outer prody-ct
are encouragedto read this chapter,however,as it is crucial to understanding
Clifford'sdiscovery.)
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INTRODUCTION)

1.1Vector(linear)spaces
At the heart of much of geometricalgebra liesthe ideaof vector, or linear spaces.
Somepropertiesof theseare summarisedhere and assumedthroughout this book.
In this sectionwe talk in terms of vector sveces,as this is the more common
term. For all other occurrences,however,we prefer to usethe term linear space.
This is becausethe term 'vector'has a very specificmeaning within geometric
algebra (as the grade-lelements of the algebra).)

1.1.1Properties)
Vector spacesare defined in terms of two objects.Theseare the vectors, which

can often be visualisedas directionsin space,and the scalars,which are usually
taken to be the real numbers.The vectors have a simpleaddition operation rule
with the following obviousproperties:)

(i) Addition is commutative:)

a + b == b + a.) (1.1))

(ii) Addition is associative:)

a + (b + c) == (a + b) + c.) (1.2))
This property enablesus to write expressionssuch as a + b + c without

ambiguity.

(iii) There is an identity element, denoted0:)

a + 0 == a.) (1.3))

(iv) Every element a has an inverse -a:)
a + (-a)== O.) (1.4))

For the caseof directedline segmentseach of thesepropertieshas a clear geo-
metric equivalent. Theseare illustrated in figure 1.1.

Vector spacesalso contain a multiplication operation between the scalarsand
the vectors. This has the property that for any scalarA and vector a, the product
Aa is also a member of the vector space.Geometrically\037this correspondsto the
dilation operation. The following further propertiesalsohold for any scalarsA, f-L

and vectorsa and b:)

(i) A(a + b) == Aa + Ab;

(ii) (A + J-L)a
== Aa + f-La;

(iii) (AJ-L)a
== A(J-La);

(iv) if lA == A for all scalarsA then la == a for all vectors a.)

2)))



1.1VECTOR(LINEAR) SPACES)

b) b)
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.........:::/ ......)
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b)

Figure 1.1A geometric picture of vector addition. The result of a + b is
formed by adding the tail of b to the headof a. As is shown, the resultant

vector a + b is the sameas b + a. This finds an algebraicexpressionin the
statement that addition is commutative. In the right-hand diagram the
vector a + b + c is constructedtwo different ways, as a + (b + c) and as
(a+ b) + c.The fact that the results are the sameis a geometricexpression
of the associativity of vectoraddition.)

The precedingset of rulesservesto define a vector spacecompletely. Note that

the + operation connecting scalarsis different from the + operation connecting
the vectors. There is no ambiguity, however,in using the same symbol for both.

The following two definitionswill be useful later in this book:)

(i) Two vector spacesare said to be isomorphic if their elements can be
placedin a one-to-one correspondencewhich preservessums,and there
is a one-to-onecorrespondencebetw\037en the scalarswhich preservessums

and products.
(ii) If U and V are two vector spaces(sharing the same scalars)and all the

elements of U are contained in V, then U is said to form a subspaceof V.)

1.1.2Basesand dimension)

The conceptof dimension is intuitive for simple vector spaces-lines are one-

dimensional,planesare two-dimensional,and so on. Equippedwith the axioms
of a vector spacewe can proceedto a formal definition of the dimension of a
vectorspace.First we needto definesometerms.)

(i) A vector b is said to be a linear combinationof the vectors aI,. . ., an if

scalars.AI, .. .,.An can be found such that)

n

b == .AI al + ... + .An an == L.Aiai.
i=l)

(1.5))

(ii) A set of vectors {aI,...,an} is said to be linearly dependent if scalars)

3)))



INTRODUCTION)

AI, . .. , An (not all zero) can be found such that)

A1aI + .. . + An an == O.) .) (1.6))
If such a set of scalarscannot be found, the vectors are saidto be linearly
independent.

(iii) A set of vectors {a1, .. ., an} is said to span a vector space V if every
element of V can be expressedas a linear combination of the set.

(iv) A set of vectors which are both linearly independent and span the space
V are said to form a basisfor V.)

Thesedefinitionsall carry an obvious, intuitive pictureif one thinks of vectors
in a plane or in three-dimensional space.For example,it is clear that two

independentvectors in a plane provide a basis for all vectors in that plane,
whereasany three vectors in the plane are linearly dependent.Theseaxiomsand
definitions are sufficient to prove the basistheorem, which states that all bases
of a vector spacehave the same number of elements. This number is calledthe
dimension of the space.Proofs of this statement can be found in any textbook
on linear algebra,and a sampleproof is left to work through as an exercise.Note
that any two vector spacesof the samedimension and over the samefield are
isomorphic.

The axioms for a vector spacedefine an abstract mathematical entity which
is already well equippedfor studying problemsin geometry. In so doing we are
not compelledto interpret the elements of the vector spaceas displacements.
Often different interpretations can be attached to isomorphicspaces,leading to
different types of geometry (affine, projective, finite, etc.).For most problems
in physics,however,we needto be able to do more than just add the elements
of a vector space;we need to multiply them in various ways as well. This is
necessaryto formalise conceptssuch as angles and lengths and to construct
higher-dimensionalsurfaces from simplevectors.

Constructing suitableproductswas a major concern of nineteenth century
mathematicians, and the conceptsthey introduced are integral to modern math-
ematical physics.In the following sectionswe study some of the basicconcepts
that were successfullyformulated in this period.The culmination of this work,
Clifford's geometric product, is introduced separatelyin chapter 2. At various
points in this bookwe will seehow the productsdefined in this sectioncan all
be viewedas specialcasesof Clifford'sgeometricproduct.)

1.2Thescalarproduct)
Euclideangeometrydealswith conceptssuch as lines,circlesand perpendicular-
ity. In orderto arrive at Euclidean geometry we needto add two new concepts)

4)))



1.2THE SCALAR PRODUCT)

to our vector space.Theseare distancesbetween points,which allow us to de-
fine a circle,and anglesbetween vectors so that we can say that two li\037s are

perpendicular.The introduction of a scalarproductachievesboth of thesegoals.
Given any two vectors a, b, the scalarproducta.b is a rule for obtaining a

number with the following properties:)

(i) a.b== b.a;
(ii) a'(Ab) == A(a.b);

(iii) a.(b + c) == a.b+ a.c;

(iv) a.a>0, unlessa == O.)

(When we study relativity, this final property will be relaxed.)The introduction
of a scalar productallowsus to definethe length of a vector, I

a I, by)

lal == J(a.a).) (1.7))

Here, and throughout this book, the positive squareroot is always implied by
the J symbol.The fact that we now have a definition of lengths and distances
means that we have specifieda metric space. Many different types of metric

spacecan be constructed,of which the simplestare the Euclidean spaceswe

have just defined.
The fact that for Euclideanspacethe inner productis positive-definitemeans

that we have a Schwarzinequality of the form)

la.bl < lallbl.)

,r-
\\)

(1.8))

The proof is straightforward:)

(a + Ab) .(a + Ab) > 0

=? a.a+ 2Aa.b+ A
2b.b> 0

=? (a.b)2< a.ab.b,)

VA

VA)

(1.9))

where the last step follows by taking the discriminant of the quadratic in A.

Sinceall of the numbers in this inequality are positive we recover(1.8).We can
now define the angle e between a and b by)

a.b == lallbl cos(e).) (1.10))

Twovectorswhosescalarproductiszeroare saidto be orthogonal.It isusually
convenientto work with basesin which all of the vectors are mutually orthogonal.
If all of the basisvectors are further normalised to have unit length, they are
saidto form an orthonormal basis. If the set of vectors {el,.. .,en}denotesuch
a basis,the statement that the basisis orthonormal can be summarised as)

ei.ej==6ij.) (1.11))

5)))
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Herethe 6ij is the Kroneckerdelta function, defined by)

Oij = {\037)

if i == j,
if i

\037 j.)
(1.12))

We can expandany vector a in this basisas)

n

a == L aie\037
== aiei,

i=l)
(1.13))

wherewe have started to employthe Einsteinsummation conventionthat pairs
of indicesin any expressionare summed over. This conventionwill be assumed
throughout this book. The {ai}are the componentsof the vector a in the {ei}
basis.Theseare found simply by)

ai == ei'a.) (1.14))
The scalarproductof two vectors a == aieiand b == biei can now written simply
as)

a.b== (aiei).(bjej)== aibj ei.ej== aibj6ij == aibi.) (1.15))
In spaceswhere the inner productis not positive-definite,such as Minkowski

spacetime,there is no equivalent version of the Schwarz inequality. In such
casesit is often only possibleto define an 'angle'between vectors by replacing
the cosinefunction with a coshfunction. In thesecaseswe can still introduce
orthonormal frames and usetheseto compute scalarproducts.The main modi-
fication is that the Kroneckerdeltais replacedby T}ij which again is zero if i

\037 j,
but can take values :f:lif i == j.)

1.3Complexnumbers)

The scalarproductis the simplestproduct one can definebetween vectors, and
once such a product is defined one can formulate many of the key conceptsof
Euclideangeometry. But this is by no means the only product that can bedefined
between vectors.In two dimensionsa new productcan be defined via complex
arithmetic. A complexnumber can beviewedas an orderedpair of real numbers
which representsa direction in the complexplane, as was realisedby Wesselin

1797.Their productenablescomplexnumbers to perform geometricoperations,
such as rotations and dilations.But supposethat we take the complexnumber
z == x+ iy and squareit, forming)

Z2 == (x+ iy)2 == x2- y2 + 2xyi.) (1.16))
In terms of vector arithmetic, neither the real nor imaginary parts of this ex-
pressionhave any geometric significance. A more geometricallyuseful product)

6)
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1.4QUATERNIONS)

is definedinsteadby)

zz* == (x+ iy)(x- iy) == x2 + y2,) (1.17))

which returns the squareof the length of the vector. A productof two vectors
in a plane, z and w == u + vi, can therefore be constructedas)

zw* == (x+ iy)(u- iv) == xu + vy + i(uy - vx).) (1.18))
The real part of the right-hand siderecoversthe scalarproduct.To understand
the imaginary term considerthe polar representation)

z ==
I
z

I
eiO

,)
w == Iwleicp) (1.19))

so that)

zw* == Izllwlei(O-cp).) (1.20))
The imaginary term has magnitude Izllwl sin(e- <jJ), where e-

<jJ
is the angle

betweenthe two vectors. The magnitude of this term is therefore the areaof
the parallelogramdefinedby z and w. The sign of the term conveysinformation

about the handednessof the area element swept out by the two vectors. This
will be definedmore carefully in section1.6.

We thus have a satisfactory interpretation for both the real and imaginary

parts of the productzw*. The surprisingfeature is that theseare still both parts
ofa complexnumber. We thus have a secondinterpret&tion for complexaddition,
as a sum between scalarobjectsand objectsrepresentingplane segments.The

advantagesof adding thesetogether are preciselythe advantagesof working with

complexnumbers as opposedto pairsof real numbers.This is a theme to which

we shall return regularly in following chapters.)

1.4Quaternions
The fact that complexarithmetic can be viewed as representinga product for

vectors in a plane carrieswith it a further advantage- it allowsus to divide

by a vector. Generalisingthis to three dimensionswas a major preoccupation
of the physicist W.R. Hamilton (seefigure 1.2).Sincea complexnumber x + iy

can be representedby two rectangular axeson a plane it seemedreasonableto
representdirectionsin spaceby a triplet consistingof one real and two complex
numbers. Thesecan be written asx+ iy +jz, wherethe third term jz represents
a third axisperpendicularto the other two. The complexnumbers i and j have

the propertiesthat i2 == j2== -1.The norm for such a triplet would then be)

(x+ iy + jz)(x- iy - jz) == (x2 + y2 + z2)-yz(ij + ji).) (1.21))
The final term is problematic,as one would like to recover the scalarproduct
here. The obvious solution to this problem is to set ij == -ji so that the last
term vanishes.)

!)
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\037\"'\"\"\"*.\037:\037

-)

Figure 1.2 William Rowan Hamilton 1805-1865.Inventor of quaternions,
and one of the key scientific figures of the nineteenth century. He spent
many years frustrated at being unable to extendhis theory of couplesof
numbers (complexnumbers) to three dime\037ns. In the autumn of 1843
he returned to this problem, quite possibly prompted by a viSit he received
from the young German mathematician Eisenberg. Among Eisenberg's
papers was the observation that matricesform the elements of an alge-
bra that was much like ordinary arithmetic exceptthat multiplication was
non-commutative. This was the vital step required to find the quater-
nion algebra. Hamilton arrived at this algebraon 16October1843while
out walking with his wife, and carvedthe equations in stoneon Brougham
Bridge.Hisdiscoveryof quaternions is perhapsthe best-documentedmath-
ematicaldiscoveryever.)

The anticommutative law ij == -jiensuresthat the norm of a triplet behaves
sensibly,and also that multiplication of tripletsin a plane behavesin a reasonable
manner. The same is not true for the general product of triplets, however.
Consider)

(a + ib + je)(x+ iy + jz) == (ax- by
- cz) + i(ay + bx)

+ j(az+ ex)+ ij(bz- ey).) (1.22))

Settingij == -ji is no longer sufficient to remove the ij term, so the algebra/-
doesnot close.The only thing for Hamilton to do was to set ij == k, where k is
some unknown, and see if it could be removed somehow. While walking along
the Royal Canal he suddenly realisedthat if his tripletswere insteadmade up
of four terms he would be able to closethe algebrain a simple,symmetric way.)

-----)
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1.4QUATERNIONS)

Tounderstand his discovery,consider)

(a + ib + jc+ kd)(a- ib - jc- kd)
== a2 + b2 + c2 + d2

(_k2
) - bd(ik + ki) - cd(jk+ kj), (1.23))

where we have assumedthat i2 == j2== -1and ij == -ji.The expectednorm of
the aboveproductis a2+ b2 + c2 + d2, which is obtainedby setting k 2 == -1and
ik == -ki and jk == -kj.Sowhat values do we use for jk and ik? Thesefollow

from the fact that ij == k, which gives)

ik == i(ij)== (ii)j ==-j) (1.24))

and)

kj == (ij)j== -i.) (1.25))
Thus the multiplication rulesfor quaternions are

i2 == j2== k2 == -1) (1.26))

and)

ij == -ji== k, jk == -kj== i, ki == -ik== j.) (1.27))
Thesecan be summarisedneatly as i2 == j2 == k2 ==

ij\037'--==
-1.It is a simple

matter to checkthat thesemultiplication laws definea closedalgebra.
Hamilton was soexcitedby his discoverythat the very same day he obtained

leave to presenta paper on the quaternions to the Royal Irish Academy. The

subsequenthistory of the quaternions is a fascinating story which has b,eende-
scribedby many authors. Somesuggestedmaterial for further reading is given
at the end of this chapter.In brief, despitethe many advantagesof working with

quaternions,their developmentwas blighted by two major problems.
The first problemwas the status of vectors in the algebra.Hamilton identified

vectorswith pure quaternions, which had a null scalarpart. On the surface
this seemsfine \037 pure quaternions define a three-dimensional vector space.
Indeed,Hamilton invented the word 'vector'preciselyfor theseobjectsand this
is the origin of the now traditional use of i,j and k for a set of orthonormal
basisvectors.Furthermore, the full productof two pure quaternions led to the
definition of the extremely useful crossproduct (seesection1.5).The problem
is that the product of two pure vectors doesnot return a new pure vector, so
the vector part of the algebradoesnot close.This means that a number of ideas
in complexanalysis do not extendeasily to three dimensions.Somepeoplefelt
that this meant that the full quaternion productwas of little use,and that the
scalar and vector parts of the product should be kept separate.This criticism
missesthe point that the quaternion productis invertible, which doesbring many

advantages.
The secondmajor difficulty encountered wj1b- quaternions was their use in)
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describingrotations. The irony here is that quaternions offer the clearestway
of handling rotations in three dimensions,once one realisesthat they provide
a 'spin-1/2'representationof the rotation group. That is, if a is a vector (a
pure quaternion) and R is a unit quaternion, a new vector is obtained by the
double-sidedtransformation law)

a' == RaR*,) (1.28
))

where the * operation reversesthe sign of all three 'imaginary' components.A
consequenceof this is that each of the basisquaternions i,j and k generates
rotations through 7r. Hamilton, however, was led astray by the analogy with

complexnumbers and tried to imposea single-sidedtransformation of the form
a' == Ra. This works if the axisof rotation is perpendicularto a, but otherwise
doesnot return a pure quaternion. More damagingly, it forces one to interpret
the basis quaternions as generatorsof rotations through 7r/2,which is simply
wrong!

Despitethe problemswith quaternions, it was clear to many that they were
a useful mathematical system worthy of study. Tait claimed that quaternions
'freedthe physicistfrom the constraints of coordinatesand allowedthoughts to
run in their most natural channels'-a theme we shall frequently meet in this
book.Quaternions also found favour with the physicist JamesClerkMaxwell,
who employedthem in his developmentof the

theor\037
of electromagnetism.De-

spite thesesuccesses,however,quaternions were we'igheddown by the increas-
ingly dogmaticarguments over their interpretation and wereeventually displaced
by the hybrid systemof vector algebrapromoted by Gibbs.)

1.5Thecrossproduct
Two of the lasting legaciesof the quaternion story are the introduction of the
ideaof a vector, and the crossproduct between two vectors. Supposewe form
the productof two pure quaternions a and b, where)

a == al i + a2j+ a3k,) b == bl i + b2j + b3k.) (1.29))
Their productcan be written)

ab--a .b . + c-
\037 z ,) (1.30))

where c is the pure quaternion)

c == (a2b3 - a3b2)i+ (a3bI- aIb3)j + (aIb2-a2bl)k.) (1.31))

Writing c == CIi + c2j+ C3k the component relation can be written as)

Ci == Eijkaj bk ,) (1.32))
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where the alternating tensorEijk is defined by)

1 if ijk is a cylic permutation of 123,
Eijk == -1 if ijk is an anticylic permutation of 123,

o otherwise.)
(1.33))

We recognisethe precedingas defining the crossproduct of two vectors, a X b.

Thishas the following properties:)

(i) a X b is perpendicularto the plane definedby a and b;

(ii) aX b has magnitude lallbl sin(O);
(iii) the vectors a, b and a X b form a right-handed set.)

Thesepropertiescan alternatively be viewedas defining the crossproduct,and
from them the algebraicdefinition can be recovered.This is achievedby starting
with a right-handed orthonormal frame {ei}.For thesewe must have)

eI X e2 == e3) etc.) (1.34))

so that we can write)

eiX ej == Eijkek.) (1.35))

Expanding out a vector in terms of this basisrecoversthe
for\037,ula

a X b == (aiei)X (bjej)
== aibj(eiXej)
== (Eijkazbj )ek') (1.36))

Hencethe geometric definition recoversthe algebraicone.
The crossproduct quickly proved itself to be invaluable to physicists,dra-

matically simplifying equations in dynamics and electromagnetism.In the latter

part of the nineteenth century many physicists,most notably Gibbs,advocated

abandoning quaternions altogether and just working with the individual scalar
and crossproducts.We shall seein later chaptersthat Gibbswas misguidedin
someof his objectionsto the quaternion product,but his considerablereputa-
tion carriedthe day and by the 1900squaternions had all but disappearedfrom

mainstream physics.)

1.6Theouterproduct)

The crossproducthas one major failing
-it only existsin three dimensions.In

two dimensionsthere is nowhereelseto go, whereas in four dimensionsthe con-

ceptof a vector orthogonal to a pair ofvectors is not unique. To seethis, consider
four orthonormal vectors el,. ..,e4. If we take the pair el and e2 and attempt)
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Figure 1.3Hermann Gunther Grassmann (1809-1877),born in Stet-
tin, Germany (now Szczecin,Poland). A German m.athematician and
schoolteacher,Grassmann was the third of his parents' twelve children
and was born into a family of scholars. His father studied theology and
becamea minister, beforeswitching to teaching mathematics and physics
at the Stettin Gymnasium. Hermann followed in his father's foqtsteps,
first studying theology, classicallanguages and literature at Berlin. After

returning to Stettin in 1830he turned his attention to mathematics and
physics.Grassmann passedthe qualifying examination to win a teaching
certificatein 1839.This exam included a written assignment on the tides,
for which he gave a simplified treatment of Laplace'swork basedupon a
new geometriccalculus that he had developed.By 1840he had decided
to concentrateon mathematics research.He published the first edition of
his geometriccalculus,the 300pageLinealeA usdehnungslehre in 1844,the
sameyear that Hamilton announced the discoveryof the quaternions. His
work did not achievethe sameimpact as the quaternions, however, and it
was many years beforehis ideaswere understoodand appreciatedby other
mathematicians. Disappointedby this lack of interest, Grassmann turned
his attention to linguistics and comparative philology, with greater imme-
diate impact. He was an expert in Sanskrit and translated the Rig- Veda

(1876-1877).Healsoformulated the linguistic law (named after him) stat-
ing that in Indo-Europeanbases,successivesyllables may not begin with

aspirates.Hediedbeforehe could seehis ideason geometry being adopted
into mainstream mathematics.)

to find a vector perpendicularto both of these,we seethat any combination of
e3 and e4 will do.

A suitablegeneralisation of the ideaof the crossproductwas constructedby)
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aAb)

o)
a)

a)

Figure 1.4 The outer product. The outer or wedge product of a and b

returns a directedarea element of area lallbl sin(O).The orientation of the

parallelogram is defined by whether the circuit a, b, -a,-bis right-handed

(anticlockwise) or left-handed (clockwise).Interchanging the orderof the
vectorsreversesthe orientation and introduces a minus sign in the product.)

the remarkable German mathematician H.G.Grassmann(seefigure 1.3).His
work had its origin in the BarycentrischerCalcul of Mobius.There the author

introducedexpressionslike AB for the line connecting the pointsA and }!!Jand

ABC for the triangle defined by A, BandC. Mobiusalso introduced the

crucial idea that the sign of the quantity should change if any two pointsare

interchanged. (Theseoriented segmentsare now referredto as simplices.)It was

Grassmann'sleapof genius to realisethat expressionslike AB could actually be
viewed as a productbetween vectors.He thus introduced the outer or exterior
product which, in modern notation, we write as a 1\\ b, or 'awedgeb'.

The outer productcan be definedon any vector spaceand, geometrically,we

are not forced to picture these vectors as displacements.Indeed,Grassmann
was motivated by a projectiveviewpoint, where the elementsof the vector space
are interpretedas points, and the outer productof two pointsdefines the line

through the points. For our purposes,however, it is simplestto adopt a pic-
ture in which vectors representdirectedline segments.The outer productthen

providesa means of encodinga plane,without relying on the notion of a vector

perpendicularto it.The result of the outer productis therefore neither a scalar
nor a vector. It is a new mathematical entity encoding an oriented plane and is
called a bivector. It can be visualised as the parallelogram obtained by sweep-
ing one vector along the other (figure 1.4).Changing the order of the vectors
reversesthe orientation of the plane. The magnitude of al\\b is lallblsin(B),the

same as the area of the plane segment swept out by the vectors.
The outer productof two vectors has the following algebraic properties:)
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b+c)

Figure 1.5A geometricpicture of bivector addition. In three dimensions
any two non-parallelplanessharea common line. If this line is denoteda,
the two planescan be representedby a 1\\ b and a 1\\ c. Bivector addition

proceedsmuch like vectoraddition. Theplanesarecombined at a common
boundary and the resulting plane is defined by the initial and final edges,
as opposedto the initial and final points for vectoraddition. The math-
ematicalstatement of this addition rule is the distributivity of the outer
product over addition.)

(i) The productis antisymmetric:)
/--)

a/\\b == -b/\\a.) (1.37))

This has the geometric interpretation of reversing the orientation of the
surface definedby a and b. It fpllows immediately that)

a/\\a == 0, for all vectors a.) (1.38))

(ii) Bivectors form a linear space,the same way that vectors do. In two and
three dimensionsthe addition of bivectors is easy to visualise. In higher
dimensionsthis addition is not always so easy to visualise, becausetwo

planesneednot share a common line.
(iii) The outer productis distributive over addition:)

a/\\ (b + c) == a/\\b + a/\\c.) (1.39))
This helpsto visualise the addition of bivectors which share a common
line (seefigure 1.5).)

While it is convenient to visualise the outer productas a parallelogram, the)
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actual shapeof the objectis not conveyedby the result of the product.This can
beseeneasily by defining a' == a + Ab and forming)

a'!\\b == a!\\b + Ab!\\b == a!\\b.) (1.40))

Thesamebivector can therefore be generatedby many different pairsof vectors.
In many ways it is better to replacethe picture of a directedparallelogramwith

that of a directedcircle.The circledefines both the plane and a handedness,
and its area is equal to the magnitude of the bivector. This therefore conveys
all of the information one has about the bivector, though it doesmake bivector
addition harder to visualise.)

1.6.1Two dimensions)

Theouter productof any two vectors definesa plane, soone has to go to at least
two dimensionsto form an interesting product. Supposethen that {eI,e2}are
an orthonormalbasisfor the plane, and introduce the vectors)

a == alel+ a2e2, b == b1el+ b2e2.) (1.41))
Theouter producta !\\ b contains

a!\\b == alb1el!\\el + alb2eI!\\e2 + a2ble2!\\el + a2b2e2!\\e2

== (a1b2 - a2bI)e1!\\e2, /) (1.42))

which recoversthe imaginary part of the productof (1.18).The term therefore

immediately has the expectedmagnitude lallbl sin(B).The coefficientof el !\\ e2
is positiveif a and b have the sameorientation as el and e2.The orientation is
defined by traversing the boundary of the parallelogramdefinedby the vectorsa,
b, -a,-b (seefigure 1.4).By convention,we usually work with a right-handed
setof referenceaxes(viewedfrom above).In this casethe coefficienta1b2-a2bi
will be positive if a and b alsoform a right-handed pair.)

1.6.2Threedimensions)

In three dimensionsthe spaceofbivectors is alsothree-dimensional,becauseeach
bivector can be placedin a one-to-onecorrespondencewith the vector perpen-
dicular to it.Supposethat {el,e2,e3}form a right-handed basis(seecomments

below),and the two vectors a and b are expandedin this basisas a == aieiand
b == biei' The bivector a!\\ b can then be decomposedin terms of an orthonormal
frame of bivectors by)

a!\\b == (aiei)!\\(b]ej)
== (a2b3- b3a2)e2!\\e3+ (a3bl - aIb3)e3!\\eI

+ (aIb2 - a2bI)eI!\\e2') (1.43
))
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The components in this frame are therefore the sameas thoseof the crossprod-
uct. But insteadof beingthe components of a vector perpendicularto a and b,

they are the componentsof the bivector a 1\\ b. It is this distinction which enables
the outer productto be defined in any dimension.)

1.6.3Handedness)

We have started to employthe ideaof handednesswithout giving a satisfactory
definition of it.The only spacein which there is an unambiguous definition of
handednessis three dimensions,as this is the spacewe inhabit and most of us
can distinguish our left and right hands. This conceptof 'left'and 'right' is
a man-made convention adoptedto make our life easier,and it extendsto the
conceptof a frame in a straightforward way. Supposethat we are presented
with three orthogonal vectors {el,e2,e3}'We align the 3 axis with the thumb

of our right hand and then closeour fist. If the direction in which OJlT fist closes
is the same as that formed by rotating from the 1to the 2 axis, the frame is

right-handed.If not, it is left-handed. \"'

Swappingany pair ofvectorsswapsthe handednessofa frame. Performingtwo

such swapsreturns us to the originalhandedness.In three dimensionsthis corre-
spondsto a cyclicreordering,and ensuresthat the frames {el,\037,e3},{e3,el,e2}
and {e2,e3,el}all have the same orientation.

There is no agreeddefinition of a 'right-handed'orientation in spacesof di-
mensions other than three.All one can do is to make sure that any convention
used is adoptedconsistently. In all dimensionsthe orientation of a set of vec-
tors is changed if any two vectors are swapped. In two dimensionsone does
still tend to talk about right-handed axes,though the definition is dependent
on the idea of looking down on the plane from above. The idea of above and
below is not a feature of the plane itself, but dependson how we embedit in our
three-dimensionalworld. There is no definition of left or right-handed which is
intrinsic to the plane.)

1.6.4Extendingthe outerproduct)

The precedingexamplesdemonstratethat in arbitrary dimensionsthe compo-
nents of al\\b are given by)

(al\\b)ij ==
a[ibJJ) (1.44

))

where the [] denotesantisymmetrisation. Grassmann was able to take this idea
further by defining an outer product for any number of vectors. The idea is a
simpleextensionof the precedingformula. Expressedin an orthonormal

fram\037,
the componentsof the outer producton n vectorsare the totally antisymmetrised)
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productsof the components of each vector. This definition has the useful prop-
erty that the outer productis associative,)

a/\\(b/\\c) == (a/\\b)/\\c.) (1.45))

For example,in three dimensionswe have)

a/\\b/\\c == (a2ei)/\\(bjej)/\\(ckek)==
Eijk a2bJCkel/\\e2/\\e3,) (1.46))

which representsa directedvolume (seesection2.4).
A further feature of the antisymmetry of the productis that the outer product

ofany setoflinearlydependentvectorsvanishes. This means that statements like

'this vector lieson a given plane',or 'thesetwo hypersurfacessharea common
line' can be encodedalgebraically in a simplemanner. Equippedwith these
ideas,Grassmann was able to construct a systemcapableof handling geometric;-
conceptsin arbitrary dimensions.

DespiteGrassmann'sconsiderableachievement,the bookdescribinghis ideas,
his Lineale Ausdehnungslehre, did not have any immediate impact. This was
no doubt due largely to his relative lack of reputation (he was still a German
schoolteacherwhen he wrote this work).It was over twenty years before anyone
ofnote referredto Grassmann'swork, and during this time Grassmann produced
a second,extendedversion of the A usdehnungslehre. In the latter part of the
nineteenth century Grassmann'swork started to influence leading figures like

Gibbsand Clifford. Gibbswrote a number of paperspraising Grassmann'swork

and contrasting it favourably with the quaternion algebra.CliffordusedGrass-
mann's work as the starting point for the developmentof his geometricalgebra,
the subjectof this book.

Today,Grassmann'sideasare recognisedas the first presentation of the ab-
stract theory of vector spacesover the field of real numbers.Sincehis death,his

work has given rise to the influential and fashionableareasof differential forms
and Grassmann variables. The latter are anticommuting variables and are fun- /

damental to the foundations of much of modern supersymmetry and superstring
theory.)

1.7Notes)

Descriptionsof linear algebraand vector spacescan be found in most intro-

ductory textbooksof mathematics, as can discussionsof the scalar and cross
productsand complexarithmetic. Quaternions, on the other hand, are much

l\037ss

likely to be mentioned. There is a large specialisedliterature on the quaternions,
and a goodstarting point are the works of Altmann (1986,1989).Altmann's

paperon 'Hamilton, Rodriquesand the quaternion scandal'(1989)isalso a good
introduction to the history of the subject.

The outer product is covered in most modern textbookson geometry and)
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physics,such as those by Nakahara (1990),Schutz (1980),and Gockeler&
Schucker(1987).In most of theseworks, however,the exterior product is only
treated in the context of differential forms. Applicationsto wider topicsin geom-
etry have beendiscussedby Hestenes(1991)and others.A useful summary in

provided in the proceedingsof the conference Hermann Gunther Grassmann
(1809-1877),edited by Schubring (1996).Grassmann'sLineale Ausdehnun-

gslehre is also finally available in English translation due to Kannenberg (1995).
For thosewith a deeperinterest in the history of mathematics and the develop-

ment of vector algebraa goodstarting point is the set of booksby Kline (1972).
There are alsobiographiesavailable of many of the key protagonists.Perhaps
even more interesting is to return to their original papersand experiencefirst

hand the robust and often humorous language employed-at the time. The col-
lectedworks of J.W.Gibbs(1906)are particularly entertaining and enlightening,
and contain a gooddealof valuable historical information. C)

1.8Exercises)

1.3)

1.1 Supposethat the two sets {aI,.. ., am} and {bI , . .. , bn } form basesfor
the samevector space,and supposeinitially that m > n. By establishing
a contradiction, prove the basistheorem that all basesof a vector space
have the same number of elements.

1.2 Demonstratethat the following definevector spaces:
(a) the set of all polynomialsof degreen;
(b) all solutions of a given linear ordinary differential equation;
(c) the set of all n x m matrices.

Prove that in Euclideanspace la + bl < lal + Ibl. When doesequality
hold?
Show that the unit quaternions {:i:1,:i:i,:i:j::f:k}form a discretegroup.
The unit quaternions i,j,k are generatorsof rotations about their re-
spectiveaxes.Are rotations through either 7r or 1[\"/2 consistent with the
equation ijk == -I?
Prove the following:)

1.4
1.5)

1.6)

1.7)

(a) a.(bxc)== b.(cxa)== c.(axb);
(b) a X (bxc)== a.cb -a.b c;
(c) la X bl

= lallbl sin(B), where a.b= lallbl cos(B).
\\Prove that the dimension of the spaceformed by the exterior product

of m vectors drawn from a spaceof dimensionn is)

n(n-l)...(n-m)
1.2...m)

n!
(n -m)!m!')
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1.8 Prove that the n-fold exteriorproductof a set of n dependentvectors is
zero.

1.9 A convex polygon in a plane is specifiedby the orderedset of points
{XO, XI, .. ., Xn }.Prove that the directedarea of the polygon is given by

A ==
\037(XO/\\Xl + Xl /\\X2 + .. .+ xn/\\xo).

What is the significanceof the sign? Can you extend the idea to a
triangulated surface in three dimensions?)
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Geometricalgebrain two and
three dimensions)

Geometricalgebrawasintroduced in the nineteenth century by the English math-
ematician William Kingdon Clifford (figure 2.1).Cliffordappearsto have been
one of the small number of mathematicians at the I time to be significantly in-
fluenced by Grassmann'swork. Clifford introduced his geometric algebra by
uniting the inner and outer productsinto a single geometric product. This is

associative, like Grassmann'sproduct,but has the crucial extrafeature of being
invertible, like Hamilton'squaternion algebra.Indeed,Clifford's original moti-
vation was to unite Grassmann'sand Hamilton'swork into a single structure.
In the mathematical literature one often seesthis subjectreferred to as Clifford
algebra. We have chosen to follow the exampleof David Hestenes,and many
other modern researchers,by returning to Clifford'soriginal choiceof name-
geometric algebra. One reason for this is that the first publisheddefinition of
the geometric productwas due to Grassmann,who introduced it in the second
Ausdehnungslehre.It was Clifford,however,who realisedthe great potential of \",

this productand who was responsiblefor advancingthe subject.
In this chapter we introduce the basicsof geometric algebra in two and three

dimensionsin a way that is intended to appearnatural and geometric, if some-
what informal. A more formal, axiomatic approach is delayed until chapter 4,
where geometric algebrais defined in arbitrary dimensions.The meaning of the
various terms in the algebrawe definewill be illustrated with familiar examples
from geometry. In so doing we will also uncover how Hamilton'squaternions
fit into geometric algebra,and understandwhere it was that Hamilton and his
followerswent wrong in their treatment of three-dimensionalgeometry. Oneof
the most powerful applicationsof geometric algebrais to rotations, and these
are consideredin somedetail in this chapter. It is well known that rotations in \\

a plane can be efficiently handled with complexnumbers.We will seehow to
extendthis ideato rotations in three-dimensionalspace.This representation has
many applicationsin classicaland quantum physics.)
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----)

Figure 2.1 William Kingdon Clifford 1845-1879.Born in Exeteron 4May
1845,his father was a justiceof the peaceand his mother diedearly in his

life. After schoolhe went to King's College,London and then obtained
a scholarship to Trinity College,Cambridge,where he followed the likes
of Thomson and Maxwell in becoming SecondWrangler. There he also
achieveda reputation as a daring athlete,despitehis slight frame. Hewas
recommendedfor a fellowship at Trinity Collegeby Maxwell, and in 1871
took the Professorshipof Applied Mathematics at University College,Lon-
don. He was madea Fellow of the Royal Societyat the extremely young

age of 29. He married Lucy in 1875,and their house becamea fashion-

ablemeeting placefor scientistsand philosophers.As well as being oneof
the foremost mathematicians of his day, he was an accomplishedlinguist,

philosopher and author of children'sstories.Sadly, his insatiable appetite
for physical and mental exercisewas not matched by his physique, and in

1878he was instructed to stop work and leaveEngland for the Mediter-
ranean. Hereturned briefly, only for his health to deterioratefurther in the
English climate. He left for Madeira,where he died on 3 March 1879at
the ageof just 33. Further detailsof his life canbe found in the bookSuch
Silver Currents (Chisholm, 2002). Portait by John Collier(@TheRoyal

Society).)

2.1A new productfor vectors
In chapter 1we studiedvarious productsfor vectors, including the symmetric
scalar (or inner) productand the antisymmetric exterior (or outer) product. In
two dimensions,we showedhow to interpret the result of the complexproduct
zw* (section1.3).The scalarterm is the inner productof the two vectors rep-
resentingthe points in the complexplane, and the imaginary term recordstheir)
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directedarea.Furthermore, the scalar term is symmetric, and the imaginary
term is antisymmetric in the two arguments. Clifford's powerful idea was to

generalisethis productto arbitrary dimensionsby replacing the imaginary term
with the outer product.The result is the geometricproduct and is written simply
as ab. The result is the sum of a scalarand a bivector, so)

ab == a.b+ aAb.) (2.1))
/

This sum of two distinctobjects-a scalarand a bivector- looksstrange at
first and goesagainst the rule that one should only add like objects.This is the
feature of geometricalgebrathat initially causesthe greatestdifficulty, in

ml}\302\243h

the sameway that i2 == -1initially unsettlesmost schoolchildren.So ho\037 is
the sum on the right-hand sideof equation (2.1)to be viewed? The answer is
that it should be viewed in preciselythe same way as the addition of a real and
an imaginary number. The result is neither purely real nor purely imaginary-------- it is a mixture of two different objectswhich are combined to form a single
compl\037x number. Similarly, the addition of a scalar to a bivector enablesus
to keeptrack of the separatecomponents of the productab. The advantages of
this are preciselythe same as the advantagesof complexarithmetic overworking
with the separatereal and imaginary parts. This analogybetweenmultivectors in

geometricalgebraand complexnumbers is more than a merepedagogicaldevice.
As we shall discover,geometricalgebraencompassesboth complexnumbers and

quaternions.Indeed,Clifford'sachievementwasto generalisecomplexarithmetic
to spacesof arbitrary dimensions.

From the symmetry and antisymmetry of the terms on the right-hand sideof

equation (2.1)we seethat)

ba == b.a+ bAa == a.b-aAb.) (2.2)__,)

It follows that)

a.b== !(ab+ ba)) (2.3))

and)

aAb ==
\037 (ab-ba).) (2.4))

We can thus define the inner and outer products in terms of the geometric
product.This forms the starting point for an axiomaticdevelopmentofgeometric
algebra,which is presentedin chapter 4.

If we form the productof a and the parallel vector Aa we obtain)

a(Aa) == Aa.a + AaAa == Aa.a,) (2.5))

which is therefore a pure scalar.It follows similarly that a2 is a scalar,so we
can write a2 == lal

2 for the squareof the length of a vector. If insteada and b)
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areperpendicularvectors, their product is)

ab == a.b+ aAb == aAb) (2.6))

and so is a pure bivector. We also seethat)

ba == b.a+ bAa == -aAb == -ab,) (2.7))

which shows us that orthogonal vectors anticommute. The geometric-product
between general vectors encodesthe relative contributions of both their parallel
and perpendicularcomponents,summarising these in the separatescalarand
bivector terms.)

r
I\

2.2An outlineof geometricalgebra
Clifford went further than just allowing scalarsto be added-tobivectors. He
defined an algebrain which elements of any type could be addedor multiplied
together. This is what he calleda geometric algebra. Elements of a geometric
algebraare calledmultivectors and these form a linear space-scalarscan be
addedto bivectors, and vectors, etc.Geometricalgebrais a gradedalgebra,and
elementsof the algebracan be brokenup into terms of different grade.The scalar
objectsare assignedgrade-O,the vectors grade-I,the bivectors grade-2and so
all. Essentially, the gradeof the object is the dimension of the hyperplane it

specifies.The term 'grade'is preferred to 'dimension',however,as the latter is
regularly employed for the size of a linear space.We denotethe operation of

projectingonto the termsof a chosengradeby ( )r, so (ab)2denotesthe grade-2
(bivector)part of the geometric productab. That is,)

(ab)2== aAb.) (2.8))

Thesubscript0 on the scalarterm is usually suppressed,sowe alsohave)

(ab)o== (ab) == a.b.) (2.9))

Arbitrary multivectors can also be multiplied together with the geometric
product. To do this we first extendthe geometric productof two vectors to an

arbitrary number of vectors.This is achievedwith the additional rule that the

geometricproductis associative:)

a(bc)== (ab)c== abc.) (2.10))

Theassociativitypropertyenablesus to removethe bracketsand write the prod-
uct as abc. Arbitrary multivectors can now be written as sums of productsof
vectors.The geometric productof multivectors therefore inherits the two main

propertiesof the productfor vectors, which is to say it is associative:)

A(BC) == (AB)C== ABC,) (2.11))
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and distributive over addition:)

A(B+ G) == AB + AG.) (2.12))

HereA, B,. . ., G denote multivectors containing terms of arbitrary grade.
The associativityproperty ensuresthat it is now possibleto divide by vectors,

thus realisingHamilton'sgoal.Supposethat we know that ab == G, where G is

some combinationof a scalarand bivector. We find that)

Gb == (ab)b== a(bb) == ab2
,) (2.13))

sowe can defineb-I == b/b
2

-, and recovera from)
\

a == Gb-1.) (2.14))

This ability to divide by vectors givesthe algebraconsiderablepower.
As an exampleof these axioms in action, considerforming the squareof the

bivector a/\\b. The propertiesof the geometricproductallow us to write)

(a /\\ b)(a /\\ b) == (ab-a.b)(a .b - ba)
== -ab2a - (a.b)2+ a.b(ab+ ba)
== (a.b)

2 - a2b2

== _a2b2sin2(B),) (2.15))

where we have assumedthat a.b== lallbl cos(B).The magnitude of the bivector
a /\\ b is therefore equal to the area of the parallelogram with sidesdefined by a
and b. Manipulations such as theseare commonplacein geometricalgebra,and
can provide simplifiedproofs of a number of useful results.)

2.3Geometricalgebraof the plane)

The easiestway to understand the geometricproductis by example,soconsider
a two-dimensionalspace(a plane) spannedby two orthonormal vectors el and
e2.Thesebasisvectors satisfy)

2 2 1el == e2 ==
,) el.e2== O.) (2.16))

The final entity presentin the algebrais the bivector ei/\\ e2.This is the highest
gradeelement in the algebra,sincethe outer productofa setofdependentvectors
is always zero.The highest gradeelement in a given algebrais usually called
the pseudoscalar,and its gradecoincideswith the dimensionof the underlying

vector space.
The full algebrais spannedby the basisset)

1
1scalar)

{eI,e2}
2 vectors)

el /\\ e2
1bivector) (2.17))
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We denote this algebrag2. Any multivector can be decomposedin this basis,
and sums and productscan be calculatedin terms of this basis. For example,
supposethat the multivectors A and B are given by

A == ao + alel+ 0:2e2 + a3e1!\\e2,

B == /30 + /31e1+ /32e2 + /33e1!\\e2,

then their sum S == A + B is given by)

S == (ao + /30) + (0:1+ /31)e1+ (a2 + /32)e2+ (a3 + /33)e1!\\e2') (2.18))
This result for the addition of multivectors is straightforward and unsurprising.
Mattefs becomemore interesting, however,when we start forming products.)

I

\

2.3.1The bivectorand itsproducts
Tostudy the propertiesof the bivector el !\\ e2 we first recall that for orthogonal
vectofs the geometric product is a pure bivector:)

e1e2 == el.e2+ el!\\e2 == el!\\e2,) (2.19))
and that orthogonal vectors anticommute:)

e2e1 == e2Ae 1 == -eIAe 2 == -eIe2') (2.20))

We can now form productsin which e1e2 multiplies vectors from the left and the

right. First from the left we find that)

(e1Ae2)eI == (-e2e1)e1== -e2e1e1== -e2) (2.21))

and)

(eI!\\e2)e2== (eIe2)e2== e1e2e2 == el') (2.22))

If we assume that e1and e2 form a right-handed pair, we seethat left-multipli-
cation by the bivector rotates vectors 90\302\260 clockwise(i.e.in a negative sense).
Similarly, acting from the right)

eI(eIe2) == e2,) e2(e1e2) == -e1.) (2.23))

Sofight multiplication rotates 90\302\260 anticlockwise-a positive sense.
The final productin the algebrato consideris the squareof the bivectorel!\\e2:)

(e1!\\e2)2== e1e2e1e2== -e1e1e2e2== -1.) (2.24))

Geometricconsiderationshave led naturally to a quantity which squaresto -1.
This fits with the fact that two successiveleft (or right) multiplicationsofa vector
by ele2rotatesthe vector through 180\302\260,

which isequivalent to multiplying by -1.
The fact that we now have a firm geometricpicture for objectswhosealgebraic
squareis -1opensup the possibilityof providing a geometric interpretation for)
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the unit imaginary employedthroughout physics,a theme which will be explored
further in this book.)

2.3.2Multiplying multivectors
Now that all of the individual productshave been found, we can compute the

productof the two general multivectors A and Bof equation (2.18),)
AB == M ==

{Lo + J1Iel+ J12e2 + J13e1e2,) (2.25)
I

\
where)

J10 == (10/30+ (11/31+ (12/32- (13/33,

J11== (10/31+ 01/30+ (13/32- (12/33,

J12 == 00/32+ (12/30+ 01/33- 03/31,

J13 == 00/33+ 03/30+ (11/32-02/31'
The full productshown here is actually rarely used,but writing it out explicitly
doesemphasisesomeof its key features. The product is always well defined,
and the algebrais closedunder it.Indeed,the productcould easily be made an
intrinsic part of a computer language, in the sameway that complexarithmetic
is already intrinsic to somelanguages.The basisvectors can alsobe represented
with matrices,for example)

(2.26))

El=
G \037))

E2 =
G \0371)')

(2.27))

(Verifying that thesesatisfy the requiredalgebraicrelations is left asan exercise.)
Geometricalgebrasin general are associative algebras,so it is always possi\037le
to construct a matrix representationfor them. The problem with this is that
the matrices hide the geometriccontent of the elements they represent.Much of
the mathematical literature does focus on matrix representations,and for this
work the term Clifford algebrais appropriate.For the applicationsin this book,
however, the underlying geometry is the important feature of the algebraand
matrix representationsare usually redundant. Geometricalgebraisa much more
appropriatename for this subject.)

2.3.3Connectionwith complexnumbers
It is clear that there is a closerelationship between geometric algebra in two
dimensionsand the algebra of complexnumbers.The unit bivector squaresto
-1and generatesrotations through 90\302\260. The combination of a scalar and a

bivector, which is formed naturally via the geometricproduct,can therefore be
viewedas a complexnumber. We write this as)

z == u + vele2 == u + Iv,) (2.28))
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I)

v)

n)

u)

Figure 2.2 The Argand diagram. The complexnumber Z == u + iv repre-
sents a vector in the complexplane,with Cartesiancomponents u and v.
Thepolardecompositioninto

I ZI exp(iO)can alternatively be viewed as an
instruction to rotate 1through 0 and dilateby jZI.)

where)

I == el/\\e2,) 12 == -1.) (2.29))

Throughout we employ the symbol I for the pseudoscalarof the algebra of in-

terest. That is why we have used it here, rather than the tempting alternative
i.The latter is seenoften in the literature, but the i symbolhas the problemof

suggesting an element which commutes with all others,which is not necessarily
a property of the pseudoscalar.

Complexnumbers serve a dual purpose in two dimensions.They generate
rotations and dilations through their polar decompositionIZI exp(iO),and they
alsorepresentvectors as points on the Argand diagram (seefigure 2.2).But

in the geometricalgebra(;2 complexnumbers are replacedby scalar+ bivector

combinations, whereas vectors are grade-lobjects,)

x == uel + ve2.) (2.30))

Is there a natural map between x and the multivector Z? The answer is simple-pre-multiply by el,)

elx== U + veIe2 == u + Iv == Z.) (2.31))

That is all there is to it!The role of the preferred vector el is clear - it is

the real axis.Usingthis productvectors in a plane can be interchanged with

complexnumbers in a natural manner.
If we now considerthe complexconjugate of Z, zt == u - iv, we seethat)

zt == u + ve2eI == xel,) (2.32))
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which has simply reversed the orderof the geometricproductof x and el.This
operation of reversingthe orderof productsisone of the fundamental operations
performed in geometricalgebra,and is calledreversion (seesection2.5).Suppose
now that we introduce a secondcomplexnumber W, with vector equivalent y:)

W == elY.

The complexproduct ZW t == wt Z now becomes

WtZ==yeleIx==yx,)

(2.33))

(2.34}
I)

which returns the geometric productyx. This is as expected,as the complex
productwas usedto suggestthe form of the geometricproduct.)

2.3.4Rotations)
Sincewe know how to rotate complexnumbers, we can usethis to find a formula
for rotating vectors in a plane. We know that a positive rotation through an
angle <p for a complexnumber Z is achievedby)

Z \037 Z' == eirpZ
,) (2.35))

where i is the standard unit imaginary (seefigure 2.3).Again, we now view Z
as a combination of a scalarand a pseudoscalarin g2 and so replacei with I.
The exponential of I<p is defined by power seriesin the normal way, so we still
have)

00
(I<p)ne1if; == L ,

== cos<p + I sin <p.n.
n=O)

(2.36))

Supposethat Z'has the vector equivalent x',) ,-,)

x' == e1Z'.) (2.37))
We now have a means of rotating the vector directly by writing

x' == eleIrp Z == eleIrpeIx.) (2.38))

But)

eleIif;el == el(cos<p + I sin <p )el
== cos<p

-I sin <p
== e-Iif;

,) (2.39))
where we have employedthe result that I anticommuteswith vectors.We there-
fore arrive at the formulae)

x' == e-Irp x == xeIrp
,) (2.40))

which achieve a rotation of the vector x in the I plane, through an angle <p.

In section2.7we show how to extend this idea to arbitrary dimensions.The)
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I)

Z == rei())

n)

Figure 2.3A rotation in the complex plane. The complexnumber Z is

multiplied by the phaseterm exp(IcjJ), the effectof which is to replacee by

(j' == e + cjJ.)

change of sign in the exponential acting from the left and right of the vector x
is to be expected.We saw earlier that left-multiplication by I generatedleft-

handed rotations, and right-multiplication generatedright-handed rotations.As

the overall rotation is right-handed, the sign of I must be negative when acting
from the left.

Thisshould illustrate that geometricalgebrafully encompassescomplexarith-

metic, and we will seelater that complexanalysis is fully incorporatedas well.

The beauty of the geometric algebraformulation is that it shows immediately
how to extend the ideasof complexanalysis to higher dimensions,a problem
which had troubled mathematicians for many years. The key to this is the

separationof the two rolesof complexnumbers by treating vectors as grade-l
objects,and the quantities acting on them (the complexnumbers) as combina-

tions of grade-Oand grade-2objects.Thesetwo rolesgeneralisedifferently in

higher dimensionsand, once one seesthis, extending complexanalysis becomes

straightforward.)

2.4Thegeometricalgebraof space
Thegeometricalgebraof three-dimensionalspaceis a remarkably powerful tool

for solving problemsin geometry and classicalmechanics.It describesvectors,

planesand volumes in a single algebra,which contains all of the familiar vec-

tor operations.Theseinclude the vector crossproduct,which is revealed as a

disguisedform of bivector. The algebraalso provides a very clear and com-

pact method for encodingrotations, which is considerablymore powerful than

working with matrices.
We have so far constructedthe geometric algebraof a plane. We now add a)
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third vector e3to our two-dimensionalset{el,e2}'All three vectors are assumed
to be orthonormal, so they all anticommute. From thesethree basisvectors we
generatethe independent bivectors)

{ele2,e2e3,e3eI}.)
This is the expectednumber of independentplanesin space.There isone further

term to consider,which is the productof all three vectors:)

(ele2)e3\037 eIe2e3') (2.41))

This resultsin a grade-3object,calleda trivector. It correspondsto sweeping
the bivector el/\\ e2 along the vector e3, resulting in a three-dime\037sional volume
element (seesection2.4.3).The trivector representsthe unique volume element
in three dimensions.It is the highest gradeelement and is unique up to scale
(or volume) and handedness(sign).This is again calledthe pseudoscalarfor the
algebra.

In three dimensionsthere are no further directionsto add, so the algebrais
spannedby)

1
1scalar)

{ei}
3 vectors)

{ei/\\ej}
3 bivectors)

ele2e3
1trivector) (2.42))

This basis defines a graded linear spaceof total dimension 8 \037 23. We call
this algebra(;3. Notice that the dimensionsof each subspaceare given by the
binomial coefficients.)

2.4.1Productsofvectorsand bivectors)

Our expandedalgebragivesus a number of new productsto consider.We start
by consideringthe productof a vector and a bivector. We have already looked
at this in two dimensions,and found that a normalisedbivector rotatesvectors
in its plane by 90\302\260. Each of the basisbivectors in equation (2.42)sharesthe
propertiesof the single bivector studiedpreviouslyfor two dimensions.So)

(eIe2)2\037 (e2e3)2\037 (e3el)2\037 -1) (2.43))

and each bivector generates90\302\260 rotations in its own plane.
The geometricproduct for vectors extendsto all objectsin the algebra,sowe

can form expressionssuch as aB,where a is a vector and B is a bivector. Now

that our algebracontains a trivector el(e2/\\ e3),we seethat the result of the
productaBcan contain both vector and trivector terms, the latter arising if a
doesnot lie fully in the Bplane. To understand the propertiesof the product
aBwe first decomposea into terms in and out of the plane,)

a \037

all + a.1.,) (2.44))
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\\
Figure 2.4 A vector and a bivector. The vectora can be written as the
sum of a term in the plane B and a term perpendicularto the plane, so
that a == all + ai...The bivector B can be written as all /\\ b, where b is

perpendicular to a
II

.)

as shown in figure 2.4.We can now write aB == (all + a.l)B.Supposethat we

alsowrite)

B ==
alll\\b

==
all b,) (2.45))

where b is orthogonal to all in the Bplane. It is always possibleto find such a

vector b. We now seethat)

ailB ==
all (all b) ==

al1
2

b) (2.46))

and so is a vector. This is clear in that the productof a plane with a vector in

the plane must remain in the plane. On the other hand)

aJ..B == aJ..(alll\\b)
== aJ..all b,) (2.47))

which is the product of three orthogonal (anticommuting) vectors and so is a

trivector. As expected,the product of a vector and a bivector will in general
contain vector and trivector terms.

Toexplorethis further let us form the productof the vector a with the bivector

b A c.From the associativeand distributive propertiesof the geometricproduct
we have)

a(bl\\e) ==
a\037 (be- cb) ==

\037
(abc- aeb).) (2.48))

We now use the rearrangement)

ab == 2a.b- ba) (2.49))
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to write)

a (bAe) == (a.b)e- (a.e)b -
\037 (bae- cab)

== 2(a .b)e- 2(a .e) +
\037 (be- cb)a,) (2.50))

so that)

a(bl\\e) - (bAc)a == 2(a.b)e-2(a.e)b.) (2.51))
The right-hand sideof this equation is a vector, so the antisymmetrised product
of a vector with a bivector is another vector. Sincethis operation is grade-
lowering, we give it the dot symbol again and write)

a.B==
\037(aB

-Ba),) (2.52))

where B is an arbitrary bivector. The precedingrearrangement means that we
have proved one of the most useful resultsin geometricalgebra,)

a.(bl\\e)== a.be- a.eb.) (2.53
))

Returning to equation (2.46)we seethat we must have)

a.B== ailB== all.B.) (2.54
))

Sothe effectof taking the inner productof a vector with a bivector is to project
onto the component of the vector in the plane,and then rotate this through 90\302\260

and dilate by the magnitude of B.We can also confirm that)

a.B==
al1

2b == -(allb)all
== -B.a,) (2.55))

as expected.
The remaining part of the productof a vector and a bivector returns a grade-3

trivector. This productis denotedwith a wedgesinceit is grade-raising,so \"- /)

al\\(bl\\e) ==
\037(a(bAe) + (bAe)a).) (2.56))

A few lines of algebraconfirm that this outer productis associative,)

al\\(bAe) ==
\037(a(bAc) + (bAc)a)

==
\037 (abc- aeb+ bca- cba)

==
\037 (2(aAb)e+ bae+ bca+ 2e(aAb)- cab- aeb)

== \037((aAb)e+e(aAb)+b(e.a)- (e.a)b)
== (aAb) Ae,) (2.57))

so we can unambiguously write the result as a A b A e. The product a A b A e
is therefore associative and antisymmetric on all pairsof vectors, and so is pre-
cisely Grassmann'sexterior product (seesection1.6).This demonstratesthat)
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Grassmann's exteriorproduct sits naturally within geometric algebra. From

equation (2.47)we have)

al\\B == al..B== al..I\\B, (2.58))

so the effectof the exterior productwith a bivector is to projectonto the com-

ponent of the vector perpendicularto the plane,and return a volume element (a
trivector). We can confirm simply that this product is symmetric in its vector
and bivector arguments:)

al\\B ==
al..l\\alj I\\b == -alll\\al..l\\b==

all 1\\ bl\\ al..== BI\\a.

The full productof a vector and a bivector can now be written as)

(2.59))

aB== a.B+ al\\B,
\\)

(2.60))

where the dot is generalisesto mean the lowestgradepart of the product,while

the wedgemeans the highest gradepart of the product. In a similar manner to
the geometricproductof vectors, the separatedot and wedgeproductscan be
written in terms of the geometricproductas

a.B== !(aB-Ba),
al\\B == !(aB+ Ba).)

(2.61))

But pay closeattention to the signsin these formulae, which are the opposite
way round to the caseof two vectors.The full productof a vector and a bivector

wraps up the separatevector and trivector terms in the singleproductaB.The

advantage of this is again that the full productis invertible.)

2..4..2The bivectoralgebra)

Our three independentbivectors also give us another new productto consider.
We already know that squaring a bivector resultsin a scalar.But if we multiply

together two bivectors representingorthogonal planeswe find that, for example,)

(ell\\eZ)(eZl\\e3) == eIe2e2e3 == ele3,

resulting in a third bivector. We also find that

(ezl\\e3)(eIl\\eZ)== e3eZe2eI== e3el == -ele3,)

(2.62))

(2.63))

so the productof orthogonal bivectors is antisymmetric. The symmetric contri-
bution vanishesbecausethe two planesare perpendicular.

If we introduce the following labelling for the basisbivectors:)

BI==eZe3,BZ==e3el,B3 ==eIeZ,) (2.64))

we find that their productsatisfies)

B.B,- _A..- c..kBk
\037 J - U\037J L\037J

.) (2.65))
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There is a clear analogy with the geometricproductof vectors here, in that the
symmetric part is a scalar,whereas the antisymmetric part is a bivector. In
higher dimensions it turns out that the symmetrised product of two bivectors
can have grade-Oand grade-4terms (which we will ultimately denotewith the
dot and wedgesymbols).The antisymmetrisedproductis always a bivector, and
bivectors form a closedalgebraunder this product.

The basisbivectors satisfy)

B12== B2
2

== B32 ==-1) (2.66))

and)

BIB2== -B2B1, etc.) (2.67))

Theseare the propertiesof the generatorsof the quaternion algebra(seesec-
tion 1.4).This observation helpsto sort out some of the problemsencountered
with the quaternions. Hamilton attempted to identify pure quaternions (null
scalarpart) with vectors, but we now seethat they are actually bivectors.This
causesproblemswhen lookingat how objectstransform under reflections.Hamil-
ton also imposedthe condition ijk == -Ionhis unit quaternions, whereas we

\037

have)

BIB2B3== e2e3e3eIele2== +1.) (2.68))

To set up an isomorphismwe must flip a sign somewhere,for example in the y

component:)

i+-+B1, j+-+-B2, k+-+B3.) (2.69))

This shows us that the quaternions are a left-handedset of bivectors, whereas
Hamilton and othersattemptedto view the i,j,k asa right-handed setofvectors.
Not surprisingly, this was a potential sourceof great confusionand meant one
had to be extremely careful when applying quaternions in vector algebra.)

2.4.3The trivector)

Giventhree vectors, a, band c,the trivector a /\\ b /\\ c is formedby sweepinga /\\ b

along the vector c (seefigure 2.5).The result can be representedpictorially as
an oriented parallelepiped.As with bivectors, however,the picture should not
be interpretedtoo literally. The trivector a /\\ b /\\ c doesnot contain any shape
information. It just recordsa volume and an orientation.

The various algebraic propertiesof trivectors have straightforward geometric
interpretations.The same oriented volume is obtained by sweepinga /\\ b along c
or b /\\ c along a. The mathematical expressionof this is that the outer product
is associative,a /\\ (b /\\ c) == (a /\\ b) /\\ c. The trivector a /\\ b /\\ c changes sign
under interchange of any pair of vectors, which follows immediately from the)
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b)

Figure 2.5 The trivector. The trivector a /\\ b /\\ c can be viewed as the
oriented parallelepipedobtainedfrom sweepingthe bivector a /\\ b along the
vector c. In the left-hand diagram the bivector a /\\ b is swept along c. In

the right-hand one b /\\ c is swept along a. The result is the same in both
cases,demonstrating the equality a /\\ b /\\ c == b /\\ c /\\ a. The associativity of
the outer product is alsoclearfrom such diagrams.)

antisymmetry of the exterior product. The geometric picture of this is that

swapping any two vectors reversesthe orientation by which the volume is swept
out. Under two successiveinterchanges of pairsof vectors the trivector returm_

to itself, so)

al\\bl\\c == cl\\al\\b == bl\\c!\\a.) (2.70))

This is also illustrated in figure 2.5.
The unit right-handed pseudoscalarfor spaceis given the standardsymbolI,

so)

I == eIe2e3,) (2.71))
where the {eI,e2,e3}are any right-handed frame of orthonormal vectors. If a
left-handedset of orthonormal vectors is multiplied together the result is -I.
Given an arbitrary set of three vectors we must have)

al\\bl\\c == aI,) (2.72
))

where a is a scalar.It is not hard to show that lal is the volume of the paral-
lelepipedwith sidesdefined by a, band c. The sign of a encodeswhether the
set {a,b, c}forms a right-handed or left-handed frame. In three dimensionsthis

fully accounts for the information in the trivector.
Now considerthe productof the vector el and the pseudoscalar,)

ell== el(eIe2e3) == e2e3') (2.73))
This returns a bivector- the plane perpendicularto the original vector (see
figure 2.6).The product of a grade-lvector with the grade-3pseudoscalaris
thereforea grade-2bivector. Multiplying from the left we find that)

Iel == ele2e3eI == -ele2ele3 == e2e3.) (2.74))
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Figure 2.6A vector and a trivector. The result of multiplying the vector
el by the trivector I is the plane el (ele2e3)== e2e3. This is the plane
perpendicularto the el vector.)

The result is therefore independentof order,and this holdsfor any basisvector.
It follows that the pseudoscalarcommutes with all vectors in three dimensions:)

Ia == aI.) (2.75))

This is always the casefor the pseudoscalarin spacesof odddimension.In even
dimensions,the pseudoscalaranticommuteswith all vectors, as we have already
seenin two dimensions.

We can now expresseach of our basisbivectors as the product of the pseu-
doscalarand a dual vector:)

ele2 == Ie3,) e2e3 == Iel,) e3e1 == Ie2.) (2.76))

This operation of multiplying by the pseudoscalaris calleda duality transforma-
tion and was originally introduced by Grassmann.Again, we can write)

aI == a.I) (2.77))

with the dot used to denotethe lowest grade term in the product. The result
of this can be understoodas a projection-projectingonto the component of I
perpendicularto a.

We next form the squareof the pseudoscalar:)

12
== ele2e3ele2e3 == ele2ele2 == -1.) (2.78))

Sothe pseudoscalarcommuteswith all elementsand squaresto -1.It is therefore
a further candidatefor a unit imaginary. In somephysicalapplicationsthis is the
correct one to use,whereas for othersit is one of the bivectors.The propertiesof
I in three dimensionsmake it particularly tempting to replaceit with the symbol
i,and this is common practicein much of the literature. This convention CB,n

still lead to confusion,however,and is not adoptedin this book.)
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Finally, we considerthe productof a bivector and the pseudoscalar:)

I(e1J\\ e2) == leIe2e3e3 == IIe3 == -e3.) (2.79
))

So the result of the product of I with the bivector formed from el and e2 is
-e3,that is, minus the vector perpendicularto the elJ\\e2 plane. This provides
a definition of the vector crossproductas)

axb == -I(aJ\\b).) (2.80))

The vector crossproduct is largely redundant now that we have the exterior
product and duality at our disposal. For example,considerthe result for the
double crossproduct. We form)

ax(bxc)== -IaJ\\(-I(bJ\\c))
==

\037

I(aI(b J\\ c) - (bJ\\ c)Ia)
== -a.(bJ\\c).) (2.81))

We have already calculatedthe expansionof the final line, which turns out to
be the first exampleof a much more general, and very useful, formula.

Equation (2.80)shows how the crossproduct of two vectors is a disguised
bivector, the bivector beingmappedto a vector by a duality operation. It is
now clear why the product only exists in three dimensions- this is the only

spacefor which the dual of a bivector is a vector. We will have little further

use for the crossproductand will rarely employ it from now on. This means we

can alsodo away with the awkward distinction between polar and axial vectors.
Instead we just talk in terms of vectors and bivectors. Both may belongto
three-dimensionallinear spaces,but they are quite different objectswith distinct

algebraicproperties.)

2.4.4ThePaulialgebra)

The full geometric productfor vectors can be written)

eiej== ei.ej+eiJ\\ej==
Dij +IEijkek.) (2.82))

This may be familiar to many - it is the Pauli algebraof quantum mechan-
ics!The Pauli matricestherefore form a matrix representationof the geometric
algebra of space.The Pauli matrices are)

\0371
=

G \037),
\0372

=
(\037 \037i),

\0373
=

G \0371).)
(2.83))

Thesematrices satisfy)

(Ji(Jj == Jijl + iEijk(Jk,) (2.84))
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where I is the 2 x 2 identity matrix. Historically,thesematrices were discovered
by Pauli in his investigations of the quantum theory of spin. The link with

geometricalgebra('Cliffordalgebra'in the quantum theory textbooks)was only
made later.

Surprisingly, though the link with the geometric algebraof spaceis now well

established,one seldomseesthe Pauli matrices referred to as a representation
for the algebraof a set of vectors.Insteadthey are almost universally referred
to as the componentsof a singlevector in 'isospace'.A handful of authors (most
notably David Hestenes)have pointedout the curious nature of this interpreta-
tion. Such discussionremains controversial,however,and will only be touched
on in this book.As with all arguments over interpretations of quantum mechan-
ics,how one views the Pauli matrices has little effect on the predictionsof the
theory.

The fact that the Pauli matrices form a matrix representation of 93 providesan
alternative way ofperformingmultivector manipulations. This method isusually
slower,but can sometimesbe used to advantage, particularly in programming
languages where complexarithmetic is built in. Working directly with matrices
doesobscuregeometricmeaning, and is usually best avoided.)

2.5Conventions)

A number of conventionshelp to simplify expressionsin geometricalgebra.For

example,expressionssuch as (a . b)e and I(aA b) demonstratethat it would be
useful to have a convention which allows us to remove the brackets. We thus

introduce the operatororderingconventionthat in the absenceofbrackets,inner
and outer products are performed beforegeometricproducts.This can remove
significant numbers of unnecessarybrackets.For example,we can safely write)

I(aAb) == I aAb.) (2.85))

and)

(a.b)c == a.b c.) (2.86))

In addition, unlessbracketsspecify otherwise, Inner products are performed
before outer products,)

a.beAd == (a.b)cAd.) (2.87))

A simplenotation for the result of projectingout the elementsof a multivector
that have a given gradeis alsoinvaluable. We denotethis with angled brackets
()r, where r is the gradeonto which we want to project.With this notation we
can write, for example,)

aAb == (aAb)2 == (ab)2') (2.88))

The final expressionholdsbecausea A b is the solegrade-2component of the)
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/)

geometricproductab. This notation can be extremely useful as it often enables
inner and outer productsto bereplacedby geometricproducts,which are usually
simpler to manipulate. The operation of taking the scalarpart of a product is

often needed,and it isconventionalfor this to dropthe subscriptzero and simply
write)

(M) == (M)o.) (2.89))

Thescalar part of any pair of multivectors is symmetric:)

(AB) == (BA).) (2.90
))

It follows that the scalarpart satisfiesthe cyclicreordering property)

(AB...C) == (B...CA),) (2.91))

which is frequently employedin manipulations.
An important operation in geometric algebrais that of reversion, which re-

versesthe orderof vectors in any product. There are two conventionsfor this in

common usage.One is the daggersymbol, At, used for Hermitian conjugati on
in matrix algebra.The other is to usea tilde, A. In three-dimensionalapplica-
tions the daggersymbol is often employed,as the reverse operation returns the
same result as Hermitian conjugation of the Pauli matrix representationof the

algebra.In spacetimephysics,however,the tilde symbol is the better choiceas
the daggeris reservedfor a different (frame-dependent)operation in relativistic

quantum mechanics.For the remainder of this chapter we will use the dagger
symbol, as we will concentrate on applicationsin three dimensions.

Scalarsand vectors are invariant under reversion, but bivectors change sign:)

(ele2)t== e2el== -ele2') (2.92))

Similarly, we seethat

It == e3e2eI == ele3e2== -ele2e3== -I.) (2.93))

A generalmultivector in Q3can be written)

M==a+a+B+{3I,) (2.94))

where a is a vector, B is a bivector and a and {3 are scalars.From the above we

seethat the reverse of M, Mt, is)

Mt == a + a -B - {3I.) (2.95))

As stated above, this operation has the same effect as Hermitian conjugation
applied to the Pauli matrices.

We have now introduced a number of terms,some of which have overlapping
meaning. It is useful at this point to refer to multivectors which only contain
terms of a singlegradeas homogeneous.The term inner productis reservedfor)
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the lowestgradepart of the geometricproductof two homogeneousmultivectors.
For two homogeneousmultivectorsof the samegradethe inner productand scalar
productreduceto the same thing. The terms exteriorand outer productsare
interchangeable, though we will tend to prefer the latter for its symmetry with
the inner product. The inner and outer productsare also referred to colloquiallyas the dot and wedge products. We have followedconvention in referring to
the highest gradeelement in a geometric algebraas the pseudoscalar.This is
a convenient name, though one must be wary that in tensor analysis the term
can mean something subtly different. Both directedvolume element and volume
form are good alternative names, but we will stick with pseudoscalarin this
book.)

2.6Reflections)
The full powerofgeometricalgebrabeginsto emergewhen we considerreflections
and rotations.We start with an arbitrary vector a and a unit vector n (n

2 == 1),
and resolvea into parts parallel and perpendicularto n. This is achievedsimply
by forming

\037)

a == n2
a)

== n(n.a+ nl\\a)

==
all + a\037,) (2.96))

where)

all
== a.nn,) a\037

== n nl\\a.) (2.97))
The formula for all is certainly the projectionof a onto n, and the remaining
term must be the perpendicularcomponent (sometimescalledthe rejection).We
can checkthat a\037 is perpendicularto n quite simply:)

n.a-1-== (nn nl\\a) == (nl\\a) == O.) (2.98))

This is a simpleexampleof how using the projectiononto gradeoperatorto re-
placeinner and outer productswith geometricproductscan simplify derivations.

The result of reflectinga in the plane orthogonal to n is the vectora'== al..-all(seefigure 2.7).This can be written)

,a == a..l- all
== n nl\\a -a.nn
== -n.an-nl\\an)

== -nan.) (2.99))

This formula is already more compact than can be written down without the
geometric product. The best one can do with just the inner product is the)
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a)

-all)

Figure 2.7 A reflection. Thevectora is reflectedin the (hyper) plane per-
pendicular to n. This is the way to describereflections in arbitrary dimen-
sions.The result a' is formed by reversing the sign of all' the component
of a in the n direction.)

equivalent expression)

a'== a -2a.nn.) (2.100))

The compressionafforded by the geometric product becomesincreasingly im-

pressiveas reflectionsare compoundedtogether.The formula)

a' == -nan) (2.101))

is valid is spacesof any dimension-it is a quite general formula for a reflection.
We should checkthat our formula for the reflectionhas the desiredproperty

of leaving lengths and anglesunchanged. To do this we need only verify that

the scalar productbetween vectors is unchanged if both are reflected, which is

achievedwith a simplerearrangement:)

(-nan).(-nbn) == ((-nan)(-nbn)) == (nabn) == (abnn) == a.b.) (2.102))

In this manipulation we have made use of the cyclic reordering property of the
scalarpart of a geometricproduct,as defined in equation (2.91).)

2.6.1Complexconjugation)
In two dimensionswe saw that the vector x is mappedto a complexnumber Z

by)

Z==eIx, x==e1Z.) (2.103))
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The complexconjugate zt is the reverseof this, zt == xel,somapsto the vector)

X' == elZt == eIxel.) (2.104))

This can be converted into the formula for a reflection if we remember that
the two-dimensionalpseudoscalarI == elez anticommutes with all vectors and

squaresto -1.We therefore have)

X' == -ellIxel== -ellxelI== -ezxez.) (2.105))

This is preciselythe expectedrelation for a reflection in the line perpendicular
to ez, which is to say a reflection in the real axis.)

2.6.2Reflectingbivectors
Now supposethat we form the bivector B == a A b and reflect both of these
vectors in the plane perpendicularto n. The result is)

B'
== (-nan)A(-nbn).) (2.106))

This simplifiesas follows:)

(-nan) A (-nbn) == !(nannbn - nbnnan)
== !n(ab-ba)n
== nBn.) (2.107))

The effectof sandwichinga multivector betweena vector, nMn, always preserves
the gradeof the multivector M. We will seehow to prove this in general when
we have derived a few more resultsfor manipulating inner and outer products.
The resulting formula nBn shows that bivectors are subjectto the same trans-
formation law as vectors, exceptfor a change in sign. This is the origin of the
conventionaldistinction between polar and axial vectors.Axial vectors are usu-

ally generatedby the crossproduct,and we saw in section2.4.3that the cross
productgeneratesa bivector, and then dualisesit backto a vector. But when the
two vectors in the crossproductare reflected,the bivector they form is reflected

accordingto (2.107).The dual vector IBissubjectto the same transformation
law, since)

I(nBn) == n(IB)n,) (2.108))

and sodoesnot transform as a (polar)vector. In many texts this can be a source
of much confusion. But now we have a much healthier alternative: banish all
talk of axial vectors in favour of bivectors.We will seein later chaptersthat
all of the main examplesof 'axial'vectors in physics(angular velocity,angular
momentum, the magnetic field etc.)are better viewedas bivectors.)
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2.6.3Trivectorsand handedness)

The final objectto try reflecting in three dimensionsis the trivector a A b A c.
We first write)

(-nan)A(-nbn)A(-ncn) == ((-nan)(-nbn)(-ncn))3
== -(nabcn)3,) (2.109))

which follows becausethe only way to form a trivector from the geometricprod-
uct of three vectors is through the exterior productof all three.Now the product
abccan only contain a vector and trivector term.The former cannot give riseto
an overalltrivector, sowe are left with)

(-nan)A(-nbn)A(-ncn) == -(naAbAcn)3') (2.110))

But any trivector in three dimensionsis a multiple of the pseudoscalarI, which

commutes with all vectors, sowe are left with)

(-nan)A(-nbn)A(-ncn)== -aAbAc.) (2.111))

The overall effect is simply to flip the sign of the trivector, which is a way of

stating that reflectionshave determinant -1.This means that if all-threevectors
in a right-handed triplet are reflected in some plane,the resulting triplet is left

handed (and vice versa).)

2.7Rotations)

Our starting point for the treatment of rotations is the result that a rotation
in the plane generated by two unit vectors m and n is achieved by successive
reflectionsin the (hyper)planesperpendicularto m and n. This is illustrated in

figure 2.8.Any component of a perpendicularto the mAn plane is unaffected,
and simple trigonometry confirms that the angle between the initial vector a
and the final vector c is twice the angle between m and n. (The proof of this is
left as an exercise.)The result of the successivereflectionsis therefore to rotate

through 2fJ in the mAn plane,where m.n== cos(O).
Sohow doesthis look using geometricalgebra?We first form)

b == -mam) (2.112))

and then perform a secondreflectionto obtain)

c == -nbn == -n(-mam)n== nmamn.) (2.113))

This is starting to look extremely simple!We define)

R == nm
,) (2.114))
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c)

.....)

.....)

.....)

..... m)
.....)

......)

mAn)

Figure 2.8A rotation from two reflections.The vectorb is the result of
reflecting a in the plane perpendicularto m, and c is the result of reflecting
b in the plane perpendicularto n.)

so that we can now write the result of the rotation as)

c == RaRt.) (2.115))

This transformation a 1---+ RaRt is a totally general way of handling rotations.
In deriving this transformation the dimensionality of the spaceof vectors was
never specified,sothe transformation law must work in all spaces,whatever their
dimension.The rule alsoworks for any grade of multivector!)

2.7.1Rotors)

The quantity R == nm is calleda rotor and is one of the most important objects
in applicationsof geometric algebra. Immediately, one can see the importance
of the geometricproductin both (2.114)and (2.115),which tellsus that rotors
provide a way of handling rotations that is unique to geometric algebra. To
study the propertiesof the rotor R we first write)

R == nm == n.m+ n!\\m == cos(B)+ n!\\m.) (2.116))
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We already calculatedthe magnitude of the bivector m 1\\ n in equation (2.15),
where we obtained)

(nl\\m)(nl\\m) == -sin2
(B).) (2.117))

We thereforedefine the unit bivector B in the ml\\n plane by

B ==
ml\\n B2 == -1.
sin(B)

,

Thereason for this choiceof orientation (m 1\\ n rather than n 1\\ m) is to ensure
that the rotation has the orientation specifiedby the generating bivector, as can
be seen in figure 2.8.In terms of the bivector B we now have)

(2.118))

R == cos(B)-Bsin(B),) (2.119))

which is simply the polar decompositionof a complexnumber, with the unit

imaginary replacedby the unit bivector B.We can therefore write)

R == exp(-BO),) (2.120))

with the exponential defined in termsof its powerseriesin the normal way. (The
power seriesfor the exponential is absolutely convergent for any multivector

argument. )
Now recall that our formula was for a rotation through 20.If we want to

rotate through 0, the appropriaterotor is)

R == exp(-BB/2),) (2.121))

which givesthe formula)

a 1---+ a' == e-BB/2aeBB/2) (2.122))

for a rotation through 0 in the Bplane, with handednessdetermined by B (see
figure 2.9).This descriptionencouragesus to think of rotations taking place
in a plane, and as such gives equations which are valid in any dimension.The

more traditional idea of rotations taking place around an axis is an entirely
three-dimensionalconceptwhich doesnot generalise.

Sincethe rotor R is a geometric productof two unit vectors, we seeimmedi-

ately that)

RRt == nm( nm) t == nmmn == 1 (' Rt R.) (2.123))

This providesa quick proof that our formula has the correct property of preserv-

ing lengths and angles.Supposethat at == RaRt and b' == RbRt, then

a'.b' ==
\037(RaRt RbRt + RbRt RaRt)

== !R(ab+ ba)Rt
== a.bRRt

== a.b.) (2.124))
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'\

Figure 2.9A rotation in three dimensions. The vector a is rotated to
at == RaRt. The rotor R is defined by R == exp(-Be/2),which describes
the rotation directly in terms of the planeand angle.The rotation has the
orientation specifiedby the bivector B.)

We can alsoseethat the inversetransformation is given by)

a == Rta'R.)
\037) (2.125))

The proof is straightforward:)

Rta'R == RtRaRtR == a.) (2.126))

The usefulnessof rotors provides ample justification for adding up terms of
different grades.The rotor R on its own has no geometric significance,which is
to say that no meaning should be attached to the separatescalarand bivector
terms.When R is written in the form R == exp(-B/2),however,the bivector
Bhas clear geometric significance,as doesthe vector formed from RaRt. This
illustratesa central feature ofgeometricalgebra, which is that both geometrically
meaningful objects(vectors, planesetc.)and the elements that act on them (in
this caserotors)are representedin the same algebra.)

2.7.2Constructinga rotor
Supposethat we wish to rotate the unit vector a into another unit vector b,

leaving all vectors perpendicularto a and b unchanged. This is accomplishedby
a reflectionperpendicularto the unit vector n half-way betweena and b followed
by a reflection in the plane perpendicularto b (seefigure 2.10).The vector n is)
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Figure 2.10A rotation from a to b. Thevectora is rotatedonto b by first

reflecting in the planeperpendicularto n, and then in the planeperpen-
dicular to b. The vectorsa, band n all have unit length.)

given by)

(a + b)n ==

la + bl
'

which reflectsa into -b.Combiningthis with the reflectionin the plane perpen-
dicular to b we arrive at the rotor)

(2.127))

R==bn==l+ba
==

l+ba
la + bl )2(1+ b.a)

,) (2.128))

which representsa simplerotation in the a A b plane.This formula showsus that

Ra ==
a + b

== a
1+ ab

== aRt.)2(1+ b.a) )2(1+ b.a))
(2.129))

It follows that we can write)

RaRt == R2a == aRt
2

.) (2.130))

This is always possiblefor vectors in the plane of rotation. Returning to the

polar form R == exp(-BO/2), where B is the a 1\\ b plane,we seethat)

R2
== exp(-Be),) (2.131))

so we can rotate a onto b with the formula

b == e-B()a == aeB().) (2.132))

This is preciselythe form found in the plane using complexnumbers, and was
the source of much of the confusionover the use of quaternions for rotations.
Hamilton thought that a single-sidedtransformation law of the form a 1---7 Ra
should be the correctway to encodea rotation, with the full angle appearing)
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in the exponential.He thought that this was the natural generalisation of the
complexnumber representation. But we can seenow that this formula only
works for vectors in the plane of rotation. The correctformula for all vectors is
the double-sided,half-angleformula a 1---+ RaRt. This formula ensuresthat given
a vector c perpendicularto the a !\\ b plane we have)

cR == c
1+ ba

)2(1+ b.a))

1+ ba
c == cR)2(1+ b.a)

,) (2.133))

so that)

RcRt == cRRt == c
,) (2.134))

and the vector is unrotated. The single-sidedlaw doesnot have this property.
Correctlyidentifying the double-sidedtransformation law means that unit bivec-
tors such as)

ele2 == eele27r/2) (2.135))

are generatorsof rotations through 7r, and not 7r/2.The fact that unit bivectors
squareto -1is consistentwith this because,acting doublesidedly,the rotor -1
is the identity operation.Moregenerally,Rand -R generate the same rotation,
sothere isa two-to-onemap betweenrotors and rotations. (Mathematicians talk
of the rotorsproviding a double-coverrepresentation of the rotation group.))

2.7.3 Rotating multivectors

Supposethat the two vectors forming the bivector B == a!\\ b are both rotated.
What is the expressionfor the resulting bivector? To find this we form)

B'== a'!\\b' ==
\037

(RaRt RbRt -RbRt RaRt)
==

\037R(ab
- ba)Rt

== Ra!\\bRt

== RBRt
,) (2.136))

where we have used the rotor normalisation formula Rt R == 1.Bivectors are
rotated using preciselythe sameformula as vectors!The sameturns out to be
true for all geometricmultivectors,and this is one of the most attractive features
ofgeometricalgebra.In section4.2we prove that the transformation A 1---+ RARt

preservesthe gradeof the multivector on which the rotors act.For applications
in three dimensionswe only needcheckthis result for the trivector case,as we
have already demonstratedit for vectors and bivectors. The pseudoscalarin
three dimensions,I, commutes with all other terms in the algebra,sowe have)

RIRt == IRRt == I
,) (2.137))
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which is certainly grade-preserving.This result is one way of saying that ro-
tations have determinant +1.We now have a means of rotating all geometric
objectsin three dimensions.In chapter 3 we will take full advantageof this when

studying rigid-bodydynamics.)

2.7.4Rotorcompositionlaw)

Having seenhow individual rotors are usedto representrotations, we now look
at their compositionlaw. Let the rotor Rl transform the vector a into a vector b:)

b == RiaRl.) (2.138))

Now rotate b into another vector c, using a rotor R2. This requires

c ==
R2bR\037

== R2RIaRIR\037 == R2Rla(R2RI)t,) (2.139))

so that if we write)

c == RaRt ,) (2.140))

then the compositerotor is given by)

R==R2Rl') (2.141))

This is the group combinationrule for rotors.Rotors form a group becausethe

product of two rotors is a third rotor, as can be checkedfrom)

R2R1(R2R1)t == R2RIRIR\037 ==
R2R\037

== 1.) (2.142))

In three dimensionsthe fact that the multivector R contains only even-grade
elements and satisfies RRt == 1is sufficient to ensurethat R is a rotor.The
fact that rotorsform a continuousgroup (calleda Liegroup) is a subjectwe will

return to later in this book.
Rotors are the exceptionto the rule that all multivectors are subject to a

double-sidedtransformation law. Rotors are already mixed-gradeobjects,so
multiplying on the left (or right) by another rotor doesnot take us out of the

spaceof rotors.All geometricentities,such as lines and planes,are single-grade
objects,and their gradescannot be changed by a rotation. They are therefore
all subjectto a double-sidedtransformation law. Again, this brings us backto
the central theme that both geometricobjectsand the operatorsacting on them

are contained in a single algebra.
The compositionrule (2.141)has a surprisingconsequence.Supposethat the

rotor Rl is kept fixed, and we set R2 == exp(-BB/2).We now take the vector c
on a 21Texcursionbackto itself. The final rotor R is)

R == e-B7rRl == -RI .) (2.143))

The rotor has changed sign under a 21T rotation! This IS usually viewed as)
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a quantum-mechanical phenomenon related to the existenceof fermions. But
we can now seethat the result is classicaland is simply a consequenceof our
rotor descriptionof rotations. (The relationship between rotors and fermion
wavefunctions is discussedin chapter 8.) A geometric interpretation of the dis-
tinction between Rand -R is provided by the direction in which a rotation is
performed. Supposewe want to rotate el onto e2.The rotor to achievethis is)

R(B) == e-ele2()/2.) (2.144))
If we rotate in a positive sensethrough 7r /2 the final rotor is given by

1
R(1f/2) =

y'2
(1- eleZ)') (2.145))

If we rotate in the negative (clockwise)sense,however,the final rotor is)

1
R(-31f/2)= -

y'2
(1-ele2)= -R(1f/2).) (2.146))

So,while Rand -R define the sameabsoluterotation (and the samerotation
matrix), their different signscan be employedto recordinformation about the
handednessof the rotation.

The rotor compositionrule providesa simpleformula for the compound effect
of two rotations.Supposethat we have)

RI == e-BI()1/2, R2 == e-B2()2/2
,) (2.147))

where both Bland B2 are unit bivectors.The product rotor is)

R ==(COS(B2/2)- sin(02/2)B2)(COS(Bl/2)- sin(Bl/2)Bl)
== COS(B2/2)COS(Bl/2)- (cos(B2/2)sin(OI/2)Bl+ COS(Bl/2)sin(02/2)B2)

+ sin(B2/2)sin(Bl/2)BlB2' (2.148))
So if we write R == R2Rl == exp(-BO/2),where B is a new unit bivector, we
immediately seethat)

cos(B/2)== COS(B2/2)COS(BI/2)+ sin(02/2)sin(BI/2)(BIB2)) (2.149))
and)

sin(B/2)B== COS(B2/2)sin(BI/2)Bl+ COS(Bl/2)sin(B2/2)B2- sin(B2/2)sin(Bl/2)(BlB2)2') (2.150))
Thesehalf-anglerelations for rotations were first discoveredby the mathemati-
cian Rodriguez, three years before the invention of the quaternions!It is well
known that theseprovide a simplemeans of calculating the compound effectof
two rotations.Numerically, it is usually even simplerto just multiply the rotors
directly and not worry about calculating any trigonometric functions.)
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2.7.5Eulerangles
A standard way to parameteriserotations is via the three Euler angles {4>,(), 7jJ }.
Theseare defined to rotate an initial set of axes,{eI,e2,e3},onto a new set
{e\037 , e\037, e\037} (often denotedx, y, z and x/, y/, z/ respectively).First we rotate
about the e3 axis-i.e.in the ele2 plane-anticlockwisethrough an angle 4>.

Therotor for this is)

R<jJ
== e-ele2cp/2.) (2.151))

Next we rotate about the axis formed by the transformed el axis through an
amount (). The plane for this is)

I
R<jJelR\037

==
R<jJe2e3R\037.) (2.152))

Therotor is therefore

Re == exp(-R<jJe2e3R\037() /2) == R<t>e-e
2e3(}/2

R\037.

Theintermediate rotor is now

R' ==
ReR<jJ

:::::e-ele2CP/2e-e2e3(}/2.)

(2.153))

(2.154))

Note the order!Finally, we rotate about the transformed e3 axis through an

angle 7jJ. The appropriateplane is now

IR'e3R,t == R'ele2Rd (2.155))
and the rotor is)

R7jJ
== exp(-R'ele2R,t

7jJ /2) :::::R'e-ele21/J /2R,t .
Theresultant rotor is therefore

R :::::R7jJR' == e-ele2CP/2e-e2e3()/2e-ele21/J/2,)

(2.156))

(2.157))
which has decoupledvery nicelyand is really quite simple-it is much easierto
visualise and work with than the equivalent matrix formula! Now that we have

geometric algebraat our disposalwe will, in fact, have little causeto use the
Euler angles in calculations.)

2.8Notes)

In this chapter we have given a lengthy introduction to geometricalgebra in two

and three dimensions.The latter algebrais generatedentirely by three basis
vectors {el,e2,e3}subject to the rule that eiej+ejei==

<Sij.
This simple rule

generatesan algebraof remarkable power and richnesswhich we will explorein

following chapters.
There is a large literature on the geometricalgebraof three-dimensionalspace

and its applicationsin physics. The most completetext is New Foundations)

51)))



GEOMETRICALGEBRA IN TWOAND THREEDIMENSIONS)

for ClassicalMechanicsby David Hestenes(1999).Hesteneshas also written

many papers on the subject,most of which are listed in the bibliography at
the end of this book.Other introductory papers have been written by Gull,
Lasenby and Doran (1993a),Doran et al. (1996a)and Void (1993a,1993b).
Clifford's Mathematical Papers (1882)are also of considerableinterest. The
use of geometric algebrafor handling rotations is very common in the fields
of engineering and computer science,though often purely in the guiseof the
quaternion algebra.Searchingone of the standardscientificdatabaseswith the
keyword 'quaternions'returns too many papersto begin to list here.)

2.9Exercises)
2.1 From the propertiesof the geometric product,show that the symmet-

risedproductof two vectors satisfies the propertiesof a scalarproduct,
as listedin section1.2.

2.2 By expandingthe bivector al\\ b in terms of geometric products,prove
that it anticommutes with both a and b, but commutes with any vector
perpendicularto the a 1\\ b plane.

2.3 Verify that the El and E2 matrices of equation (2.27)satisfy the correct
multiplication relations to form a representationof 92.Use these to
verify equations (2.26).

2.4 Constructthe multiplication table generatedby the orthonormal vectors
eI,e2 and e3'Do thesegeneratea (finite) group?

2.5 Prove that all of the following forms are equivalent expressionsof the
vector crossproduct:)

axb == -Ial\\b== b.(Ia)== -a.(Ib).)
Interpret each form geometrically.Henceestablishthat)

aX (bxe)== -a.(bl\\e) == -(a.be-a.eb))
and)

a.(bxe)== [a,b,e]== al\\bl\\eI-i .)

2.6 Prove that the effectof successivereflectionsin the planesperpendicular
to the vectors m and n results in a rotation through twice the angle
between m and n.

2.7 What is the reverse of RaRt, where a is a vector? Which objects in
three dimensionshave this property, and why must the result be another
vector?

2.8 Show that the rotor)

R== l+ba
la+bJ)
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can also be written as exp(-BO/2), where B is the unit bivector in the
a 1\\ b plane and 0 is the angle between a and b.

2.9 The Cayley-Kleinparametersare a set of four real numbers a,(3,,and
5 subjectto the normalisation condition

a2 + (32+ ,2+ 52 == 1.)

Thesecan be used to paramaterisean arbitrary rotation matrix as fol-
lows:)

(
a2 + (32_ ,2_ 52

U == 2(/3,- (5)
2((35+ a,))

2(/3,+ (5)
a2 _ (32+ ,2_ 52

2(,5- a(3))

2((35-a,)

)
2(,5+ a(3) .

a2 _ (32_ ,2+ 52)

Can you relatethe Cayley-Klein parametersto the rotor description?
2.10 Show that the set of all rotors forms a continuous group. Can you

identify the group manifold?)
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Classicalmechanics)

In this chapter we study the use of geometric algebra in classicalmechanics.
We will assumethat readersalready have a basicunderstanding of the subject,
as a completepresentation of classicalmechanicswith geometric algebrawould

require an entire book.Sucha bookhas beenwritten, New Foundationsfor Clas-
sicalMechanicsby David Hestenes(1999),which looksin detail at many of the

topicsdiscussedhere.Our main focus in this chapter is to areaswhere geometric
algebraofferssomeimmediate benefits over traditional methods.Theseinclude
motion in a central force and rigid-bodyrotations, both of which are dealt with

in somedetail.More advanced topicsin Lagrangian and Hamiltonian dynamics
are covered in chapter 12,and relativistic dynamics is covered in chapter 5.

Classicalmechanicswas one of the areasof physicsthat promptedthe devel-

opment of many of the mathematical techniques routinely used today. This is

particularly true of vector analysis, and it is now common to seeclassicalme-
chanicsdescribedusing an abstractvector notation. Many of the formulaein this

chapter should be completely familiar from such treatments. A key difference
comesin adopting the outer productofvectors in placeofthe crossproduct.This

means, for example,that angular momentum and torque both becomebivectors.
The outer productis clearerconceptually,but on its own it doesnot bring any

calculationaladvantages. The main new computational tool we have at our dis-
posalis the geometricproduct,and here we highlight a number of examplesof
its use.

In this chapter we have chosen to write all vectors in a bold font. This is
conventionalfor three-dimensionalphysicsand many of the formulae presented
belowlookunnatural if this notation is not followed.Bivectorsand other general
multivectorsare left in regular font, which helpsto distinguish them from vectors.)
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3.1Elementaryprinciples
We start by consideringa point particlewith a trajectory x(t) describedas a
function of time. Herex is the positionvector relative to someorigin and the
time t is taken as someabsolute'Newtonian' standard on which all observers
agree.The particlehas velocity)

. dx
( )v==x==dt' 3.1

where the overdot denotesdifferentiation with respectto time t. If the particle
has mass m, then the momentum p is defined by p == mv. Newton'ssecondlaw
of motion states that)

p==l,) (3.2))

where the vector f is the force acting on the particle.Usually the mass m
is constant and we recover the familiar expressionI == ma, where a is the
acceleration)

d2xa ==

dt 2 .) (3.3))

Thecaseof constant mass is assumedthroughout this chapter. The path for
a single particleis then determinedby a second-orderdifferential equation (as-
suming f doesnot dependon higher derivatives).

The work doneby the force f on a particleis defined by the line integral

lt2

j
2

W12 == I.vdt== I.ds.
tl I

Thefinal form here illustratesthat the integral is independentof how the path
is parameterised.From Newton'ssecondlaw we have)

(3.4))

lt2 m lt2 d
W 12 == m v.vdt == - -

d (v2)dt,
tl 2 tl t

where v == Ivl == J(v2). It follows that the work done is equal to the change in

kinetic energy T, where)

(3.5))

T==
\037mv2.) (3.6))

In the casewhere the work is independentof the path from point 1to point 2 the
force is saidto be conservative,and can be written as the gradient of a potential:)

I == -VV.) (3.7))

For conservativeforcesthe work also evaluates to

W I2 = -1
2
ds.VV= VI -\"V:!

and the total energy E == T + V is conserved.)

(3.8))
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Figure 3.1Angular momentum. The particlesweepsout the plane L =
x/\\p. The angular momentum should bedirectly relatedto the area swept
out (cf.Kepler'ssecondlaw), so is naturally encodedas a bivector. The
position vector x dependson the choiceof origin.)

3.1.1Angular momentum)

Angular momentum is traditionally discussedin terms of the crossproduct,even

though it is quite clear that what is requiredis a way of encodingthe area swept
out by a particleas it movesrelative to someorigin (seefigure 3.1).We saw in

chapter2 that the exterior productprovides this, and that the more traditional
crossproduct is a derived conceptbasedon the three-dimensional result that

every directedplane has a unique normal. We therefore have no hesitation
in dispensingwith the traditional definition of angular momentum as an axial

vector, and replaceit with a bivector. So,if a particlehas momentum p and

positionvector x from someorigin, we define the angular momentum of the

particleabout the origin as the bivector)

L == xl\\p.) (3.9))

This definition doesnot alter the steps involved in computing L sincethe com-

ponentsare the sameas thoseof the crossproduct. We will see,however,that
the freedomwe have to now usethe geometricproduct can speedup derivations.
The definition of angular momentum as a bivector maintains a clear distinction
with vector quantities such as positionand velocity, removing the needfor the
rather awkward definitions of polar and axial vectors.The definition of L as a
bivector also fits neatly with the rotor descriptionof rotations, as we shall see
later in this chapter.

If we differentiate L we obtain)

dL
di == v 1\\ (mv) + xl\\ (ma)== xl\\f.) (3.10))
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We define the torque N about the origin as the bivector)

N == xl\\l,) (3.11))

so that the torque and angular momentum are relatedby)

dL
== N

dt
.) (3.12))

The idea of the torque beinga bivector is also natural as torquesact over a

plane. The plane in question is defined by the vector f and the chosenorigin,
soboth LandN dependon the origin. Recall also that bivectors are additive,
much like vectors, so the result of applying two torquesis found by adding the

respectivebivectors.
The angular momentum bivector can be written in an alternative way by first

defining r == Ix I
and writing)

'\"x == rx.) (3.13))

We therefore have)
. d

(
\"'

)
.'\" ;.x ==

dt
rx == rx + rx,) (3.14))

so that)

L == mxl\\(rx+ r&) == mrxl\\(rx+ r&) == mr 2xl\\&.

But sincex2
== 1we must have

O
d \",2 2\",;'

== -x == x.x.
dt)

(3.15))

(3.16))

We can therefore eliminate the outer product in equation (3.15)and write)

L == mr 2x& == -mr2itx,) (3.17))

which is useful in a number of problems.)

3.1.2Systems01particles)
The precedingdefinitions generaliseeasily to systemsof particles.For these it

is convenient to distinguish between internal and external forces,so the forceon
the ith particlesis)

Llji+f\037==Pi'
J)

(3.18))

Here f\037
is the external force and Iij is the force on the jth particledue to the

ith particle. We assumethat f ii == O. Newton'sthird law (in its weak form)
states that)

lij == -Iji') (3.19))
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This is not obeyedby all forces,but is assumedto hold for the forcesconsidered
in this chapter.Summing the force equation over all particleswe find that)

Lmiai==
Lf\037 + Lfij ==

Lf\037.) (3.20))
i) i) i,j) i)

All of the internal forcescancelas a consequenceof the third law. We definethe
centre of massX by)

1X =
M LmiXi,

i)

(3.21))

where M is the total mass)

M == Lmi.
i)

(3.22))

The positionof the centre of massis governedby the force law)

M
d2X

== \037 I \037 == f e
dt 2 \037

z

z)

(3.23))

and so only respondsto the total external force on the system. The total mo-
mentum of the systemis defined by)

dXP = LPi = Mdt
z)

(3.24))

and is conserved if the total external force is zero.
The total angular momentum about the chosen origin is found by summing

the individual bivector contributions,)

L == LXiAPi'
i)

(3.25))

The rate of change of L is governedby)

t == LXiAPi ==
LXiAf\037 + LXiAfji') (3.26))

i) i) i,j)

The final term is a doublesum containing pairsof terms going as)

Xi Af ji+ Xj Af ij == (Xi
-Xj) AI ji') (3.27))

The strong form of Newton'sthird law states that the interparticle force Iij is
directedalong the vector Xi -

Xj between the two particles.This law is obeyed
by a sufficiently wide range of forcesto make it a useful restriction.(The most
notable exceptionto this law is electromagnetism.) Underthis restrictionthe
total angular momentum satisfies)

dL
== Ne

dt ') (3.28))

where Ne is the total external torque. If the appliedexternal torque is zero, and)
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the strong law ofaction and reaction is obeyed,then the total angular momentum

is conserved.
A useful expressionfor the angular momentum is obtainedby introducing a

set of positionvectors relative to the centre of mass.We write)

Xi == X; + X,) (3.29))

so that)

Lmix;== O.
i)

(3.30))

Thevelocityof the ith particleis now)

,
V

'1

- == v. + v'I ,) (3.31))

where v == X is the velocityof the centre of mass.The total angular momentum

contains four terms:)

L == L(XI\\ m i v + X\037l\\miV\037 + mix\037I\\V + X I\\miv\037).

i)

(3.32))

The final two terms both contain factors of L mix\037 and so vanish, leaving)

L == X I\\P + Lx\037l\\p\037.

i)

(3.33))

Thetotal angular momentum is therefore the sum of the angular momentum of
the centre of massabout the origin, plus the angular momentum of the system
about the centre of mass. In many casesit is possibleto chosethe origin so
that the centre of massis at rest, in which caseL is simply the total angular
momentum about the centre of mass.Similar considerationshold for the kinetic

energy, and it is straightforward to show that)

T ,,1 2 1M 2 1\" ,2
== L..-;2miv i == 2 v +\"2 L..-;mivi .) (3.34

))

i) i)

3.2Two-bodycentralforceinteractions

Oneof the most significant applicationsof the precedingideas is to a system
of two point massesmoving under the influenceof each other.The force acting
between the particlesis directedalong the vector between them, and all external
forcesare assumedto vanish. It follows that both the total momentum P and

angular momentum L are conserved.
We supposethat the particleshave positionsXl and X2, and massesmi and

m2. Newton'ssecondlaw for the central forceproblemtakesthe form)

mlXl == f,
m2x2 == -f,)

(3.35)
(3.36))
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where f is the interparticle force. We define the relative separationvector x by)

x == Xl - X2.) (3.37))

This vector satisfies)

mI m2X == (mi + m2)f.) (3.38))

We accordinglydefine the reducedmass
J-L by

1 1 1- == -+ ---,
J-L ml m2

so that the final force equation can be written as)

(3.39))

J-LX
== f.) (3.40))

The two-bodyproblemhas now beenreducedto an equivalent single-bodyequa-
tion. The strong form of the third law assumedhere means that the force f is
directedalong x, so we can write f as fx.

We next re-expressthe total angular momentum in termsof the centre of mass
X and the relative vector x. We start by writing)

mixi == mIX+ J-LX, m2 x2 == m2X -
J-LX.) (3.41))

It follows that the total angular momentum Lt is given by)

Lt == mlxl!\\xl+ m2 x2!\\x2)

== MX!\\X+ J-Lx!\\x.) (3.42))

We have assumedthat there are no external forcesacting, soboth Lt and Pare
conserved.It follows that the internal angular momentum is alsoconservedand
we write this as)

L ==
J-LX !\\x.) (3.43))

SinceL is constant, the motion of the particlesis confinedto the L plane. The
trajectory of X must alsosweepout area at a constant rate,sincethis is how

L is defined. For planetary motion this is Kepler'ssecondlaw, though he did
not state it in quite this form. Keplertreated the sun as the origin, whereas L
should be definedrelative to the centre of mass.

The internal kinetic energy is)

T == .1./J.x2 -!/J. (fx + r&)
2 - .1./J.f2 + .!/J.r2&22t'\"

- 2t'\"
- 2t'\" 2t'\"

.) (3.44
))

From equation (3.15)we seethat

L2
== -J-L

2r4x&&x ==
-J-L2r4\0372.) (3.45))

We therefore definethe constant l as the magnitude of L, so

l ==
J-L
r2

j

\037
I.) (3.46))

60)))



3.2 TWO-BODYCENTRALFORCEINTERACTIONS)

The kinetic energy can now be written as a function of rand r only:

flf2 l2
T == -+-. (3.47)2 2fLr

2

The force f is conservativeand can be written in terms of a potential V(r) as)

f == fx == -VV(r),) (3.48))

where)

f == _ dV

dr
.

Sincethe force is conservativethe total energy is conserved,so

flf2 l2E = 2+
2W

2 + V(r))

(3.49))

(3.50))

is a constant.For a given potential V(r) this equation can be integrated to find

the evolution of r. The full motion can then be recoveredfrom L.)

3.2.1Inverse-squareforces
The most important exampleof a two-body central force interaction is that

describedby an inverse-squareforcelaw. This caseis encountered in gravitation
and electrostaticsand has beenanalysed in considerabledetail by many authors

(seethe end of this chapter for suggestedadditional reading).In this section
we reviewsomeof the key features of this system,highlighting the placeswhere

geometricalgebraofferssomethingnew. An alternative approach to this problem
is discussedin section3.3.

Writing f == -k/r2the basicequation to solve is

.. k
\037

k
flx == --x== --x.r2 r3)

(3.51))

The sign of k determineswhether the force is attractive or repulsive (positive
for attractive). This is a second-ordervector differential equation, sowe expect
there to be two constant vectors in the solution-one for the initial position
and one for the velocity. We already know that the angular momentum L is a

constant of motion, and we can write this as)

L == flr
2x& == -flr

2&x.) (3.52))

It follows that)

L . k
L \037

k
;,

v == --x == x
fLr

2 ') (3.53))

which we can write in the form)

:t(LV -kx)= o.) (3.54))
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Eccentricity Energy Orbit

e>1 E>O Hyperbola
e == 1 E==O Parabola
e < 1 E < 0 Ellipse
e==O E == -J-lk2

/(2Z
2
) Circle)

Table3.1 Classificationof orbits for an inverse-squareforce law.)

The motion is therefore describedby the simpleequation)

Lv == k(x+ e),) (3.55))
wherethe eccentricityvectore is a secondvector constant of motion. This vector
is alsoknown in various contextsas the Laplacevector and as the Runge-Lenz
vector. From its definition we can seethat e must lie in the L plane.

To find a direct equation for the trajectory we first write)

1 -
Lvx == L(v.x+ vAx) == -LL+ v'x L == k(r+ ex).

J-L)

(3.56))

The scalarpart of this equation gives)

l2
r ==

kJ-L( 1+ e.x)
.) (3.57))

This equation specifiesa conic surface in three dimensionswith symmetry axise. The surface is formed by rotating a two-dimensionalconic about this axis.
Sincethe motion takesplaceentirely within the L plane the motion is described
by a conic.That is, the trajectory x(t) is one of a hyperbola, parabola,ellipse
or circle.The genericcasesare ellipsesfor bound orbitsand hyperbolae for free
states.The casesof parabolicand circular orbitsare exceptionalas they require
precisevalues of lei (table3.1).

In Land e we have found five of the six constantsof motion (we only have
two arbitrary constantsin e as it is constrainedto lie in the L plane). The
final constant specifieswhere on the conic we start at time t == O. We know
that the energy is also a constant of motion, so it should be possibleto express
the energy directly in terms of Lande. From equation (3.51)we seethat the
potential energy must go as k/r, provided we set the arbitrary constant so that
V == 0 at infinity. The full energy is therefore given by

J-L 2 kE==
2

V -
r ') (3.58))

To simplify this we first form)

Lvv\302\243 == l2v2
== k2(x+ e)2.) (3.59))
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It follows that)

/-Lk
2

2 \" k /-Lk
2

2E ==

212 (e + 1+ 2x.e)- r
==

212 (e - 1), (3.60)

where e == IeI
is the eccentricity. The sign of the energy is governedentirely bye.

Sincethe potential is set to zero at infinity, all bound states must have negative
energy and hence an eccentricity e < 1.The limiting caseof e == 1describesa
parabola (table3.1).)

3.2.2Motionin timeforellipticorbits
Many methodscan be usedto find the trajectory as a function of time and these
arediscussedwidely in the literature.Herewe describeone of the simplest,which

servesto highlight the essentialdifficulty of this problem.An alternative solution,
which more fully exploitsthe techniques of geometric algebra,is describedin

section3.3.From the energy equation we seethat

2 .2 l2 2/-Lk
/-L

r == 2/-LE --+-,r2 r)
(3.61))

so t is given by)

iTl

t==/-L
TO)

rdr
(2/-Lkr + 2/-LEr

2 - l2)1/2.) (3.62))

Evaluating this integral resultsin a rather complicatedfunction of r, the general
form of which is hard to invert and not very helpful. More useful formulae
are obtained by specialisingto one form of orbit. For bound problemswe are
interested in elliptic orbits for which E is negative. For theseorbits it is useful

to introduce the semi-majoraxisa defined by)

k
a == !(ri + r2) == -

2E ') (3.63))

where rl and r2 are the maximum and minimum values of r respectively. In

terms of this we can write)

2f-Lkr + 2f-LEr
2-Z2 = - f-Lk (r2-2ar)- Z2 = f-Lk

(a
2e2 - (r-a)2).a a

We now introduce a new variable W, the eccentricanomaly, defined by)

(3.64))

r == a(1- ecos(w)) .) (3.65))

In terms of this we find)

t =
( f-L;3)

1/2i:1 (1-ecos(\\I1))d\\I1,

so if we chooset == 0 to correspondto closestapproach we have)

(3.66))

wt == W - e sin(w),) (3.67))
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where)

2 k
w ==\037. (3.68)

/-La

Equations(3.65)and (3.67)provide a parametric solution relating rand t. This
solution highlights the fact that the equation relating t and r is transcendental
and doesnot have a simple closedform. The time taken for one orbit is 27r/W,
so the orbital periodT is relatedto the major axisa by

47r2
/-LT2

== a3 (3.69)k

This givesus the third ofKepler'sthree laws of planetary motion, that the square
of the periodis proportional to the cubeof the major axis.)

3.3Celestialmechanicsand perturbations
By far the most important application of the Newtonian theory of gravitation is
to the motion of the planetsin the solar system.This is a complicatedsubject
of considerablehistorical and current importance, and we will only touch on a
few applications.Detailedcalculation of the motions of all of the planetsin the
solarsystemstill representsa major computational challenge.Aside from the
obviousproblemof having to calculate the gravitational effectsof everyplanet on
every other planet,further effectsmust also be incorporated.Thesecan include
deviations of the shapesof the planetsfrom spherical,the effectsof tidal forces
and ultimately general relativistic corrections.

A significant number of problemsin celestialmechanicsare best treated us-
ing perturbation theory. In this technique orbits are calculatedas a seriesof
ever smaller deviations from Keplerorbits. Sincethe Keplerorbit is specified
entirely by Lande, we should first form equations for these in the presenceof
a perturbing force. We modify the force law to read)

.. k 1/-LX
== -3x + ,

r)
(3.70))

and assumethat 1is always small comparedwith the inverse-squareterm. The
angular momentum L now satisfies)

L == xl\\l,) (3.71))
so L is now only conserved if 1 is alsoa central force. With the eccentricity
vector still defined by equation (3.55),we find that

. 1
ke == L.v+ -L.f.

/-L)

(3.72))

Only five of the six equations for Lande are independent,as we always have
Ll\\e== O.)
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For many problemsthe variation in Lande is slow comparedto the orbital

period. For these a useful approximation is obtained by finding the orbital

averageof f over one cycle,with Land e held constant.The quantities Land e
are then assumedto vary slowly under the influenceof the time-averagedforce.

Results for the orbital averages of numerous quantities can be found tabulated
in many textbooksand are discussedin the exercisesat the end of this chapter.)

3.3.1Example-generalrelativisticperturbations
Later in this bookwe will study how general relativity modifiesthe Newtonian
view of gravity. For particlesmoving in a central potential, the modification
is quite simpleand can be handled efficiently using perturbation theory. The
modified force law is)

.. GM
(

3l2

)
A

X == -\037 1+ 2 2 2 x,r J1 c r)
(3.73

))

where c is the speedof light and we have replacedk by the gravitational expres-
sion GMJ1. (A small subtlety is that the derivatives here are with respectto

proper time, but this doesnot affect our reasoning.)The force is still central, so
the angular momentum L is still conserved.The eccentricityvector satisfies the

simple equation)

. 312
L '\"e == 3 2 4 'X.

f.-L
C r)

(3.74))

For bound orbitsthis givesriseto a precessionof the major axis(seefigure 3.2).
The quantity of most interest is the amount e changes in one orbit. To get an

\\'--'

approximateresult for this we use the time-averagingideaand assumethat the

orbit is preciselyelliptical.We therefore have)

312 iT x
\037e == -32L dt4 ,

J1cor) (3.75))

where T is the orbital period.Evaluating this integral is left as an exercise,and

the final result is)

67rGM A

\037e= (1 2) 2eoL,a - e c)
(3.76))

where t == L/l.This gives a precessionof e with the orientation of L, which

correspondsto an advance (figure 3.2).For Mercury this gives rise to the fa-
mous advance in the perihelion of 43 arcsecondsper century, which was finally

explainedby general relativity.)
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Figure 3.2 Orbital precession.The plot shows a modified orbit as pre-
dictedby generalrelativity. The ellipseprecessesround in the samedirec-
tion as the orbital motion. Theparametershave beenchosento exaggerate
the precessioneffect.)

3.3.2SpinoTequations
An alternative method for analysing the Keplerproblemis through the use of
'spinors'.Thesewill be definedmore carefully in later chapters,but in two and
three dimensionsthey can be viewedas elementsof the subalgebraof g2 and 93
consistingentirely of evenelements.In two dimensionsa spinorcan therefore be
identified*ith a complexnumber. The positionvector x in two dimensionscan
be formed through a rotation and dilation via the polar decomposition)

x == elr exp(eele2) == r exp(-eele2)eI,) (3.77))

where {el,e2}denotea right-handed orthonormal frame and we assumethat the
vector liesin the ele2 plane. We know from chapter 2 that the rotation formula

only extendsto higher dimensions if a double-sidedprescriptionis adopted,so
we write the vector x as)

x == UelUt == U2el == elut 2
.) (3.78))

In writing this we have placedall of the dynamics in the complexnumber U.
For the Keplerproblem it turns out that the equation for U is considerably

easierthan that for x.We assumethat the plane of L isgiven by ele2,and start)
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by forming)

r == Ix!== uut.) (3.79))

(Recallthat, for a scalar+ bivector combination in two dimensions,the reverse

operator is the sameas complexconjugation.)On differentiating we find that)

x == 2UUel,) (3.80))

hence)

2rU == xelU t == xUel.) (3.81))

We now introduce the new variable s defined by)

d d
ds

== r
dt ')

dt
ds

== r.) (3.82))

In terms of this)
dU .

U2
ds

== x el) (3.83))

and)

d2U ..
U

.dU
U (

.. I .2
)2

ds2 == rx el+ x
ds el == xx+ 2X .

Now supposewe have motion in a central inverse-squareforce:
..

k
x

MX == - 3'r)

(3.84))

(3.85))

Theequation for U becomes

d2U\037
== \037U ( !J-LX

2 _ k

) == \037U
ds2 2M

2 r 2M'
which is simply the equation for harmonic motion! This has a number of advan-

tages. First of all, the equation is easyto solve. If we set)

(3.86))

2 E
w ==--

2M)
(3.87))

then the general solution is)

U == A exp(Lws)+ Bexp(-Lws),) (3.88))
A

where A and Bare constantsand L is the unit bivector for the plane of motion.
The motion is illustrated in figure 3.3.The particle trajectory maps out an

ellipsewith the origin at one focus, whereas U definesan ellipsewith the origin
at the centre.The particlecompletestwo orbitsfor each full cycleof U.

Further advantages of formulating the dynamics in terms of U are that the

equation for U is linear, soisbetter suitedto perturbation theory, and that there
is no singularity at r == 0, which provides better numerical stability. (Removing
this singularity iscalled'regularization'.)In addition, equation (3.86)isuniversal)
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Figure 3.3 Solution to the Keplerproblem. Theparticleorbit is shown on
the left, and the correspondingspinor on the right. Theparticlecompletes
two orbits every time U completesonecycle,sinceU and -Udescribethe
sameposition.)

- it holds for E > 0 and E < O. The solution when E > 0 simply has
trigonometric functions replacedby exponentials.This universality is important,
becauseperturbationscan often sendbound orbits into unbound ones.

For the method to be truly powerful, however,it must extendto three dimen-
SIons.The relevant formula in three dimensionsis)

x == UeIUt,) (3.89))

where U is a general even element. This means that U has four degreesof
freedomnow, whereasonly three are requiredto specifyx.We are therefore free
to imposea fu:r;ther additional constraint on U, which we will use to ensurethe
equations take on a convenientform. The quantity uut is still a scalarin three
dimensions,so we have)

r == uut== UtU.)

We next form x:)

(3.90))

x == Ue1Ut+ Ue1Ut .) (3.91))

We would like this to equal 2Uelut for the precedinganalysis to follow through.
For this to hold we require)

Ue1ut-UeIUt == Ue1Ut - (Ue1Ut)t== O.) (3.92))

The quantity Uelut only contains oddgradeterms (grade-land grade-3).If we
subtract its reverse, all that remains is the trivector (pseudoscalar)term.We
therefore require that)

(Ue1Ut)3 == 0,) (3.93))

which we adopt as our extra condition on U. With this condition satisfied we)
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have)

dU
2

ds
== ::cUel) (3.94

))

and)

2
d2U

(
.. 1 . 2

) U\037 == xx+ 2X .
ds)

(3.95))

For an inverse-squareforcelaw we therefore recoverthe same harmonicoscillator

equation. In the presenceof a perturbing forcewe have

d2U
2M ds2

-EU == fxU == rfUel') (3.96))

Thisequation for U can be handled using standardtechniquesfrom perturbation
theory. The equation was first found (in matrix form) by Kustaanheimo and
Stiefelin 1964.The analysiswasrefinedand cast in its presentform by Hestenes
(1999).)

3.4Rotatingsystemsand rigid-bodymotion

Rigid bodiescan be viewed as another exampleof a systemof particles,where
now the effect of the internal forces is to keepall of the interparticle distances
fixed. For such systemsthe internal forcescan be ignored once one has found a
set of dynamical variables that enforce the rigid-bodyconstraint. The problem
then reducesto solving for the motion of the centre of massand for the angular
momentum in the presenceof any external forcesor torques.Suitablevariables
are a vector x(t) for the centre of mass,and a set of variables to describethe
attitude of the rigid body in space.Many forms exist for the latter variables,
but here we will concentrate on parameterising the attitude of the rigid body
with a rotor. Beforeapplying this ideato rigid-bodymotion, we first look at the

descriptionof rotating frames with rotors.)

3.4.1Rotatingframes

Supposethat the frame of vectors {fk}is rotating in space.Thesecan be related
to a fixed orthonormal frame {ek}by the time-dependentrotor R(t):)

fk(t) == R(t)ekRt(t).) (3.97))

Theangular velocity vector w is traditionally defined by the formula

fk == w xfk ,) (3.98))

where the crossdenotesthe vector crossproduct. From section2.4.3we know

that the crossproduct is relatedto the inner productwith a bivector by)

wxfk == (-Iw).fk== fk.(Iw).) (3.99
))
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We are now usedto the ideathat angular momentum isbestviewedasa bivector,
and we must expectthe sameto be true for angular velocity.We therefore define
the angular velocitybivector 0 by)

o == Iw.) (3.100
))

This choiceensuresthat the rotation has the orientation implied by O.
To seehow 0 is related to the rotor R we start by differentiating equa-

tion (3.97):)
fk == RekRt + RekRt == RRt fk + fkRRt.

From the normalisation equation RRt == 1we find that

o =
\037

(RRt) = ilRt + RRt.)

(3.101))

(3.102))

Sincedifferentiationand reversionare interchangeableoperationswe now have)

RRt == -RRt == -(RRt)t.) (3.103))
The quantity RRt isequal to minus its own reverseand has even grade,somust

be a pure bivector. The equation for fk now becomes)

fk == RRtfk -fkRRt == (2RRt).fk. (3.104)

Comparing this with equation (3.99)and equation (3.100)we seethat 2RRt
must equal minus the angular velocitybivector 0,so)

\037,

/)

2RRt == -0.) (3.105))
The dynamics is therefore contained in the single rotor equation. 1R == -'lOR.) (3.106))
The reversedform of this is alsouseful:)

Rt ==
\037RtO.) (3.107))

Equations of this type are surprisingly ubiquitous in physics.In the more general
setting,rotors are viewedaselementsof a Liegroup, and the bivectors form their
Lie algebra. We will have more to say about this in chapter 11.)

3.4.2Constant0
For the caseof constant 0 equation (3.106)integrates immediately to give

R == e-Ot/2Ro, (3.108))
which is the rotor for a constant frequencyrotation in the positive sensein the
o plane.The frame rotatesaccording to)

fk (t) == e-flt/2 RoekR6eflt/2.) (3.109))
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e3 == f3)

./)

\037
\\

I

J
I)

f1)

Figure 3.4 C?rientation of the angular velocity bivector. 0 has the orien-
tation of f1i\\fl. It must thereforehave orientation +el i\\e2 when w == e3.)

The constant term Ro describesthe orientation of the frame at t == 0, relative to
the {ek}frame.

\037

As an example,considerthe caseof motion about the e3 axis (figure 3.4).We

have)

!l== wIe3 == wele2,) (3.110))

and for conveniencewe set Ro == 1.The motion is describedby

fk(t) = exp(-!ele2wt) ekexp(!ele2wt),
so that the fl axisrotates as)

(3.111))

fl == elexp(ele2wt) == cos(wt)eI+ sin(wt)e2') (3.112))

This defines a right-handed (anticlockwise)rotation in the eIe2 plane, as pre-
scribedby the orientation of !l.)

3.4.3Rigid-body motion)

Supposethat a rigid body is moving through space.To describethe position
in spaceof any part of the body,we need to specify the positionof the centre
of mass,and the vector to the point in the body from the centre of mass. The
latter can be encodedin terms of a rotation from a fixed 'reference'body onto
the body in space (figure 3.5).We let Xo denotethe position of the centre of
mass and Yi(t) denotethe position(in space)of a point in the body.Theseare
related by)

Yi(t) == R(t)Xi Rt (t) + xo(t),) (3.113))
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_7)
R(t)) /

/
I

I
I)

xo(t))

x)

y(t))

Figure 3.5 Descriptionof a rigid body. The vector Xo (t) specifiesthe
position of the centreof mass,relative to the origin. The rotor R(t) defines
the orientation of the body, relative to a fixed copy imagined to be placed
at the origin. x is a vector in the referencebody, and y is the vector in

spaceof the equivalent point on the moving body.)

where Xi is a fixed constant vector in the reference copy of the body. In this
manner we have placedall of' the rotational motion in the time-dependentrotor

R(t).
The velocity of the point y == RxRt + Xo is

v(t) == RxRt + RxRt + Xo

== _lORxRt+ lRxRtO+ Vo2 2
== (RxRt).O+ vo,) (3.114))

where Vo is the velocityof the centre of mass.The bivector0definesthe plane of
rotation in space.This plane will lie at someorientation relative to the current
position of the rigid body.For studying the motion it turns out to be extremely
useful to transform the rotation plane backinto the fixed, referencecopy of the
body.Sincebivectorsare subjectto the samerotor transformation law asvectors
we define the 'body' angular velocity OB by)

OB == RtOR.) (3.115))
In terms of the body angular velocity the rotor equation becomes)

. I 1R == --OR== --ROB22') Rt == !OBRt.) (3.116))
The velocityof the body is now re-expressedas

v(t) == RX.OBRt + vo,) (3.117))
which will turn out to be the more convenientform. (We have usedthe operator
ordering conventionsof section2.5to suppressunnecessarybracketsin writing

RX.OBRt in placeof R(X.OB)Rt.))
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To calculate the momentum of the rigid body we need the massesof each
of the constituent particles.It is easierat this point to go to a continuum

approximationand introduce a density p == p(x). The positionvector x is taken
relative to the centre of mass,sowe have

1d3xp = M and 1d3xpx = o.

The momentum of the rigid body is simply

1d3xpv =1d3xP(RX.OBRt + Va) = Mvo,)

(3.118))

(3.119))

so is specifiedentirely by the motion of the centre ofmass.This is the continuum

version of the result of section3.1.2.)

3.4.4The inertiatensor
The next quantity we require is the angular momentum bivector L for the body
about its centre of mass. We therefore form

L =1d3xp(y - xo)!\\V

=1d3xp(RxRt)!\\(Rx.OBRt + Va)

= R (1d3XPX!\\(X.oB))
Rt.) (3.120))

The integral insidethe bracketsrefers only to the fixed copy and so defines a

time-independentfunction of OB.This is the reasonfor working with OB instead
of the spaceangular velocity O. We define the inertia tensorT(B)by)

I(B)=1d3x px!\\(x.B).) (3.121))

This is a linear function mapping bivectors to bivectors. This way of writing

linear functions may be unfamiliar to thoseusedto seeingtensorslabelledwith

indices,but the notation is the natural extensionto linear functions of the index-
free approach advocated in this book.The linearity of the map is easy to check:

I(>'A+ pB)=1d3xpx!\\(x.(>'A+/LB))

=1d3xP(>.x!\\ (x.A) + /Lx!\\ (x.B))
== AI(A) + MT(B).) (3.122))

The fact that the inertia tensormapsbivectors to bivectors, rather than vectors
to vectors,isalsoa breakfrom tradition. This viewpoint isvery natural given our

earliercommentsabout the merits of bivectorsover axial vectors, and provides a)
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Figure 3.6 The inertia tensor.The inertia tensorI(B)is a linear function

mapping its bivectoJ argument B onto a bivector. It returns the total
angular momentum about the centreof mass for rotation in the B plane.)

cleargeometricpicture of the tensor(figure 3.6).Sinceboth vectorsand bivectors
belongto a three-dimensional linear space,there is no additional complexity
introducedin this new picture.

To understandthe effectof the inertia tensor,supposethat the bodyrotates
in the Bplane at a fixed rate IBI,and we placethe origin at the centre of mass
(which is fixed).The velocityof the vector x is simply x.B,and the momentum

density at this point is px.B,as shown in figure 3.6.The angular momentum

density bivector is therefore x/\\(px.B),and integrating this over the entire body
returns the total angular momentum bivector for rotation in the Bplane.

In general, the total angular momentum will not lie in the sameplane as the
angular velocity. This is one reasonwhy rigid-bodydynamics can often seem
quite counterintuitive. When we seea bodyrotating, our eyesnaturally pickout
the angular velocity by focusingon the vector the bodyrotatesaround. Deciding
the plane of the angular momentum is lesseasy,particularly if the internal mass
distribution is hidden from us. But it is the angular momentum that responds
directly to external torques,not the angular velocity, and this can have some
unexpectedconsequences.

We have calculatedthe inertia tensor about the centre of mass,but bodies
rotating around a fixed axiscan be forced to rotate about any point. A useful
theorem relates the inertia tensor about an arbitrary point to one about the
centre of mass.Supposethat we want the inertia tensorrelative to the point a,
where a is a vector taken from the centre of mass. Returning to the definition
of equation (3.121)we seethat we needto compute)

Ia(B)=Jd3xp(x-a)l\\((x-a).B).) (3.123))
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This integral evaluates to give

Ia(B)=Jd3xp(x/\\(x.B)-x/\\(a.B)-a/\\(x.B)+ a/\\(a.B))

== I(B)+ Ma/\\(a.B). (3.124))

The inertia tensor relative to a is simply the inertia tensorabout the centre of

mass,plusthe tensorfor a point massM at positiona.)

3.4.5Principalaxes)
))

So far we have only given an abstract specification of the inertia tensor. For
most calculations it is necessaryto introduce a set of basisvectors fixed in the

body. As we are free to choosethe directionsof thesevectors, we should ensure
that this choicesimplifiesthe equations of motion as much as possible.To see
how to do this, considerthe {ei}frame and definethe matrix Iij by)

IiJ== -(lei).I(Iej).) (3.125))

Thisdefinesa symmetric matrix, as follows from the result)

A. (x/\\ (x.B)) == (Ax(x.B)) == ((A.x)xB) == B.(x/\\ (x.A)).) (3.126))

(Thissort of manipulation, where one usesthe projectiononto gradeto replace
inner and outer productsby geometric products,is very common in geometric
algebra.)This result ensuresthat

Iij = -Jd3xp(lei)'(x/\\(x.(lej)))

= -Jd3xp(Iej)'(x/\\ (x.(lei)))=Iji.) (3.127))

It follows that the matrix IiJ will be diagonal if the {ei}frame is chosen to
coincidewith the eigendirectionsof the inertia tensor. These directionsare
calledthe principalaxes,and we always chooseour frame along thesedirections.

The matrix 'Iij is also positive-(semi)definite,as can be seenfrom)

aiajIij = -Jd3xp(la).(x/\\(x.(la)))
=Jd3xp(x.(Ia))2>O.

It follows that all of the eigenvaluesof'Iij must be positive (or possiblyzero for

the caseof point or line masses).Theseeigenvaluesare the principal moments
of inertia and are crucial in specifyingthe propertiesof a rigid body.We denote
these {iI,i2,i3},so that)

(3.128))

Ijk== 5jkik (no sum).) (3.129))
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(It is more traditional to use a capital I for the moments of inertia, but this

symbol is already employedfor the pseudoscalar.)If two or three of the principal
moments are the samethe principal axesare not uniquely specified.In this case
one simply choosesone orthonormal set of eigenvectors from the degenerate
family of possibilities.

Returning to the index-freepresentation,we seethat the principal axessatisfy)

I(Iej)== IekIjk== ijIeJ ,) (3.130))

where again there is no sum implied between eigenvectorsand their associated
eigenvaluein the nnal expression.To calculate the effectof the inertia tensoron
an arbitrary bivector B we decomposeB in terms of the principal axesas)

B == BJIej.) (3.131))

It follows that)

3

I(B)== LijBjIej== i1B1e2e3 + i2B2e3el + i3B3ele2.
j=I)

(3.132))

The fact that for most bodiesthe principal moments are not equal demonstrates
that I(B)will not lie in the sameplane as B,unlessB is perpendicularto one
of the principal axes.

A useful result for calculating the inertia tensor is that the principal axesof
a body always coincidewith symmetry axes,if any are present. This simplifies
the calculation of the inertia tensor for a range of standardbodies,the results
for which can be found in some of the bookslistedat the end of this chapter.)

3.4.6Kineticenergyand angularmomentum
To calculate the kinetic energy of the bodyfrom the velocityof equation (3.114)
we form the integral)

T =
\037 Jd3xp(Rx.OBRt+vo)2

=
\037 Jd3xp((X.OB)2+ 2vo' (R X.OBRt) + v6)

=
\037 Jd3xp(X.OB)2+ MV6.) (3.133))

Again, there is a clean split into a rotational contribution and a term due to
the motion of the centre of mass. Concentrating on the former, we use the
manipulation)

(X.OB)2== (X.OBXOB)== -OB'(XA(x.OB))) (3.134))

76)))



3.4ROTATINGSYSTEMSAND RIGID-BODYMOTION)

to write the rotational contribution as

-!Ow(/ d3xpx/\\(x'OB))
= -!OWI(OB).

\
(3.135))

The minus sign is to be expectedbecausebivectors all have negative squares.
The sign can be removedby reversingone of the bivectorsto construct a positive-
definite product. The total kinetic energy is therefore)

T ==
\037Mv6 + \037Ok.T(OB)') (3.136))

The inertia tensor is constructedfrom the point of view of the fixed body.
From equation (3.120)we seethat the angular momentum in spaceis obtained

by rotating the body angular momentum T(OB)onto the spaceconfiguration,
that is,)

L == RT(OB)Rt.) (3.137))

We can understandthis expressionas follows. Supposethat a bodyrotates in

spacewith angular velocity O. At a given instant we carry out a fixed rotation
to align everything backwith the fixed referenceconfiguration. This reference

copy then has angular velocity OB == RtOR. The inertia tensor (fixed in the
referencecopy) returns the angular momentum, given an input angular velocity.
The result of this is then rotated forwardsonto the body in space,to return L.

The spaceand body angular velocities are related by 0 == ROBRt, so the
kinetic energy can be written in the form)

T == !Mv6+ !ot.L.
We now introduce components{Wk} for both 0 and OB by writing)

(3.138))

3
o == LWk1fk,

k=I)

3

OB == LWkIek.
k=I)

(3.139))

In terms of thesewe recover the standardexpression
3

T 1M 2 \"\"I' 2
== 2' Va + \037 2''lkWk'

k=I)
(3.140))

3.4.7Equationsofmotion)

Theequations of motion are L == N, where N is the external torque.The inertia
tensor is time-independentsinceit only refers to the static 'reference'copy of
the rigid body,sowe find that)

t == m(OB)Rt+ RT(OB)Rt + RT(OB)Rt
== R(T(OB)- !OBT(OB)+ \037T(OB)OB)Rt.) (3.141))
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At this point it is extremely useful to have a symbol to denoteone-half of the
commutator of two bivectors.The standardsymbol for this is the cross,x, so
we definethe commutatorproduct by)

r,)

Ax B ==
\037(AB

- BA).) (3.142))

This notation doesraisethe possibilityof confusionwith the vector crossprod-
uct, but as the latter is not neededany more this should not posea problem.
The commutator product is so ubiquitous in applicationsthat it needsits own

symbol, and the crossis particularly convenientas it correctly conveysthe anti-
symmetry of the product. In section4.1.3we prove that the commutator of
any two bivectors results in a third bivector. This is easily confirmed in three
dimensionsby expressingboth bivectors in terms of their dual vectors.

With the commutator productat our disposalthe equations of motion are now

written conciselyas)

t == R(T(OB)-OBXT(OB))Rt.) (3.143))

The typical form of the rigid-bodyequations is recoveredby expandingin terms
of components.In terms of thesewe have)

t = R

(i;ikwk1ek -
j\0373\037

1
ikWjWk(Iej) x (Iek

))
Rt

3 3
== LwkIfk + L EjklikWjWkIfl.

k=l j,k,I=I)
(3.144))

If we let Nk denotethe components of the torque N in the rotating fk frame,)

3
N == LNkIfk ,

k=l)
(3.145))

we recoverthe Eulerequations of motion for a rigid body:)

i1Wl -W2 W3(i2 - i3) == N1,
i2w 2 -W3Wl(i3 -i1) == N2,
i3W3 -WIW2(i 1- i2) == N3.)

(3.146))

Various methodscan be usedto solvetheseequations and are describedin most
mechanicstextbooks.Herewe will simply illustrate some features of the equa-
tions, and describea solution method which doesnot resort to the explicit co-
ordinate equations.)
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3.4.8Torque-freemotion

The torque-free equation L == 0 reducesto)

T(OB)-OBXT(OB)== O.) (3.147))

This is a first-order constant coefficientdifferential equation for the bivector 0B.
Closedform solutions exist,but before discussingsome of these it is useful to
considerthe conservedquantities.Throughout this sectionwe ignore any overall
motion of the centre of massof the rigid body. Sincet == 0 both the kinetic

energy and the magnitude of L are constant. To exploit this we introduce the

components)
3

Lk == ik W k , L == LLklfk.
k=l)

(3.148))

Theseare the components of L in the rotating fk frame. So,even though L is

constant, the components Lk are time-dependent.In terms of thesecomponents
the magnitude of L is)

LLt==Li+L\037+Lg) (3.149))

and the kinetic energy is)

T = LI + L\037 + L\037 .
2i1 2i2 2i3)

(3.150))

Both ILl and T are constantsof motion, which imposestwo constraints on the
three componentsLk' A useful way to visualise this is to think in terms of a
vectorl with components Lk:)

3
l == LLkek == -IRtLR.

k=I)
(3.151))

This is the vector perpendicularto Rt LR-a rotating vector in the fixed ref-
erencebody. Conservationof ILl means that l is constrainedto lie on a sphere,
and conservation of T restricts l to the surface of an ellipsoid.Possiblepaths
for l for a given rigid bodyare therefore definedby the intersectionsof a sphere
with a family of ellipsoids(governedby T). For the caseof unequal principal
moments theseorbitsare non-degenerate.Examplesof theseorbitsare shown in

figure 3.7.This figure shows that orbitsaround the axeswith the smallest and

largest principal moments are stable,whereas around the middle axisthe orbits
are unstable.Any small change in the energy of the body will tend to throw it

into a very different orbit if the orbit of l approachescloseto e2.)
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e3)

el)
e2)

Figure 3.7 Angular momentum orbits. The point describedby the vector
l simultaneously lieson the surfaceof a sphereand an ellipse.The figure
shows possiblepaths on the spherefor l in the caseof il < i2 < i3, with
the 3 axis vertical.)

3.4.9The symmetrictop)

The full analytic solution for torque-free motion is complicatedand requires
elliptic functions. If the bodyhas a single symmetry axis,however,the solution
is quite straightforward. In this casethe bodyhas two equal moments of inertia,
i 1 == i2, and the third principal moment i3 is assumedto be different. With this

assignment e3 is the symmetry axisof the body.The action of the inertia tensor
on DB is)

I(nB) == iIWl e2e3 + i1w 2e3el + i3w 3ele2
== iiDB + (i3 - i I )W3Ie3,

sowe can write I(DB)in the compact form)

(3.152))

I(DB) == iiDB + (i3 - i I)(DB J\\ e3)e3.) (3.153))

(This type of expressionoffersmany advantages over the alternative 'dyad' no-
tation.)The torque-freeequations of motion are now)

I(OB)== DBxI(DB) == (i3- iI)DB X ((DBAe3)e3)') (3.154))

SinceDBJ\\e3 is a trivector, we can dualisethe final term and write)

I(nB) == -(i3 - i1)e3A ((DBJ\\ e3)DB).) (3.155))
It follows that)

e3J\\I(OB)== 0 == i3w3I,) (3.156))
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which showsthat W3 is a constant.This result can be read off directly from the
Euler equations, but it is useful to seehow it can be derived without dropping
down to the individual component equations. The ability to do this becomes
ever more valuable as the complexityof the equations increases.

Next we use the result that)

iiOB == T(OB)- (i3- i I )(OBAe3)e3
== T(OB)+ (i l - i3)w3 Ie3) (3.157))

to write)

t 1 i1- i3 t
\302\260

== ROBR == -;-L+ . w3R1e3R.
'l1 'li)

(3.158))

Our rotor equation now becomes
. 1 1 .,

R == -20R== -----;-(LR+ R('li - 'l3)w3Ie3).
2'l1)

(3.159))

The right-hand sideof this equation involves two constant bivectors, one mul-

tiplying R to the left and the other to the right. We therefore define the two

bivectors)
1

Ol == -:-L,
'l1

so that the rotor equation becomes)

. .
'li - 'l3!1r == W3 . Ie3,

'li)
(3.160))

. I 1R == -20lR- 2ROr.) (3.161))

This equation integrates immediately to give)

R(t) == exp(-!Olt)Roexp(-!Ort ).) (3.162))

This fully describesthe motion of a symmetric top. It shows that there is an

'internal' rotation in the e1e2 plane (the symmetry plane of the body). This is
responsiblefor the precessionof a symmetric top.The constant rotor Ro defines
the attitude of the rigid bodyat t == 0 and can be set to 1.The resultant bodyis
then rotated in the plane of its angular momentum to obtain the final attitude
In space.)

3.5Notes)

Much of this chapter follows New Foundationsfor ClassicalMechanicsby David
Hestenes(1999),which givesa comprehensiveaccount of the applicationsto clas-
sicalmechanicsofgeometricalgebrain three dimensions.Readersare encouraged
to compare the techniques used in this chapter with more traditional methods,
a good descriptionof which can be found in ClassicalMechanicsby Goldstein
(1950),or Analytical Mechanicsby Hand & Finch (1998).The standardreference
for the Kustaanheimo-Stiefelequation is Linearand RegularCelestialMechanics)
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by Stiefeland Scheifele(1971).Many authors have exploredthis technique, par-
ticularly in the quaternionic framework. Theseinclude Hestenes''Celestialme-
chanics with geometric algebra'(1983)and the papersby Aramanovitch (1995)
and Vrbik (1994,1995).)

3.6Exercises)
3.1 An elliptical orbit in an inverse-square force law is parameterisedin

terms of a scalar+ pseudoscalarquantity U by x == U2el.Prove that
U can be written)

U == Aoe
1ws+ Boe-1ws

,)

where dt/ds == r, r == Ixl == uut and I is the unit bivector for the
plane. What is the value of w? Find the conditions on Ao and Bo such
that at time t == 0, s == 0 and the particlelieson the positive el axis
with velocity in the positive e2 direction.For which value of s doesthe
velocitypoint in the -eldirection? Find the values for the shortestand
longest diametersof the ellipse,and verify that we can write)

u == V a(l + e)cos(ws)- va(l-e)Isin(ws),)
where e is the eccentricity and a is the semi-major axis.

3.2 For elliptical orbits the semi-major axisa is defined by a ==
\037 (rl + r2),

whererl and r2 are the distancesofclosestand furthest approach.Prove
that)

l2-== a(l-e2).
kJL)

Henceshow that we can write)

a(l- e2
)r== l+ecos(B)'

where ecos(B) ==
\342\202\254. X. The eccentricity vector points to the point of

closestapproach.Why would we expectthe orbital average of x/r4 to
alsopoint in this direction? Prove that)

iTdt
\037

= e
la2(1\037 e2)2i27r

(1+ ecos(0))
2

cos(O)dO

and evaluate the integral.
3.3 A particlein three dimensionsmovesalong a curve x(t) such that Iv I

is
constant.Showthat there existsa bivector 0 such that)

v == o.v
,)

and give an explicitformula for O. Is this bivector unique?)
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3.4 Supposethat we measurecomponents of the positionvector x in a ro-

tating frame {fi}.By referring this frame to a fixed frame, show that
the components of x are given by

Xi == ei'(Rt xR).)

By differentiating this expressiontwice, prove that we can write

fiXi == x + O.(O.x)+ 20.x+ n.x.)

Hencededuceexpressionsfor the centrifugal, Coriolisand Euler forces
in termsof the angular velocitybivector O.

3.5 Show that the inertia tensor satisfiesthe following properties:)

linearity:
symmetry:)

T(;\\A + f-LB)
== U(A) + f-LT(B)

(AI(B))== (T(A)B).)

3.6 Prove that the inertia tensorT(B)for a solidcylinder of height hand
radiusa can be written

Mh2 Ma2
T(B)== 12(B-B/\\e3e3)+ 4 (B+B/\\e3e3),)

where e3 is the symmetry axis.
3.7 For a torque-free symmetric top prove that the angular momentum,

viewedbackin the referencecopy,rotatesaround the symmetry axisat
an angular frequencyw, where)

. .
23 - 'l1

W == W3
'li

Showthat the angle between the symmetry axisand the vector [ == -IL
is given by)

'l3W

cos(O)== I'
where l2 == [2 == LLt. Henceshow that the symmetry axis rotates in

spacein the L plane at an angular frequencyw', where)

I
W)

'l3W3
i l cos(0)

.)
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Foundationsof geometric
algebra)

In chapter 2 we introduced geometric algebra in two and three dimensions.We

now turn to a discussionof the full, axiomatic framework for geometric algebra
in arbitrary dimensions,with arbitrary signature.This will involve somedupli-
cation of material from chapter 2, but we hopethat this will help reinforcesome
of the key concepts.Much of the material in this chapter is of primary relevance
to thoseinterestedin the full range of applicationsof geometric algebra.Those
interestedsolely in applicationsto spaceand spacetimemay want to skipsome
of the material below, as both of thesealgebrasare treated in a self-contained
manner in chapters2 and 5 respectively. The material on frames and linear al-
gebrais important, however,and a knowledgeof this is assumedfor applications
in gravitation.

The fact that geometric algebracan be appliedin spacesof arbitrary dimen-
sionsis crucial to the claim that it is a mathematical tool of universal applica-
bility. The framework developedhere will enableus to extendgeometricalgebra
to the study of relativistic dynamics, phasespace,singleand multiparticle quan-
tum theory, Lie groupsand manifolds. This chapter alsohighlights someof the
new algebraictechniqueswe now have at our disposal.Many derivations can be
simplifiedthrough judicioususeof the geometricproductat variousintermediate
steps.This is true even if the initial and final expressionscontain only inner and
outer products.

Many key relations in physicsinvolve linear mappings between one spaceand
another. In this chapter we alsoexplorehow geometric algebra simplifiesthe
rich subjectof linear transformations. We start with simple mappings between
vectors in the samespaceand study their propertiesin a very general, basis-free
framework. In later chaptersthis framework is extendedto encompassfunctions
between different spaces,and multilinear functions where the argument of the
function can consistof one or more multivectors.)

84)))



4.1AXIOMATIC DEVELOPMENT)

4.1Axiomaticdevelopment
We should now have an intuitive feel for the elements of a geometric algebra- the multivectors- and some of their multiplicative properties.The next
step is to define a set of axioms and conventionswhich enable us to efficiently
manipulate them. Geometricalgebracan bedefinedusing a number of axiomatic
frameworks, all of which give rise to the same final algebra.In the main we
will follow the approach first developedby Hestenesand Sobczykand raisethe

geometricproductto primary status in the algebra.The propertiesof the inner
and outer productsare then inherited from the full geometricproduct,and this

simplifies proofs of a number of important results.
Our starting point is the vector spacefrom which the entire algebrawill be

generated.Vectors(Le.grade-lmultivectors)have a specialstatus in the algebra,
as the grading of the algebrais determined by them. Three main axioms govern
the propertiesof the geometricproductfor vectors.)

(i) The geometric product is associative:)

a(bc)== (ab)c== abc.) (4.1))

(ii) The geometric productis distributive over addition:)

a(b + c) == ab + ac.) (4.2))

(iii) The squareof any vector is a real scalar:a2 E R.)

The final axiom is the key one which distinguishesa geometric algebrafrom a

generalassociativealgebra.We do not force the scalarto be positive, so we can
incorporateMinkowski spacetimewithout modificationof our axioms.Nothing

is assumedabout the commutation propertiesof the geometricproduct-matrix

multiplication is one picture to keepin mind. Indeed,one can always represent
the geometricproductin terms of productsof suitably chosenmatrices,but this
doenot bring any new insights into the propertiesof the geometricproduct.

By successivelymultiplying together vectorswe generate the completealgebra.
Elements of this algebraare calledmultivectorsand are usually written in upper-
caseitalic font. The spaceof multivectors is linear over the real numbers, so if ;\\

and
f-L

are scalarsand A and Baremultivectors ;\\A + f-LB is also a multivector.
We only considerthe algebraover the reals as most occurrencesof complex
numbers in physicsturn out to have a geometricorigin. This geometricmeaning
can be lost if we admit a scalarunit imaginary. Any multivector can be written

as a sum of geometricproductsof vectors.They too can be multiplied using the

geometricproduct and this product inherits properties(i) and (ii) above. So,
for multivectors A, BandC,we have)

(AB)C== A(BC) == ABC) (4.3))
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and)

A(B+ G) == AB + AG.) (4.4))

If we now form the squareof the vector a + b we find that)

(a + b)
2 == (a + b)(a + b) == a2 + ab + ba + b2

.) (4.5))

It follows that the symmetrisedproductof two vectors can be written)

ab + ba == (a + b)2- a2 - b2
,) (4.6))

and so must also be a scalar, by axiom (iii). We therefore define the inner

productfor vectors by)

1
a .b ==

\"2
(ab+ ba).) (4.7))

The remaining, antisymmetric part of the geometric product is defined as the
exterior productand returns a bivector,)

1
a J\\ b == -(ab- ba).

2)
(4.8))

Thesedefinitionscombineto give the familiar result)

ab == a.b+ aJ\\b.) (4.9))

In forming this decompositionwe havedefinedboth the inner and outer products
of vectors in terms of the geometric product. This contrastswith the common
alternative of defining the geometric product in terms of separate inner and
outer products. Someauthors prefer this alternative becausethe (lessfamil-

iar) geometric product is defined in terms of more familiar objects.The main

drawback,however,is that work still remains to establishthe main propertiesof
the geometric product. In particular, it is far from obvious that the product is

associative,which is invaluable for its use.)

4.1.1The outerproduct,gradingand bases

In the precedingwe defined the outer product of two vectors and assertedthat

this returns a bivector (a grade-2multi vector).This is the key to defining the

gradeoperation for the entire algebra.To do this we first extendthe definition of
the outer productto arbitrary numbers of vectors.The outer (exterior)product
of the vectors aI,... , ar is denotedby al J\\ a2 J\\ . .. J\\ ar and is defined as the

totally antisymmetrised sum of all geometricproducts:

al/\\a2 /\\. ../\\a r = :!2)-1)<ak1ak2
...akr .) (4.10))
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The sum runs over every permutation of the indiceskl,...,kr , and E is +1or
-1if k I , . .. , kr is an even or odd permutation of 1,. .., n respectively. So,for

example,)

1
aI/\\a2 == 2!(ala2- a2a l)) (4.11))

as required.
The antisymmetry of the outer product ensuresthat it vanishes if any two

vectorsare the same.It follows that the outer productvanishes if the vectors
are linearly dependent,sincein this caseone vector can be written as a linear
combinationof the remaining vectors.The outer producttherefore recordsthe
dimensionality of the objectformed from a set of vectors.This ispreciselywhat

we mean by grade,sowe definethe outer productof r vectors as having grader.
Any multivector which can be written purely as the outer product of a set of
vectorsis calleda blade. Any multivector can be expressedas a sum of blades,
as can be verifiedby introducing an explicitbasis.Thesebladesall have definite
gradeand in turn define the gradeor gradesof the multivector.

We rarely needthe full antisymmetrised expressionwhen studying blades.In-
stead we can employ the result that every blade can be written as a geometric
product of orthogonal, anticommuting vectors. The anticommutation of orthog-
onal vectors then takescareof the antisymmetry of the product. In Euclidean
spacethis result is simpleto prove using a form of Gram-Schmidtorthogonali-
sation. Given two vectors a and b we form)

b
'

== b -Aa.) (4.12))

We then seethat)

a/\\ (b- Aa) == a/\\b - Aa/\\a == a/\\b.) (4.13))

So the same bivector is obtained,whatever the value of A (figure 4.1).The
bivector encodesan oriented plane with magnitude determinedby the area.
Interchanging band b' changes neither the orientation nor the magnitude, so
returns the samebivector. We now form)

a.b' == a.(b-Aa) == a.b - Aa 2
.) (4.14))

So if we set A == a.b/a2 we have a.b' == 0 and can write)

a/\\b == a/\\b
'

== ab'.) (4.15))

One can continue in this manner and construct a completeset of orthogonal
vectorsgenerating the sameouter product.)
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A

/
/)

.........) -) /')

a)

Figure 4.1 The Gram-Schmidt process.The outer product a /\\ b is in-

dependentof shape of the parallelogram formed by a and b. The only
information containedin a /\\ b is the oriented planeand a magnitude. The
vectorsband b' generatethe samebivector, sowe can chooseb' orthogonal
to a and write a /\\ b ::::ab'.)

An alternative form for b' is quite revealing. We write

b
'

== b - a-Ia .b

== a-1(ab- a .b)

== a-I(a!\\b).) (4.16))

This shows that b' is formed by rotating a through 90\302\260 in the a /\\ b plane, and

dilating by the appropriateamount. The algebraicform alsomakes it clear why

ab' == a !\\ b, and givesa formula that extendssimply to higher grades.
The above argument is fine for Euclideanspace,but breaksdown for spacesof

mixed signature.The inversea-1 == a/a2 is not definedwhen a is null (a
2 == 0),

so an alternative procedureis required.Fortunately this is a relatively straight-
forward exercise.We start with the set of r independent vectors a1,.. ., ar and
form the r x r symmetric matrix)

M ij ==
a\037 .aj.) (4.17))

The symmetry of this matrix ensuresthat it can always be diagonalisedwith an

orthogonal matrix Rij ,)

Rik M kl Rij == Rik Rjl Mkl == A ij .) (4.18))

HereA ij is diagonal and, unlessstated otherwise, the summation convention is
employed.The matrix Rij definesa new set of vectors via)

ei == Rijaj.) (4.19))

Thesesatisfy)

ei.ej== (Rikak).(Rjlaz)
== RikRjzMkl

== A ij .) (4.20))
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The vectorsel,. .. , er are thereforeorthogonal and henceall anticommute. Their
geometricproductis therefore totally antisymmetric, and we have)

ele2'\"er \037 elA...Aer)

\037 (R1iai)A...(Rrkak)
\037 det (Rij ) alAa2A...Aar .) (4.21))

The determinant appearshere becauseof the total antisymmetry of the expres-
sion (seesection4.5.2).But sinceRij is an orthogonal matrix it has determinant
::i:1,and by choosingthe orderof the {ei}vectors appropriately we can set the
determinant of Rij to 1.This ensuresthat we can always find a set of vectors
such that)

alAa2 A. . .Aa r \037 ele2 . ..er .) (4.22))

This result will simplify the proofs of a number of resultsin this chapter.
For a given vector space,an orthonormal frame {ei},i \037 1,...,n provides a

natural way to view the entire geometric algebra.We denotethis algebragn'
Most of the resultsderived in this chapter are independentof signature, so in the

following we let gn denotethe geometric algebra of a spaceof dimensionn with

arbitrary (non-degenerate)signature.Onecan alsoconsiderthe degeneratecase
where someof the basisvectors are null, though we will not needsuch algebras
in this book.The basisvectors build up to form a basisfor the entire algebraas)

1, ei, eiej(i < j), eiejek(i < j < k),) (4.23))

The fact that the basisvectors anticommute ensuresthat each product in the
basisset is totally antisymmetric. The product of r distinct basis vectors is
then, by definition, a grade-rmultivector. The basis (4.23)therefore naturally

definesa basisfor each of the grade-rsubspacesof gn' We denoteeach of these
subspacesby g\037.

The size of each subspaceis given by the number of distinct
combinationsof r objectsfrom a set of n. (The orderis irrelevant, becauseof
the total antisymmetry.) Theseare given by the binomial coefficients,so)

dim(g\037)
= (:).) (4.24))

For example,we have already seenthat in two dimensionsthe algebra contains
terms of grade0, 1,2with each spacehaving dimension1,2,1respectively.Simi-

larly in three dimensionsthe separategradedsubspaceshave dimension1,3,3,1.
The binomial coefficientsalways exhibit a mirror symmetry between the rand
n - r terms.This gives rise to the notion of duality, which is explainedin sec-
tion 4.1.4where we explorethe propertiesof the highest gradeelement of the
algebra-the pseudoscalar.)
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The total dimensionof the algebra is)

dim(Q\037)
=

\037 (\037)

= (1+ l)n = 2n
.) (4.25))

One can see that the total sizeof the algebra quickly becomesvery large. If
one wanted to find a matrix representationof the algebra,the matrices would

have to be of the orderof 2n /2 x 2n/2. For all but the lowest values of n these
matrices becometotally impractical for computations.This is one reasonwhy

matrix representationsdo not help much with understanding and using geometric
algebra.

We have now definedthe gradeoperation for our linear space9n.An arbitrary
multi vector A can be decomposedinto a sum of pure gradeterms)

A == (A)o + (A)I +...== L(A)r.) (4.26))
r)

The operator ( )r projectsonto the grade-rterms in the argument, so (A)r
returns the grade-rcomponents in A. Multivectorscontaining terms of only one

gradeare calledhomogeneous.They are often written as Ar, so)

(Ar)r == Ar.) (4.27))

Takecarenot to confusethe gradingsubscriptin Ar with frame indicesin expres-
sionslike {ek}'The context should always make clear which is intended. The

grade-Oterms in 9n are the real scalarsand commute with all other elements.
We continue to employ the useful abbreviation)

(A) == (A)o) (4.28))

for the operation of taking the scalarpart.
An important feature of a geometricalgebrais that not all homogeneousmul-

tivectors are pure blades.This is confusingat first, becausewe have to go to four

dimensionsbefore we reach our first counterexample.Supposethat {eI,. .. ,e4}
form an orthonormal basis for the Euclidean algebra 94.There are six inde-

pendentbasisbivectors in this algebra,and from thesewe can construct terms
like)

B == ael/\\e2 + j3e3/\\e4,) (4.29))

wherea and j3 are scalars.Bis a pure bivector,soishomogeneous,but it cannot
bereducedto a blade. That is, we cannot find two vectors a and b such that
B == a /\\ b. The reasonis that el /\\ e2 and e3 /\\ e4 do not sharea commonvector.
This is not possiblein three dimensions,becauseany two planeswith a common

origin sharea commonline. A four-dimensionalbivector like Bis therefore hard
for us to visualise.There is a way to visualiseB in three dimensions,however,
and it is provided by projectivegeometry. This is describedin chapter 10.)
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4.1.2Furtherpropertiesofthe geometricproduct
The decompositionof the geometric productof two vectors into a scalarterm
and a bivector term has a natural extensionto generalmultivectors. To establish
the resultsof this sectionwe make repeateduseof the formula)

ab == 2a.b- ba) (4.30))

which we use to reorderexpressions.As a first example,considerthe caseof a

geometricproductof vectors.We find that)

aala2 .. .ar == 2a.ala2 .. . ar - alaa2 . ..ar
== 2a.ala2 .. . ar -2a.a2ala3... ar + aIa2aa3'..ar)

r
== 2L(-1)k+la.akala2'\"ak'\" ar + (_I)raIa2'\" ara, (4.31)

k=l

where the checkon ak denotesthat this term is missing from the series.We

continue to follow the conventions introduced in chapter 2 so, in the absence
of brackets,inner productsare performed before outer products,and both are

performedbefore geometric products.
Supposenow that the vectorsaI,.. ., ar are replacedby a setof anticommuting

vectorseI,. .. , er . We find that)

r

\037 (ae1e2...er - (-Ifele2'\"era)
= L(-1)kHa.ekele2'\"ek'\"er . (4.32)

k=l)

The right-hand sidecontains a sum of terms formed from the productof r - 1
anticommuting vectors, sohas grader-1.Sinceany grade-rmulti vector can be
written as a sum of terms formed from anticommuting vectors, the combination
on the left-hand sidewill always return a multivector ofgrader-1.We therefore
define the inner productbetween a vector a and a grade-rmultivector Ar by)

a.A=
\037(aAr

- (-IfAr a).) (4.33))

The inner productof a vector and a grade-rmultivector resultsin a multivector
with gradereducedby one.

The main work of this sectionis in establishingthe propertiesof the remaining
part of the productaAr. For the casewhere Ar is a vector, the remaining term
is the antisymmetric product, and so is a bivector. This turns out to be true
in general- the remaining part of the geometric product returns the exterior

product,)

\037(a(all\\a21\\\"
.I\\a r ) + (-If(all\\a21\\''.I\\a r)a)

= al\\all\\a21\\\" .I\\a r . (4.34)

We will prove this important result by induction. First, we write the bladeas a)
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geometricproductof anticommuting vectors, so that the result we will establish
becomes)

\037 (ae1e2.0 .er + (-1reIe2...era)
= a/\\ e1/\\e2/\\. .0 /\\ er . (4035)

For r == 1the result is true as the right-hand sidedefinesthe bivector a 1\\ e1.For
r > 1we proceedby writing

1
al\\eIl\\ e21\\. . 'I\\e r ==

r + 1aele2 . ..er

1 r
+ r + 1\037)-l)kek(a/\\el/\\o. ./\\ek/\\.. ./\\er).

k=I)
(4.36))

This result iseasilyestablishedby writing out all terms in the full antisymmetric
productand gathering together the terms which start with the samevector. Next
we assumethat equation (4.35)holdsfor the caseof an r -1blade,and expand
the term insidethe sum as follows:)

r

L(-I)kek(aAeII\\...I\\ekl\\.. .I\\e r )
k=l)

1 r

=2\" L(-1)kek (ael..0 ek ...er + (-1r-1el0 ..ek .0 .
era)k=I

r
=

\037
L(-1)

kekael...ek 0 ..er +
\037

(-1rel...era
k=I)
r

=L(-l)k(ek.a)el...ek 0 ..er +
\037 (ael...er + (-1reI'..era)k=lr-1 r+l r==

2 ael'\"er +
2 (-1)el'\"era, (4.37)

where we have usedequation (4.32).Substitutingthis result into equation (4.36)
then proves equation (4.35)for a grade-rblade,assuming it is true for a b]ade
of grader -1.Sincethe result is already establishedfor r == 1,equation (4.34)
holdsfor all bladesand hence all multivectors.

We extendthe definition of the wedgesymbol by writing)

a/\\A r =
\037 (aAr + (-1rAr a).

With this definition we now have)

(4.38))

aAr == a.Ar + al\\A r ,) (4.39))
which extendsthe decompositionof the geometric product in preciselythe de-
siredway. In equation (4.38)one can seehow the geometricproductcan simplify
many calculations.The left-hand sidewould, in general, require totally antisym-
met rising all possibleproducts.But the right-hand sideonly requiresevaluating)
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two products-an enormous saving! As we have establishedthe gradesof the

separateinner and outer products,we alsohave)

aAr == (aAr)r-I+ (aA r)r+l,) (4.40))

where)

a.Ar == (aAr )r-l, a/\\A r == (aAr )r+l.) (4.41))

So,as expected,multiplication by a vector raisesand lowers the grade of a
multivector by 1.

A homogeneousmultivector can be written as a sum of blades,and each blade
can be written as a geometric productof anticommuting vectors.Applying the

preceding decomposition,we establishthat the product of two homogeneous
multivectors decomposesas)

ArBs == (ArBs)lr-sl+ (Ar Bs)lr-sl+2+ ...+ (ArBs)r+s.) (4.42))

We retain the . and /\\ symbolsfor the lowest and highest grade terms in this

serIes:)
Ar.Bs== (ArBs)lr-sl'

Ar/\\Bs == (ArBs)r+s.
This is the most general use of the wedge symbol, and is consistent with the
earlier definition as the antisymmetrised product of a set of vectors. We can
checkthat the outer productis associative by forming)

(4.43))

(Ar/\\Bs)/\\C t == (ArBs)r+s/\\Ct == ((ArBs)Ct)r+s+t.) (4.44
))

Associativity of the outer productthen follows from the fact that the geometric
product is associative:)

((ArBs)Ct)r+s+t== (ArBsCt)r+s+t== Ar/\\Bs/\\C t .) (4.45))

In equation (4.32)we establisheda formula for the result for the inner product
of a vector and a bladeformed from orthogonal vectors.We now extendthis to
a more general result that is extremely useful in practice.We start by writing)

a'(aI/\\a2/\\\" ./\\a r ) == a.(aIa2'\" ar)r,) (4.46))

where aI,. .. , ar are a general set of vectors.The geometricproductala2 . .. ar
can only contain terms of grader, r - 2, .. ., so)

\037 (aala2 ...ar - (-1t ala2 ...
ara)

== a.(aIa2 .. .ar )r + a.(a1a2 ... ar )r-2 + ....
The term we are after is the r -1gradepart, so we have

a'(all\\a2/\\\" ./\\a r ) = \037(aala2\" .ar - (-lta la2\" .ara;r-l'
2)

(4.47))

(4.48))
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We can now apply equation (4.31)insidethe gradeprojectionoperatorto form)

r

a'(aI/\\a2/\\\" ./\\a r ) == L(-l)k+laoak(al'\"ak'\" ar)r-I
k=l)

r)

== L(-1)k+la.akal/\\.. ./\\ak/\\\" ./\\a r .
k=I)

(4.49))

The first two casesillustrate how the general formula behaves:)

a.(aI /\\a2) == a.aI a2-a.a2aI,
a'(aI/\\a2/\\a3)== a.ala2/\\a3 -a.a2aI/\\a3 + a.a3aI/\\a2')

(4.50
))

The first casewas establishedin chapter 2, where it was used to replacethe
formula for the doublecrossproductof vectors in three dimensions.)

4.1.3The reverse,the scalarand the commutatorproduct
Now that the grading is established,we can establishsomegeneral propertiesof
the reversionoperator,which was first introduced in chapter 2.The reverseof a
product of vectors is defined by)

(ab . . .c)t == c... ba.) (4.51))
For a blade the reverse can be formed by a seriesof swapsof anticommuting
vectors, each resulting in a minus sign.The first vector has to swap past r - 1
vectors, the secondpast r - 2, and so on. This demonstratesthat)

At == (_I)r(r-I)/2Ar.) (4.52))

If we now considerthe scalarpart of a geometricproductof two grade-rmulti-
vectors we find that)

(ArBr) == (ArBr)t == (B;At)== (_l)r(r-l)(BrA r) == (BrAr),) (4.53))

so, for general A and B,)

(AB) == (BA).) (4.54))

It follows that)

(A...BC)== (CA...B).) (4.55))

This cyclicreorderingproperty is frequently useful for manipulating expressions.
The product in equation (4.54)is sometimesgiven the symbol *, so we write)

A*B == (AB).) (4.56))

94)))



4.1AXIOMATIC DEVELOPMENT)

A further productof considerableimportance in geometricalgebra is the com-
mutator product of two multivectors. This is denotedwith a cross,x, and is

definedby)

1AxB == -(AB-BA).
2)

(4.57))

Care must be taken to include the factor of one-half, which is different to the
standard commutator of two operatorsin quantum mechanics.The commutator

product satisfies the Jacobiidentity)

Ax(BxC)+ Bx(CxA)+ Cx(AxB)== 0,) (4.58))

which is easily seenby expandingout the products.
The commutator arisesmost frequently in equations involving bivectors.Given

a bivector B and a vector a we have)

1Bxa== 2(Ba
- aB) == B.a,) (4.59))

which thereforeresultsin a secondvector. Now considerthe product ofa bivector
and a bladeformed from anticommuting vectors.We have)

B(ele2'\"rr) == 2(Bx eI)e2'\"er + elBe2'\" er
== 2(BxeI)e2'\"er +...+ 2eI'\"(Bxer ) + ele2'\"erB. (4.60))

It follows that)
r

Bx(eIe2 . ..er ) == LeI . .. (B.ei). .. er .
i=l)

(4.61))

The sum involves a seriesof terms which can only contain gradesrand r -2.
But if we form the reverse of the commutator productbetween a bivector and a

homogeneousmultivector, we find that

(Bx Ar)t = \037(BAr
-ArB)t2

== \037 (-At B+ BAt )2 r r

== (-I)r(r-l)/2BxAr .) (4.62))

It follows that B x Ar has the same propertiesunder reversion as Ar. But

multivectors of grade rand r - 2 always behave differently under reversion.
The commutator product in equation (4.61)must therefore result in a grade-r
multivector. Sincethis is true of any grade-rbasiselement, it must be true of

any homogeneousmultivector. That is,)

BxAr == (BxAr)r') (4.63))

The commutator of a multivector with a bivector therefore preservesthe grade
of the multivector. Furthermore, the commutator of two bivectors must result)
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in a third bivector. This is the basisfor incorporating the theory of Lie groups
into geometricalgebra.

A similar argument to the precedingone shows that the symmetric product
with a bivector must raiseor lowerthe gradeby 2.We can summarise this by

writing)

BAr == (BA r}r-2+ (BAr)r+ (BAr)r+2
== B.Ar + BxAr + B/\\A r ,) (4.64))

where)
1
-(BAr-ArB) == BxAr
2) (4.65))

and)
1
-(BAr+ ArB) == B.Ar + B/\\A r .
2

It is assumedin theseformulae that Ar has grader > 1.)

(4.66))

4.1.4Pseudoscalarsand duality)

The exteriorproduct of n vectors defines a grade-nblade. For a given vector
spacethe highest gradeelement isunique, up to a magnitude. The outer product
of n vectors is therefore a multiple of the unique pseudoscalarfor (in. This is
denotedI, and has two important properties.The first is that I is normalised
to)

1121

== 1.) (4.67))

The sign of 12 dependson the size of spaceand the signature.It turns out that
the pseudoscalarsquaresto -1for the three algebrasof most use in this book- thoseof the Euclideanplane and space,and of spacetime.But this is in no
way a general property.

The secondproperty of the pseudoscalarI is that it defines an orientation.
For any orderedset of n vectors, their outer productwill either have the same
sign asI,or the oppositesign.Thosewith the same sign are assigneda positive
orientation, and thosewith oppositesign have a negative orientation. The ori-
entation is swappedby interchanging any pair of vectors. In three dimensions
we always choosethe pseudoscalarI such that it has the orientation specifiedby
a right-handed set of vectors.In other spacesone just assertsa choiceof I and
then sticksto that choiceconsistently.

The productof the grade-npseudoscalarI with a grade-rmultivector Ar is
a graden - r multivector. This operation is calleda duality transformation. If
Ar is a blade,IAr returns the orthogonalcomplementof Ar. That is, the blade
formed from the spaceof vectors not contained in Ar. It is clear why this has
graden - r. Every bladeacts as a pseudoscalarfor the spacespannedby its)
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generatingvectors.So,even if we are working in three dimensions,we can treat
the bivector ele2 as a pseudoscalarfor any manipulation taking placeentirely in

the ele2 plane. This is often a very helpful idea.
In spacesofodddimension,I commuteswith all vectorsand socommuteswith

all multivectors. In spacesof even dimension,I anticommutes with vectors and
so anticommutes with all odd-grademultivectors. In all casesthe pseudoscalar
commuteswith all even-grademultivectors in its algebra.We summarise this by)

IAr == (-1)r(n-l)Ar I.) (4.68))

An important useof the pseudoscalaris for interchanging inner and outer prod-
ucts. For example,we have)

a.(Arl) =
\037(aArI

- (_l)n-rArIa)
=

\037(aArI
- (-I)n-r(-I)n-lA raI)

=
\037(aAr+(-IYAra)I

== aAA r I.) (4.69))

Moregenerally,we can take two multivectors Ar and Bs,with r + s < n, and
form)

Ar.(BsI)== (ArBsI)lr-(n-s)1
== (ArBsI)n-(r+s)
== (ArBs)r+sI
== ArABs I.) (4.70))

This type of interchange is very common in applications.Note how simplethis

proof is made by the application of the geometric product in the intermediate

steps.)

4.2Rotationsand reflections)

In chapter 2 we showed that in three dimensionsa reflection in the plane per-
pendicular to the unit vector n is performed by)

Ia 1---+ a == -nan.) (4.71))

This formula holdsin arbitrary numbers of dimensions.Provided n 2 == 1,we see
that n is transformed to)

n 1---+ -nnn== -n,) (4.72))

whereasany vector al..perpendicularto n is mappedto)

al..1---+ -nal..n== al..nn== al...) (4.73))
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So,for a vector a, the component parallel to n has its sign reversed,whereas
the component perpendicularto n is unchanged. This is what we mean by a
reflection in the hyperplane perpendicularto n.

Two successivereflectionsin the hyperplanesperpendicularto m and n result
in a rotation in the mAn plane. This is encodedin the rotor)

R == nm == exp(-Be/2)) (4.74))

where)
A mAnB== .

sin(e/2)
The rotor R generatesa rotation through the by now familiar formula)

cos(e/2) == n'm,) (4.75))

a \037 a'== RaRt.) (4.76))

Rotations form a group, as the result of combining two rotations is a third
rotation. The samemust therefore be true of rotors.Supposethat Rl and R2
generatetwo distinct rotations.The combinedrotations take a to)

a \037 R2(RlaRi)R\037 == R2R1aRi R\037.

We therefore define the product rotor

R == R2RI ,)

(4.77))

(4.78))

so that the result of the compositerotation is describedby RaRt, as usual. The
productR is a new rotor, and in general it will consistof geometricproductsof
an even number of unit vectors,)

R == lk . ..nm.) (4.79))

We will adopt this as our definition of a rotor.The reversed rotor is

Rt == mn . ..kl.) (4.80))

The result of the map a 1----7 RaRt returns a vector for any vector a, since)

RaRt == lk...(n(mam)n)...kl) (4.81))

and each successivesandwichbetween a vector returns a new vector.
We can immediately establishthe normalisation condition

RRt == lk . .. nmmn ... kl == 1== Rt R.) (4.82))

In Euclideanspaces,whereeveryvector has a positive square,this normalisation
is automatic. In mixed signature spaces,like Minkowski spacetime,unit vectors
can have n2 == :f:1.In this casethe condition RRt == 1is taken as a further

condition satisfied by a rotor.In the casewhere R is the productof two rotors
we can easily confirm that)

RRt == R2R1(R2RI)t == R2RIRiR\037 == 1.) (4.83))
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The set of rotorstherefore forms a group, calleda rotor group.This is similar to
the group of rotation matrices,though not identical due to the two-to-onemap
betweenrotorsand rotation matrices.We will have more to say about the group
propertiesof rotors in chapter 11.

In Euclideanspaceseveryrotor can be written as the exponentialof a bivector,)

R == exp(-B/2).) (4.84))

The bivector B defines the plane or planesin which the rotation takesplace.
The sign ensuresthat the rotation has the orientation defined by B. In mixed

signature spacesone can always write a rotor as :::!:exp(B).In either casethe
effect of the rotor R on the vector a is)

a r-+ exp(-B/2)aexp(B/2).) (4.85))

We can prove that the right-hand sidealways returns a vector by consideringa
Taylorexpansionof)

a(A) == exp(-AB/2)aexp(AB/2).) (4.86))

Differentiating the expressionon the right producesthe power seriesexpansion
A2

a(A) ==a+Aa.B+,(a.B).B+....2.)
(4.87))

Sincethe inner productof a vector and a bivector always resultsin a new vector,
each term in this expansionis a vector. SettingA == 1then demonstratesthat

equation (4.85)resultsin a new vector, defined by)

1
exp(-B/2)aexp(B/2)== a + a.B+ ,(a.B).B+....

2.) (4.88))

4.2.1Multivectortransformations)

Supposenow that every vector in a bladeundergoesthe same rotation. This is

the sort of transformation implied if a plane or volume element is to be rotated.
The r-bladeAr can be written

Ar = al 11...11ar =
\037 I)-ltak1ak2

'\" akr , (4.89)r.
with the sum running overall permutations.If eachvector in a geometricproduct
is rotated, the result is the multivector)

(RaIRt)(Ra2Rt) . . . (RarRt) == Ra1RtRa2Rt .. .RarRt
== RaI a2'\" arRt.) (4.90))

This holdsfor each term in the antisymmetrised sum, so the transformation law

for the bladeAr is simply)

Ar r-+
A\037

== RArRt.) (4.91))
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Bladestransform with the samesimplelaw as vectors! All multivectors share
the same transformation law regardlessof gradewhen each component vector
is rotated.This is one reasonwhy the rotor formulation is so powerful. The
alternative, tensorform would require an extramatrix for each additional vector.)

4.3Bases,framesand components
Any setof linearly independentvectors form a basisfor the vectors in a geometric
algebra.Such a set is often referred to as a frame. Repeateduse of the outer
productthen buildsup a basisfor the entire algebra.In this sectionwe use the
symbolsel, .. ., en or {ek}to denotea frame for n-dimensionalspace.We do not
restrictthe frame to beorthonormal, sothe {ek}do not necessarilyanticommute.
The reasonfor the changeof font for frame vectors, as opposedto general setsof
vectors, is that useof frames nearly always implies referenceto coordinates.It
is natural write the coordinatesof the vector a as ai or ai so, to avoid confusion
with a set of vectors, we write the frame vectors in a different font.

The volume element for the {ek}frame is defined by)

En = elJ\\ e2!\\'..!\\e n .) (4.92))

The grade-n multivector En is a multiple of the pseudoscalarfor the space
spannedby the {ek}'The fact that the vectors are independentguarantees
that En i=- O. Associatedwith any arbitrary frame is a reciprocalframe {ek}
defined by the property)

i Aie .eJ> == U>J') Vi, j == 1.. .n.) (4.93))

The 'KroneckerJ',J;,has value +1if i == j and is zerootherwise.The reciprocal
frame is constructedas follows:)

ej == (-1)j-le1J\\e2J\\\".!\\ej!\\\" .J\\e n E;;l,) (4.94))

where as usual the checkon ej denotesthat this term is missing from the ex-
pression. The formula for ej has a simpleinterpretation. The vector ej must
be perpendicularto all the vectors {ei,i i=- j }.To find this we form the exte-
rior productof the n - 1vectors {ei,i i=- j}.The dual of this returns a vector
perpendicularto all vectors in the subspace,and this duality is achievedby the
factor of En. All that remains is to fix up the normalisation. For this we recall
the duality resultsof section4.1.4and form)

el.e1 == el.(e2!\\\"'!\\en E;;l)== (eI!\\e2!\\\" '!\\en)E;;I== 1.) (4.95))

This confirms that the formula for the reciprocalframe is correct.)
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e3)

el !\\e2)

Figure 4.2 The reciprocalframe. The vectorsel,e2 and e3 form a non-
orthonormal frame for three-dimensional space.The vector e3 is formed

by constructing the el !\\ e2plane,and forming the vectorperpendicularto
this plane. The length is fixed by demanding e3 .e3== 1.)

4.3.1Application- crystallography)

An important application of the formula for a reciprocalframe is in crystal-
lography. If a crystal contains somerepeatedstructure defined by the vectors

el,e2,e3, then constructive interferenceoccursfor wavevectorswhosedifference
satisfies)

\037k == 27f(nl e1+ n2e2+ n3e3),) (4.96))

where nl,n2,n3 are integers.The reciprocalframe is defined by

1 e2/\\e3 2 e3/\\el 3 eI/\\e2
e == , e == , e ==

el/\\e2 /\\e3 el/\\e2 /\\e3 el/\\e2 /\\e3)
(4.97))

If we write)

e1/\\e2/\\ e3 == [eI , e2,e3]I,) (4.98))

where I is the three-dimensionalpseudoscalarand [el,e2,e3]denotesthe scalar
triple product,we arrive at the standardformula

I (e2/\\e3)I-I e2X e3e - - (4.99)-
[eI,e2,e3]

-
[eI,e2,e3]'

with similar resultsholding for e2 and e3. Herethe boldcrossX denotesthe vec-
tor crossproduct,not to be confusedwith the commutator product.Figure 4.2
illustrates the geometry involved in defining the reciprocalframe.)

4.3.2Components)

The basisvectors {ek}are linearly independent,so any vector a can be written

uniquely in terms of this set as)
. .

\037 \037a == a ei == aie .) (4.100))
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We continue to employ the summation conventionand summed indicesappear
once as a superscriptand once as a subscript.The set of scalars(aI,. .. , an) are
the componentsof the vector a in the {ek}frame. To find the components we
form)

a.ei == ajej.ei == aJ
8J

== ai) (4.101))
and)

a.ei== ajej .ei== aj8{ == ai.) (4.102))
Theseformulae explain the labelling schemefor the components.In many ap-
plications we are only interestedin orthonormal frames in Euclidean space.In
this casethe frame and its reciprocalare equivalent, and there is no need for
the distinct subscriptand superscriptindices. The notation is unavoidable in

mixed signature spaces,however,and is very useful in differential geometry, so
it is best to adopt it at the outset.

Combiningthe equations (4.100),(4.101)and (4.102)we seethat)
. .

\037 \037a.ei e == a.e ei == a.) (4.103))
This holds for any vector a in the spacespannedby the {ek}' This result
generalisessimply to arbitrary multivectors. First, for the bivector al\\b we have)

ei ei .(a 1\\ b) == ei ei .a b - ei ei .b a == ab- ba == 2a1\\ b.

This extendsfor an arbitrary grade-rmultivector Ar to give)

(4.104))

ei e\037 .Ar == rAr.) (4.105))
Sinceeiei== n, we also seethat)

ei ei
1\\ Ar == ei(e

i
Ar - ei .Ar) == (n - r)Ar .) (4.106))

Subtractingthe two precedingresultswe obtain,

eiArei == (-l)r(n - 2r)Ar.) (4.107))
The {ek}basisextendseasilyto providea basisfor the entire algebragenerated

by the basisvectors. We can then decomposeany multivector A into a set of
components through)

A ij...k == (ekI\\ej
. .

'I\\e\037)
.A) (4.108))

and)

'\"\"
- . kA ==

\037 Aij...ke\037 1\\. ..l\\e J I\\e .
i<j...<k)

(4.109))

The components A ij...k are totally antisymmetric on all indicesand are usually
referred to as the components of an antisymmetric tensor. We shall have more
to say about tensorsin following sections.)
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4.3.3Application-recoveringa rotor
As an application of the precedingresults, supposethat we have two sets of
vectors in three dimensions{ek}and {fk},k == 1,2,3. The vectors need not

be orthonormal, but we know that the two sets are relatedby a rotation. The
rotation is governedby the formula)

fk == RekRt) (4.110))

and we seeka simpleexpressionfor the rotor R. In three dimensionsthe rotor
R can be written as)

R == exp(-B/2)== 0- (3B,) (4.111))

where)

o == cos(IBI/2),)\037 ==
sin(IBI/2)

fJ IBI') (4.112))

The reverse is)

Rt == exp(B/2)== ex + j3B.) (4.113))

We therefore find that)

ekRt ek == ek(0+ {3B)ek

== 30- (3B
== 40 -Rt .) (4.114))

We now form)

fke
k == RekRt ek == 4exR- 1.) (4.115))

It follows that R is a scalar multiple of 1+ fke
k. We therefore establishthe

simple formula)

R = 1+ fkek

11+fkek
l)

7jJ

J(7jJ;j;)
,) (4.116))

where 7jJ
== 1+ fke

k . This compact formula recovers the rotor directly from

the frame vectors.A problemarisesif the rotation is through precisely1800 , in

which case7jJ vanishes. This casecan be dealt with simply enoughby considering
the image of two of the three vectors.)

4.4Linearalgebra)

Many key relations in physicsinvolve linear mappings between two, sometimes
different, spaces.Theseare the subjectof tensoranalysis in the standardlitera-
ture. Examplesincludethe stressand strain tensorsofelasticity,the conductivity
tensor of electromagnetismand the inertia tensorof dynamics.If one has only

met the study of linear transformations through tensor analysis, one could be)
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forgiven for thinking that the subjectcannot be discussedwithout a large dose
of indexnotation. The indicesrefer to components of tensors in someframe,
though the essenceof tensoranalysis is to establisha set of resultswhich are
independentof the choice of frame. In our opinion, this subject is much more
simply dealt with if one can avoidspecifyinga frame until it is absolutely neces-
sary. Perhapsunsurprisingly, it is geometric algebrathat provides preciselythe
toolsnecessaryto achievesuch a development.

In this sectionweusecapital,sans-serifsymbolsfor linear functions. This helps
to distinguish functions from their multivector argument. The dimension and
signature of the vector spaceis arbitrary unlessotherwise specified.We assume
that readersare familiar with the basicpropertiesof linear transformations in

the guiseof matrices.Suppose,then, that we are interestedin a quantity F
which maps vectors to vectors linearly in the samespace.That is, if a is a vector
in the spaceactedon by F, then F(a) lies in the samespace.The linearity of F
is expressedby)

F(Aa + I-lb)
== AF(a) + JLF(b),) (4.117))

for scalarsA and I-l and vectors a and b. Geometrically,we can think of F as an
instruction to take a vector and rotate/dilateit to a new vector. No frame or
components are requiredfor such a picture.A simpleexampleis provided by a
rotation, which can be written as)

R(a) == RaRt,) (4.118))
where R is a rotor.It is a simplematter to confirm that this map is linear.)

4.4.1Extensionto multivectors)

Onceone has formulated the action of a linear function on a vector, the obvious
next step is to let the function act on a multivector. In this way we extendthe
action of a linear function to the full geometricalgebradefinedby the underlying
vector space.Supposethat two vectors a and b are acted on by the linear
function F. The bivector a 1\\ b then transforms to F(a) 1\\ F(b). We take this as
the definition for the action of F on a bivector blade:)

F(al\\b) == F(a)I\\F(b).) (4.119))
Sincethe right-hand sideis the outer productof two vectors, it is also a bivector
blade (seefigure 4.3).The action on sums of bladesis defined by the linearity
of F:)

F(al\\b + cl\\d) == F(al\\b) + F(cl\\d).) (4.120))

Continuing in this manner, we define the action of F on an arbitrary bladeby)

F(al\\bl\\\" .I\\c) ==
F(a)I\\F(b)I\\\" 'I\\F(c).) (4.121))
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,,,
,)

a)

F(ai\\b))

Figure 4.3 The extendedlinear junction. The action of F on the bivector
a i\\ b results in the new plane F(a) i\\ F(b). This is the definition of F(a i\\ b).)

Extensionby linearity then definesthe action of F on arbitrary multivectors. By
construction, F is both linear over multivectors,)

F(;\\A + MB) == ;\\F(A) + MF(B),) (4.122))

and grade-preserving,)
F(Ar) == (F(Ar ))r ,) (4.123))

where Ar is a grade-rmultivector. A simpleexampleis provided by rotations.
We have already establisheda formula for the result of rotating all of the vectors
in a blade. For the extensionof a rotation we therefore have)

R(aAbA. ..Ac) == (RaRt) A (RbRt)A. ..A (RcRt)
== RaAbA.. 'AcRt.) (4.124))

It follows that acting on an arbitrary multivector A we have)

R(A) == RARt.) (4.125))

Again, it is simpleto confirm that this has the expectedproperties.)

4.4.2Theproduct)

The product of two linear functions is formed by letting a secondfunction act
on the result of the first function. Thus the action of the productof F and G is
definedby)

(FG)(a)== F(G(a))== FG(a).) (4.126))

The final expressionenablesus to removesomebracketswithout any ambiguity.
A priceto pay for removing indicesis that bracketsare often requiredto show)
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how calculations are ordered.Any convention that enablesbracketsto be sys-
tematically droppedis then well worth adopting. It is straightforward to show
that FG is a linear function if F and G are both linear:)

FG(;\\a + Mb) == F(;\\G(a) + MG(b)) == ;\\FG(a) + MFG(b).) (4.127))

Next we form the extensionof a product function. Supposethat H is given by
the productof F and G:)

H(a)== F(G(a))== FG(a).) (4.128))

It follows that)

H(aJ\\bJ\\\" .J\\c) ==
F(G(a))J\\F(G(b))J\\\" 'J\\F(G(c))

== F(G(a)J\\G(b)J\\\" 'J\\G(c))
==

F(G(aJ\\bJ\\\" 'J\\c)),) (4.129))

so the multilinear action of the productof two linear functions is the productof
their exterioractions.In dealing with combinations of linear functions we can
therefore write)

H(A) == FG(A),) (4.130))

sincethe meaning of the right-hand sideis unambiguous.)

4.4.3The adjoint)
Given a linear function F, the adjoint, or transpose,F is definedso that)

a.F(b) == F(a) .b,) (4.131))
for all vectors a and b. If F is a mapping from one vector spaceto another, then
the adjoint function maps from the secondspacebackto the first. In terms of
an arbitrary frame {ek}we have)

\342\202\254i

.F(a) == a.F(ei) ,) (4.132))
sowe can construct the adjoint using)

ad(F)(a)== F(a) == ei a.F(ei).) (4.133))

The notation of a bar for the adjoint, rather than a superscriptT or t, is slightly
unconventional, though it doesagreewith that of Hestenes& Sobczyk(1984).
The notation is very useful in handwritten work, where it is also convenientto
denote the linear function with an underline. Someformulae relating functions
and their adjoints have a neat symmetry when this overbar/underbar convention
is followed.)
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The operation of taking the adjoint of the adjoint of a function returns the

original function. This is verifiedby forming)

ad(F) (a) == e\037 a .F(ei) == ei ei.F(a) == F(a) .) (4.134))

The adjoint of a productof two functions is found as follows:)

ad(FG)(a) == ei a.FG(ei)== F(a).G(ei)ei

== GF(a).ei ei == GF(a).) (4.135))

The operation of taking the adjoint of a product therefore reversesthe order
in which the linear functions act. A symmetric function is one which is equal
to its own adjoint, F == F. Two particularly significant examplesof symmetric- -
functions are the functions FF and FF. To verify that these are symmetric we

form)

ad(FF)== ad(F)ad(F)== FF,) (4.136))

with a similar derivation holding for FF. Thesefunctions will be met again later
in this chapter.

The adjoint is still a linear function, so its extensionto arbitrary multivectors
is preciselyas expected:)

F(aJ\\bJ\\\" .J\\c) == F(a)J\\F(b)J\\\" 'J\\F(c).) (4.137))

If we now considertwo bivectors al J\\ a2 and bl J\\ b2, we find that)

(alJ\\a2).F(blJ\\b2)== al.F(b2) a2.F(b1)-al.F(bI) a2.F(b2)
== F(al).b2 F(a2).bl - F(al).bI F(a2).b2
== F(alJ\\ a2).(bI J\\b 2).) (4.138))

It follows that for two bivectors BIand B2)

B1.F(B2) == F(BI).B2.) (4.139))

This result extendsfor arbitrary multi vectors to give)

(AF(B))== (F(A)B).) (4.140))

This is a specialcaseof an even more general and powerful result. Considerthe

expreSSIon)

F(aJ\\b).c== F(a) F(b).c- F(b) F(a).c
== F(ab.F(c)-ba.F(c))
== F((aJ\\b).F(c)).) (4.141))

Building up in this way we establishthe useful results:)

Ar .F(Bs) == F (F(Ar ).Bs)
F(Ar ).Bs == F (Ar

.F(Bs)))

r < s,
r > s.)

(4.142))
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=>)
e3)

el)

Figure 4.4 The determinant. The unit cube is transformed to a par-
allelepipedwith sidesF(el),F(e2) and F(e3). The determinant is the
volume scale factor, so is given by the volume of the parallelepiped,
F(eI)I\\F(e2)I\\F(e3) = F(I).)

Thesereduceto equation (4.140)in the casewhen r == s. One way to think

of these formulae is as follows. In the expressionF(Ar) .Bs,with r > s,there
are r separateapplicationsof the function F on vectors. When the result is
contractedwith Bs, s of theseapplicationsare converted to adjoint functions F.
The remaining r - s applicationsact on the multivector AT .F(Bs), which has
grader - s.)

4.4.4The determinant)
Now that we have seen how a linear function defines an action on the entire
geometric algebra,we can give a very compact definition of the determinant.
The pseudoscalarfor any spaceis unique up to scaling,and linear functions are
grade-preserving, so we define)

F(I)== det (F) I.) (4.143))
It should be immediately apparent that this definition of the determinant is
much more compact and intuitive than the matrix definition (discussedlater).
The definition (4.143)shows clearly that the determinant is the volume scale
factor for the operation F. In particular, acting on the unit hypercube,the
result F(I) returns the directedvolume of the resultant object(seefigure 4.4).

As an exampleof the power of the geometric algebradefinition, considerthe
productof two functions, F and G. From equation (4.130)it follows that)

det (FG)I== FG(I)== det (G)F(I)== det (F) det (G)I,) (4.144))
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which establishesthat the determinant of the product of two functions is the

product of their determinants.This is one of the key propertiesof the deter-
minant, yet in conventionaldevelopments it is hard to prove. By contrast, the

geometricalgebraapproach establishesthe result in a few lines. Similarly, one
can easily establishthat the determinant of the adjoint is the same as that of
the original function,)

det (F) == (F(I)I-l ) == (IF(I-l )) == det (F).) (4.145))

Example4.1
Considerthe linear function)

F(a) == a + aa'!l!2,) (4.146))

wherea is a scalarand !Iand !2are a pair of arbitrary vectors.Construct the
action of F on a general multivector and find its determinant.

We start by forming)

F(aAb) == (a + aa.!I!2)A(b + ab.!1!2)
== aAb + a(b.!la-a.!lb)A!2
== aAb + a((aAb)'!I)A!2') (4.147))

It follows that)

F(A) == A + a(A'!I)A!2.) (4.148))

The determinant is now calculatedas follows:)

F(I) == I + a(I'!I)A!2
== I + a!l.!2I,) (4.149))

hencedet (F) == 1+ a!l.!2.)

4.4.5The inverse)

We now construct a simple,explicit formula for the inverseof a linear function.
We start by consideringa multivector B,lying entirely in the algebra definedby
the pseudoscalarI.For thesewe have)

det (F)IB == F(I)B== F (IF(B)),) (4.150))

wherewe have usedthe adjoint formulae of equation (4.142).The inner product
with a pseudoscalaris replacedwith a geometricproduct,sinceno other grades
are presentin the full product. ReplacingIB by A we find that)

det (F)A == F(IF(I-lA))) (4.151))

109)))



FOUNDATIONSOF GEOMETRICALGEBRA)

with a similar result holding for the adjoint. It follows that

F\037l (A) == IF(I-1A) det (F)-I,
F-I(A)== IF(I-1A) det (F)-I.)

(4.152))

Theserelations provide simple,explicit formulae for the inverse of a function.
The derivationof theseformulaeis considerablyquicker than anything available
in traditional matrix/tensoranalysis.)

Example4.2
Find the inverseof the function defined in equation (4.146).
With)

F(A) == A + a(A'!I)1\\12) (4.153))
we have)

(ArF(Br))== (ArBr)+ a(Ar(Br'II)1\\12)

== (ArBr)+ a(12.ArBrl1)') (4.154))
hence)

F(A) == A + aIII\\(12.A ).) (4.155))
It follows that)

F-I(A)== (IA + all1\\(12'(IA)))(1+ a!1.12)-I
== (A + all'(12I\\A))(l+ all'12)-1

a= A -
f f 121\\ (h.A).l+a I' 2)

(4.156))

Example4.3
Find the inverseof the rotation)

R(a) == RaRt,) (4.157))
where R is a rotor.

We have already seenthat the action of R on a general multivector is)

R(A) == RARt and R(A) == Rt AR) (4.158))
Hence)

det (R)I== RIRt == IRRt == I,
so det (R) == 1.It follows that

R-I(A)== IRtI-1AR == RtAR == R(a),)

(4.159))

(4.160))

so, as expected,the inverseof a rotation is the same as the adjoint. This is the
definition of an orthogonal transformation.)
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4.4.6 EigenvectoTsand eigenblades)
We assumethat readersare familiar with the conceptof an eigenvalueand eigen-
vectorofa matrix. All of the standardresultsfor thesehaveobviouscounterparts
in the geometric algebraframework. This subjectwill be exploredmore thor-

oughly in chapter11.Herewe give a simpleoutline, concentrating on the new

conceptsthat geometric algebraoffers. A linear function F has an eigenvectore
if)

F(e)== Ae.) (4.161))

The scalarA is the associatedeigenvalue. It follows that)

det (F -
AI) == 0,) (4.162))

which defines a polynomial equation for A. Techniques for finding eigenvalues
and eigenvectorsare discussedwidely in the literature.

In general, the polynomialequation for A will have complexroots.Traditional

developmentsof the subject usually allow theseand considerlinear superposi-
tions over the complexfield. But if one starts with a real mapping between real
vectorsit isnot clear that this formal complexificationisuseful. What one would

like would be a more geometric classificationof a general linear transformation.
This is provided by the notion of an eigenblade.We extend the notion of an

eigenvectorto that of an eigenbladeAr satisfying)

F(Ar) == AAr,) (4.163))

where Ar is a grade-rbladeand A is real.One immediate exampleis the pseu-
doscalar,for which A == det (F).More generally,each eigenbladedeterminesan

invariant subspaceof the transformation.
As an exampleof the geometric clarity of the eigenbladeconcept,considera

function satisfying)

F(e1)== Ae2, F(e2) == -Ae 1.) (4.164))

Traditionally, one might write thate1::f:ie2 are eigenvectorswith eigenvalues
=fiA, where i is the unit imaginary. But the identity)

F(elAe2)== A
2elAe2) (4.165))

identifies the plane elA e2 as an eigenbivectorof F. The role of the complex
structure inherent in F is played by the unit bivector elAe2. A linear function

can have many distincteigenbivectors,each acting as a distinct imaginary for

its own plane. Replacing all of theseby a singlescalarimaginary throws away a
considerableamount of useful information.)
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4.4.7Symmetricand antisymmetricfunctions
An important aspectof the theory of linear functions is finding natural, canon-
icalt expressionsfor a function. For symmetric functions in Euclideanspace
this form is via its spectraldecomposition.If e1, and ej are eigenvectorsof a
function, with eigenvaluesAi and Aj, we have (no sumsimplied))

ei .F(ej) == ei'(Aj ej) == Aje1,.ej .) (4.166))

But if F is symmetric, this also equals)

F(ei).ej== F(ei).ej== (Aiei).ej== Aiei.ej.) (4.167))

It follows that)

(Ai
-

AJ )ei.eJ == 0,) (4.168))

so eigenvectorsof a symmetric function with distinct eigenvaluesmust be or-
thogonal.

If we admit the existenceof complexeigenvectorsand eigenvalueswe alsofind

that (no sums))

e*.F(e) == Ae*'e == F(e*).e == A
*e*.e.) (4.169))

So for any symmetric function we alsohave)

(A
-A*)e*'e== O.) (4.170))

Provided e* .e =I- 0 we can concludethat the eigenvalue,and hence the eigen-
vector, is real.In Euclideanspacethis inequality is always satisfied, and every
symmetric function on an n-dimensionalspacehas a spectraldecompositionof
the form)

F(a) == AI P1(a)+ A2P2(a)+ ...+ AmPm(a).) (4.171
))

HereA1 < A2 < ... < Am are the m distincteigenvalues(m < n) and the Pi are
projectionsonto each of the invariant subspacesdefinedby the eigenvectors.For
the caseof a projectiononto a one-dimensionalspacewe have simply)

Pi (a) == a.ei ei.) (4.172))

The eigenvectorsform an orthonormal frame, which isthe natural frame in which

to study the linear function. If two eigenvaluesare the same,it is always possible
to choosethe eigenvectorsso that they remain orthogonal. In non-Euclidean
spaces,such as spacetime,one has to be carefuldue to the possibilityof complex
null vectors.Thesecan have e* . e == 0, so the above reasoningbreaksdown and)

t The origin of the use of the word canonical is obscure-seefor example the comments in
Goldstein (1950).In mathematical physics, a canonical form usually refers to a standard
way of simplifying an expression without altering its meaning.)
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onecannot guarantee the existenceof an orthonormal frame of eigenvectors.We

will encounter examplesof this when we study gravitation.
Antisymmetric functions have F(a) == -F(a). It follows that)

a.F(a)== F(a).a== -F(a).a== O.) (4.173))

The natural way to study antisymmetric functions is through the bivector)

1 .
F == _e1,

;\\ F(e.)2 2 ,) (4.174))

where the {ek}are an arbitrary frame for the spaceactedon by F. The bivector
F is independentof the choice of frame, so is an invariant quantity. One can

easilyconfirm that the bivector F has the same number of degreesof freedom
as F. If we now form 2a.Fwe find that)

2a.F == a.(ei
;\\ F(ei))

== a.ei F(ei)-eia.F(ei)
== F(a .ei ei)+ ei ei.F(a)
== 2F(a).) (4.175))

The action of an antisymmetric function therefore reducesto contracting with

the characteristicbivectorF:)

F(a) == a.F.) (4.176))

The problemof reducing an antisymmetric function to its simplestform reduces
to that of splitting F into a set of commuting blades:)

F == A1PI + .. .+ AkPk ,) (4.177))

where k < n/2 and each of the Pi is a unit blade. This decompositionis always

possiblein Euclideanspace,though the answer is only unique if the bladesall

have different magnitudes. Each component bladeof F is an eigenbladeof F

and determinesan invariant subspace.Within this subspacethe effect of F is

simply to rotate all vectors by :!::90\302\260,
and to scalethe result by the magnitude

of the eigenblade.In non-Euclidean spacessuch a decompositionis not always

possible.)

4.4.8The singularvalue decomposition)

For linear functions of no symmetry a number of alternative canonicalforms can
be found. Among these,perhapsthe most useful is the singular value decompo-
sition. We start with an arbitrary function F and restrict the discussionto the
casewhere F acts on an n-dimensional Euclideanspace.We alsosupposethat

det (F) i-0; the caseofdet (F) == 0 iseasilydealt with by separatingout the space)
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which is mappedonto the origin, and working with a reducedfunction acting in

the subspaceover which F is non-singular. We next form the function D by)

D(a)== FF(a).) (4.178))

This function is symmetric and has n orthogonal eigenvectorswith real, positive
eigenvalues.The fact that the eigenvaluesare positive follows from)

FF (e)== Ae ::::}F(e).F(e) == Ae 2
.) (4.179))

Since(in Euclideanspace)the squareof any vector isa positivescalarwe seethat
A must be positive.The assumption that det (F) i-0 rules out the possibilityof
any eigenvaluesbeingzero.It follows that we can write)

n

D(a)== LAia.eiei,
i=l)

(4.180))

where the {ei}are the orthonormal frame of eigenvectors. Degenerateeigen-
values are dealt with by picking a set of arbitrary orthonormal vectors in the
invariant subspace.

The linear function D has a simple(positive) squareroot,)
n

D1/2== LA:/
2a.eiei

i=I)
(4.181))

and this is alsoinvertible,)
n

D
-I/2 _ '\"\"'\" \\ -1/2-

\037 Ai a.eiei'
i=I)

(4.182))

We now set)

5 == FD-1/2.) (4.183))

This satisfies)

S5== D-1/2FFD-I/2 == D-I/2D D-1/2
== I

,) (4.184))

where I is the identity function. It follows that 5 is an orthogonal function. The
function F can now be written)

F == 5D1/2.) (4.185))

This representsa seriesof dilations along the eigendirectionsof D, followedby a
rotation.

If the linear function F ispresentedas an n x n matrix of components in some
frame, then one usually includesa further rotation R to align this arbitrary frame
with the frame of eigenvectors.In this caseone writes)

F == 5A 1/2R,) (4.186))
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where A is a diagonal matrix in the arbitrary coordinateframe. This writes a
matrix as a dilation sandwichedbetween two rotations, and is calledthe singular
value decompositionof the matrix. An arbitrary linear function in n dimensions
has n2 degreesof freedom. The singular value decompositionassigns2 x n(n-
1)/2oftheseto the two orthogonal transformations Rand 5,with the remaining n

degreesof freedomcontained in the dilation A. The singular value decomposition
appearsfrequently in subjectssuch as data analysis, where it is often used in

connectionwith analysing non-square matrices.)

4.5Tensorsand components

Many modern physicstextbooksare written in the language of tensoranalysis.
In this approach one often works directly with the components of a vector, or
linear function, in a chosencoordinateframe. The invarianceof the laws under
a change of frame can then be used to advantage to simplify the component
equations. Sincethis approach is so ubiquitous it is important to establishthe

relationshipbetween tensoranalysis and the largely frame-freeapproach of the

present chapter.We start by analysing Cartesiantensors,and then move onto
the more general caseof an arbitrary coordinate frame.)

4.5.1Cartesiantensors)

The subjectof Cartesiantensorsariseswhen we restrict our frames to consist
only of orthonormal vectors in Euclideanspace.For thesewe have)

ei .ej == 6ij,) (4.187))

so there is no distinction between frames and their reciprocals.In this casewe
can dropall distinction between raisedand loweredindices,and just work with

all indiceslowered.Provided both frameshave the same orientation, a new frame
is obtained from the {ek}frame by a rotation,)

e;== ReiRt == Aijej.) (4.188))

HereR is a rotor and A ij are the components of the rotation defined by R:)

A ij == (ReiRt).ej.) (4.189))

It follows that)

AijAik == (ReiRt)'ej(ReiRt) .ek
== (RtejR).(RtekR)== 6jk,) (4.190))

and similarly)

AikAjk == 6ij.) (4.191))
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A vector a has components ai == ei'a and these transform under a change of
frame in the obviousmanner,)

I I Aai == ei.a == ijaj.) (4.192))

It is important to realisehere that it is only the componentsof a that change,not
the underlying vector itself. The change in components is exactly cancelledby

the change in the frame. Many equations in physicsare invariant if the vector
itself is transformed, but this is the result of an underlying symmetry in the
equations,and not of the freedomto choosethe coordinatesystem. Thesetwo

conceptsshould not be confused!
Extendingthis idea,we define the components of the linear function F by)

F..-e..F(e .)ZJ
-

Z J') (4.193))

The result of this decompositionis an n x n array of components,which can be
storedand manipulated asa matrix. This definition ensuresthat the components
of the vector F(a)are given by)

ei.F(a) == ei'F(ajej) == Fijaj ,) (4.194))

which is the usual expressionfor a matrix acting on a column vector. Similarly,
if F and G are a pair of linear functions, the componentsof the productfunction
FG are given by)

(FG)ij == FG(ej).ei== G{ej).F(ei)
== G(ej ) .ekek .F(ei)== Fik Gkj .) (4.195))

This recoversthe familiar rule for multiplying matrices.If the frame is changed
to a new rotated frame, the components of the tensortransform in the obvious
way:)

F\037j

== AikAjl Fkl,) (4.196))

where the prime denotesthe components in the new (primed)frame. Objects
with two indicesare referred to as rank-2 tensors.Rank-l tensorsare vectors,
rank-3 tensorshave three indices,and so on. Sincerank-2 tensorsappearregu-
larly in physicsthey are often referred to simply as tensors.Also, it is usual to
let the term tensorrefer to either the component form Fij or the abstractentity

F.)

For Cartesiantensorsthere are two important tensorswhich arise regularly
in computations.Theseare the two invariant tensors.The first of these is the
Kronecker8, which transforms as)

8\037j

== AikAjl8kl == AikAjk == 8ij .) (4.197))

The componentsofthe identity function are thereforethe same in all orthonormal
frames (and are thoseof the identity matrix in all cases).The secondinvariant is)
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the alternating tensorEij...k,where the number of indicesmatches the dimension
of the space.This is totally antisymmetric and is defined as follows:)

1 i,j, ...,k == even permutation of 1,2,...,n

Eij...k== -1 i,j, . ..,k == odd permutation of 1,2,. .., n .

o otherwise)

(4.198))

The order of a permutation is the number of pairwiseswapsrequiredto re-
turn to the original order 1,2,...,n. If an even number of swapsis required
the permutation is even, and similarly for the odd case.In three dimensions
even permutations of 1,2,3coincidewith cyclic orderingsof the indices. The
determinant of a matrix can be expressedin terms of the alternating tensorvia)

Fai FJ3j'\" F,kEaJ3...,== det (F) Eij...k') (4.199))

Given this result, it is straightforward to prove the frame invariance of the al-
ternating tensorunder rotations:)

E\037j\"'k
== Aia AjJ3

.. .Ak,EaJ3...,== det (A) Eij...k.) (4.200))

But sinceA ij is a rotation matrix it has determinant +1,so the tensoris indeed
invariant.)

4 \302\2675.2The determinantrevisited
We should now establishthat the definition of the determinant (4.199)agrees
with our earlier definition (4.143).To prove this we first needthe result that)

Eij...k== ei!\\ej.. .!\\ek It,) (4.201))

where I == ele2... en and the {ek}form an orthonormal frame. The right-
hand side of (4.201)is zero if any of the indicesare the same,becauseof the

antisymmetry of the outer product. If the indicesform an even permutation of
1,2,. .., n we can reorderthe vectors into the orderele2. ..en == I, in which case
the right-hand sideof (4.201)returns +1.Similarly, any anticycliccombination
of 1,2, .. ., n returns -1.Together theseagree with the definition (4.198)of the
alternating tensorEij...k.We can now rearrange the left-hand sideof (4.199)as
follows:)

FaiFJ3j'\" F,kEaf3...,== FaiFf3j'\" F,k ea !\\ef3\" '!\\e,It
== F(ei)!\\F(ej)'\"F(ek) It
== det (F) ei!\\ej . ..!\\ek It
== det (F) Eij...k,) (4.202))

which recoversthe expectedresult.
We assumethat most readersare familiar with the varioustechniquesemployed)
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when computing the determinant of an n x n matrix. These can be found

in most elementary textbookson linear algebra.It is instructive to seehow

the same results arise in the geometric algebra treatment. We have already
establishedthat the determinant of the productof two functions is the productof
the determinants, and that taking the adjoint doesnot change the determinant.
To establisha further set of resultswe first introduce the (non-orthonormal)
vectors {fi},)

fi F(ei), (4.203)

so that

Fij == ei'fj. (4.204))

From equation (4.143)the determinant of F can be written)

det (F) == (f1/\\f2/\\\" ./\\fn).(en /\\.. '/\\e2/\\e1)') (4.205))

Expandingthis productout in full recoversthe standardexpressionfor the de-
terminant of a matrix. The first result we seeis that swapping any two of the

{fi}changes the sign of the determinant. This is the same as swapping two

columns in the matrix Fij . Sincematrix transpositiondoesnot affect the result,
the sameis true for interchanging rows.

Next we single out one of the {ek}vectors and write)

'+1 ,,
( )det (F) == (-l)J (en /\\...ej.../\\e1)'ej.(fi/\\.../\\fn))

n)

'\"\"\"
'+k \"

\"

== L...,.(-1)J ej.fk(en /\\...ej\" ./\\e1).(f1/\\'\"fk\" '/\\fn)'
k=l)

(4.206))

The final part of each term in the sum correspondsto an (n - 1)x (n - 1)
determinant, as can be seenby comparing with (4.205).This is equivalent to
the familiar expressionfor the expansionof the determinant by the jth row. A

further useful result is obtainedfrom the identity)

f1/\\' . ./\\ (fj + ;\\fk) /\\. . ./\\ fn == f1/\\' ../\\ fj /\\. ../\\ fn j =I- k.) (4.207))

This result means that any multiple of the kth row can be addedto the jth row
without changing the result.The sameis true for columns. This is the key to
the method of Gaussianelimination for finding a determinant. In this method
the matrix is first transformed to upper (or lower) triangular form, so that the
determinant is then simply the productof the entries down the leadingdiagonal.
This is numerically a highly efficient method for calculating determinants.We

can continue in this manner to give conciseproofs of many of the key resultsfor
determinants.For a useful summary of these,seeTurnbull (1960).

To seehow theseformulaealsolead to the familiar expressionfor the inverse)
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of a matrix, considerthe decomposition:)

F;;l== ei.F-I(ej)- -I== (eieIA...Aen F(enA\" .Aelej))det(F)
== (_l)i+j (F(elA'\"ei\" .Aen ) enA...ej...AeI)det(F)-I.) (4.208))

The term enclosedin angular bracketsis the determinant of the (n -1)x (n -1)
matrix obtainedfrom F

ZJ by deleting the ith column and jth row. This is the
definition of the i,j cofactorof Fij.Equation (4.208)showsthat the components
of FijI are formed from the transposedmatrix of cofactors,divided by the deter-
minant det (F) -the familiar result.Similarly, all other matrix formulae have

simple and often elegant counterpartsin geometricalgebra.Further examplesof
these are discussedin chapter11.)

4.5.3Generaltensors)

We now generalisethe precedingtreatment to the caseof arbitrary basissets
in spacesof arbitrary (non-degenerate)signature. One reasonfor wanting to
dealwith non-orthonormal frames is that theseregularly arisewhen working in

curvilinear coordinatesystems.In addition, in mixedsignature spacesone has no

option sinceit is impossibleto identify a frame with its reciprocal.Suppose,then,
that the vectors {ek}constitute an arbitrary frame for n-dimensionalspace(of
unspecifiedsignature).The reciprocalframe is denoted{ek}and the two frames
are related by)

i \037ie.ej==uj') (4.209))

Equation (4.94)for the reciprocalframe is general and still holdsin mixed sig-
nature spaces.

As describedin section4.3.2,the vector a has components (aI,a2
, . .., an)

in the {ek}frame, and (aI,a2, ..., an) in the {ek} frame. When working with

generalcoordinateframes we always ensurethat upperand lowerindicesmatch
separately on either side of an expression.Supposewe now form the inner

product of two vectors a and b. We can write this as)

a.b== (aiei)'(bjej) == aibj ei.ej == aibj <5f
== aibi .) (4.210))

Thegeneral rule is that sumsare only taken over pairsof indiceswhere one is a
superscriptand the other a subscript.Another way to write an inner productis
to introduce the metric tensorgij:)

gij == ei'ej.) (4.211))

In terms of its components gij is a symmetric n x n matrix. The inversematrix)
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is written as gij and is given by)

9
ij :=:ei .ej

.) (4.212))

It is easily verified that this is the inverseof gij:)

ik i k i i
9 gkj == e .e ek'ej== e .ej== 6j') (4.213))

Employing the metric tensorwe can write the inner productof two vectors in a
number of equivalent forms:)

a .b - ai b - a .bi - ail..1
g..- a .b _ gij-

1,

-
1,

- if 1,)- 1,) .) (4.214))

Of course,all of theseexpressionsencodethe same thing and, unlessthere is a

particular reasonto introduce a frame, the index-freeexpressiona.b is usually
the simplestto use.

The same ideasextendto expressingthe linear function F in a general non-
orthonormal frame. We let F act on the frame vector ejand find the components
of the result in the reciprocalframe. The components are then given by)

F..- e'.F(e.)1,)- 1, )') (4.215))

Again, the set of numbers Fij are referred to as the components of a rank-2
tensorand form an n x n matrix, the entries of which dependon the choiceof
frame. Similarexpressionsexistfor combinationsof frame vectors and reciprocal
vectors, for example,)

Fij == F(ej) .ei
.) (4.216))

Oneuseof the metric tensoris to interchange between theseexpressions:).. . k Z\"k'Z
F'tJ == e't.F(e))== e't.e ek.F(eZe.eJ):=:g't gJ FkZ') (4.217))

Again, we have at our disposala variety of different ways of encoding the infor-

mation in F. In terms of the abstract conceptof a linear operator,the metric
tensorg'tJ is simply the identity operatorexpressedin a non-orthonormal frame.

If Fij are the components of F in some frame then the components of Fare
given by)

Fij == F(ej).ei== ej.F(ei)== Fji .) (4.218))

That is,viewedas a matrix, the componentsof F are found from the components
of F by matrix transposition.For mixedindex tensorswe have to be slightly more

careful, as we now have)

Fij == F(ej ) .ei == ej.F(ei) == Fj i.) (4.219))

If F is a symmetric function we have F :=:F. In this casethe component matrices

satisfy)

Fij == F(ej).ei== F(ei).ej== Fji ,) (4.220))
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so the components Fij form a symmetric matrix. The sameis true of Fij == Fji,
but for the mixed tensor Fij we have Fij == Fj i.

The components of the product function FG are found from the following

rearrangement:)

(FG)ij == FG(ej).ei== G(ej).r=(ei)
k - k

== G(ej).eke .F(ei)== Fi Gkj .) (4.221))

Provided the correct combination of subscriptand superscriptindicesis used,
this can be viewed as a matrix product. Alternatively, one can work entirely
with subscriptedindices,and include suitablefactors of the metric tensor,)

(FG)ij == FikGljgkl.) (4.222))

Higher rank linear functions give rise to higher rank tensors.Suppose,for

example,that </J(aI,a2,a3) is a scalarfunction of three vectors, and is linear on
eachargument,)

</J(Aal + Jlb, a2,a3) == A</J(al, a2,a3) + Jl</J(b, a2,a3), etc.) (4.223))

The components of this define a rank-3 tensorvia)

</Jijk
==

</J( ei,ej,ek)') (4.224))

Using similar schemesit is a straightforward matter to set up a map between
tensor equations and frame-freeexpressionsin geometric algebra.)

4.5.4Coordinatetransformations
If a secondnon-orthonormal frame {fa}is introduced we can relate the two
frames via a transformation matrix fai:)

f f !a\037

== fa .e\037

,ai == a'ei ,) (4.225))

where Latin and Greekindicesdistinguish the components in one frame from

the other.Thesematricessatisfy)

!ai!aj == fa .eifa .ej == ei.ej ==
<Sf) (4.226))

and)

!ai!!3i == fa .eif!3.ei == fa .f!3==
8\037.) (4.227))

The decompositionof the vector a in terms of theseframes gives).. .
\037 \037 fa f \037 f faa == a ei == a ei'a == a ai .) (4.228))

If follows that the transformation law for the components is)

aa == !aia \037

,) (4.229))
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with similar expressionsholding for the superscriptedcomponents.
Theseformulaeextendsimply to include linear functions. For example,we see

that)

Fa,B == faif,Bj Fij .) (4.230))

Again, similar expressionshold for superscriptsand for mixtures of indices.In
particular we have)

,B _ i,B jFa - fa f jFi .) (4.231))

Expressedin terms of matrix multiplication, this would be an equivalencetrans-
formation. Of course,the abstract frame-free function F is unaffected by any

change of basis. All that changes is the particular representationof the function

in the chosencoordinate system.Any setof n2 numbers with this transformation

property are calledthe componentsof a rank 2 tensor,the implicationbeingthat
the underlying function is frame-independent.

In conventional accounts, the subject of tensors is often built up by taking
the transformation law as fundamental. That is, a vector (rank-l tensor) is

defined as a set of components which transform according to equation (4.229)
under a change of basis. Onceone has the toolsavailable to treat vectors and
linear operationsin a frame-free manner, such an approach becomesentirely
unnecessary.The defining property of a tensor is that it representsa genuine
geometricobject(or operation) and doesnot dependon a choiceof frame. Given

this, the transformation laws (4.229)and (4.231)follow automatically. In this

bookthe name tensor is appliedto any frame-independentlinear function, such
as F. We will encounter a variety of such objectsin later chapters.)

4.6Notes)

The realisation that geometric algebrais a universal tool for physicswas a key

point in the modern developmentof the subject,and was first strongly promoted
by David Hestenes(figure 4.5).Before his work, physicists'sole interaction
with geometric algebrawas through the quantum theory of spin. The Pauli
and Diracmatricesform representationsof Clifford algebras,a fact that was
realisedas soonas they were introduced. But in the 50 years sinceClifford's

original idea,the geometry behindhis algebra had beenlost as mathematicians
concentrated on its algebraicproperties.This discoveryof the Pauli and Dirac
matrices thus gave rise to two mistaken beliefs. The first was that there was

something intrinsically quantum-mechanical in the non-commutativeproperties
of the matrices.This is clearly not the case.Clifforddiedlong before quantum

theory was first formulated and was motivated entirely by classicalgeometry,
and his algebrais today routinely employed in a range of subjectsfar removed
from quantum theory.)
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Figure 4.5 David Hestenes.Inventor of geometriccalculusand first to
draw attention to the universal nature of geometricalgebra. He wrote

the influential Space-Time Algebra in 1966,and followed this with a fully

developedformalism in Clifford Algebra to GeometricCalculus (Hestenes
& Sobczyk,1984).This was followed by the (simpler) New Foundations

for ClassicalMechanics,first published in 1986(secondedition 1999).In
a seriesof papersHestenesand coworkers showed how geometricalgebra
could beappliedin the study of classicaland quantum mechanics,electro-
dynamics, projectiveand conformal geometry and Liegroup theory. More
recently, he has advocatedthe useof geometricalgebrain the field of com-
puter graphics.)

The secondwidespreadbeliefwas that matrices werecrucial to understanding
the propertiesof Cliffordalgebras.This too iserroneous.The geometricalgebra
of a finite-dimensionalvector spaceis an associativealgebra,soalways has a ma-
trix representation.But thesematrices add little, if anything, to understanding
the propertiesof the algebra.Furthermore, an insistenceon working with ma-

tricesdetersone from applying geometricalgebrato anything beyond the lowest

dimensionalspaces,becausethe sizeof the matrices increasesexponentiallywith

the dimension of the space.Working directly with the elements of the algebra
imposesno such constraints,and one can easily apply the ideasto spacesof any

dimension,including infinite-dimensionalspaces.
Mathematicians had few such misconceptions,and Atiyah and others devel-

oped Clifford algebraas a powerful tool for geometry. Even in these develop-
ments, however, the emphasiswas usually on Cliffordalgebraas an extratool

on top of the standardtechniquesfor solving geometricproblems.The algebra
was seldomused as completelanguage for geometry. The picture first started
to changewhen HestenesrecoveredClifford'soriginal interpretation of the Pauli)
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matrices.This led Hestenesto question whether the appearanceof a Clifford
algebrawas telling us something about the underlying structure of quantum
theory. Hestenesthen went on to promote the universal nature of the algebra,
which he publicisedin a seriesof booksand papers.Acceptance of this view
is growing and, while not everyone is in full agreement, it is now hard to find

an area of physicsto which geometric algebracannot or has not been applied
without some degreeof success.)

4.7Exercises)
4.1 Prove that the outer productof a set of linearly dependentvectors van-

ishes.
4.2 In a Euclideanspace,Gram-Schmidtorthogonalisationproceedsby suc-

cessivelyreplacingeach vector in a set {ai}by one perpendicularto the
precedingvectors.Prove that such a vector is given by)

i-I
\037 a.ei

ei == ai \037 \037ei'e-j=I \037)

Prove that we can alsowrite this as)

ei == ai/\\ai-I/\\\" ./\\al(ai-I/\\\" ./\\al)-I.)
4.3 Prove that)

(a/\\b) x (c/\\d) == b.ca/\\d -a.cb/\\d + a.d b/\\c -b.d a/\\c.

4.4 The length of a vector in Euclideanspaceis definedby lal == y/(a
2), and

the angle 0 between two vectors is defined by)

cos(O)== a.b/(Iajlbl).)

Show that a linear transformation F which leaves lengths and angles
unchanged must satisfy)

F == F-I .)

What does this imply for the determinant of F? A reflection in the
(hyper)planeperpendicularto n is defined by)

R(a) == -nan,
where n2 == 1.Show that R == R-I , and that R has determinant -1.

4.5 For the reflection in the precedingquestion introduce a suitablebasis
frame and expressF in terms of a matrix Fij . Verify the resultsfor the
determinant and inverseof this matrix. (Hint -align one of the basis
vectors with n.))
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4.6 A rotor R is defined by)

R == exp(-..\\B/2).)

By Taylor expandingin .\\, prove that the operation)

R(A) == RARt)

preservesthe grade(s)of the multivector A.

4.7 Showthat the plane B is unchanged by the rotation definedby the rotor

R == exp(B/2).
4.8 Analyse the propertiesof the matrix)

G)

2sinh( U)
)1 .)

To what geometric operation does this matrix correspond? Can this

matrix be diagonalised,and does it have a sensiblesingular value de-

composition?
4.9 Supposethat the linear transformation F has a complexeigenvectore+if

with associatedeigenvectora + ij3. What is the effectof F on the e/\\f
plane?How should one interpret the action of F in this plane?

4.10 Supposethat the vectors {ek}form an orthonormal basisframe for n-

dimensionalEuclideanspace.What is the effectof the transformation)

T(a)== a + ..\\a.eIe2

on the rows of the matrix Fij formed by decomposingF in the {ek}
frame? Use this result to prove that the determinant of a matrix is

unchanged by adding a multiple of one row to another.)
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Relativityand spacetime)

The geometricalgebraof spacetimeis calledthe spacetimealgebra.Historically,
the spacetimealgebrawas the first modern implementationof geometricalgebra
to gain widespreadattention amongst the physicscommunity. This is because
it provides a synthetic framework for studying spacetimephysics. There are
two main approachesto the study of geometry,which can be looselyreferred to
as the algebraicand synthetic traditions. In the algebraic approach one works
entirely with the components of a vector and manipulates thesedirectly. Such
an approach leadsnaturally to the subjectof tensors,and placesconsiderable
emphasison how coordinatestransform under changes of frame. The synthetic
approach,on the other hand, treats vectors as single,abstract entities x or a,
and manipulates thesedirectly. Geometricalgebrafollows in this tradition.

For much of modern physicsthe synthetic approach has come to dominate.
The most obviousexamplesof this are classicalmechanicsand electromagnetism,
both of which helpedshape the development of abstract vector calculus. For
these subjects,presentationstypically perform all of the requiredcalculations
with the three-dimensionalscalarand crossproducts.We have argued that ge-
ometric algebraprovides extraefficiencyand clarity, though it it not essential
to a synthetic treatment of three-dimensional physics. But for spacetimecal-
culations the crossproductcannot be defined. Despitethe obvious advantages
of synthetic treatments, most relativity texts revert to a more basic,algebraic
approach involving the components of 4-vectors and Lorentz-transform matri-
ces. Suchan approach has trouble encodingsuch basicnotions as a plane in

spacetimeand, unsurprisingly, doesa very poorjob of handling the dynamics of
extendedbodies.

To develop a generally applicablealgebra of vectors in spacetimeone has
little option but to use either geometric algebra,or the language of exterior
forms (which is essentially a subset of geometric algebra which only employs
the interior and exterior products).This is why relativistic physicsstill tends)
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to dominate the literature of applicationsof geometric algebra.Many aspects
of specialrelativity becomeclearerwhen viewed in the language of geometric

algebra and, crucially, a wealth of new computational tools is provided which

dramatically simplify relativistic problems.)

5.1An algebrafor spacetime
It is not our intention in this chapter to give a fully self-containedintroduction to

relativity. Suchan account can be found in the variousbookslistedat the endof

this chapter.In brief, a seriesof famous experimentsconductedin the latter half

of the nineteenth century showed that light did not appear to behave in quite
the expected,Newtonian manner. This led Einsteinto his 'secondpostulate',
that the speedof light e is the samefor all inertial (non-accelerating)observers.
Combinedwith Einstein's'first postulate',the principleof relativity, one is led

inexorably to specialrelativity. The principleof relativity states simply that

all inertial frames are equivalent for the purposesof physical experiment.An

immediateconsequenceof thesepostulatesis that the underlying geometry is no

longer that of a (Euclidean)three-dimensionalspace,but insteadthe appropriate
arena for physicsis (Lorentzian) spacetime.

To understandwhy this is the case,supposethat a sphericalflash of light is

sent out from a source,and this event is describedin two coordinate frames. We

discussthe conceptof a frame, as distinct from a single observer, later in this

chapter.The frames are in relative motion, and their origins coincidewith the

location of the sourceat the moment the light is emitted. At this instant both

frames alsoset theii\037 time measurements to zero.In the first frame the sourceis

at rest and the light expandsradially accordingto the equation)

r == et.) (5.1))

But the secondframe must also recorda radially expandingshell of light since
the relative velocityof the sourcehas no effecton the speedof light. The second
frame therefore seeslight expandingaccordingto the equation)

r' == et'.) (5.2))

Sincethe two frames are in relative motion, points at a given fixed r cannot

coincidewith those at a fixed r'. So points reachedat the same time in one

frame are reachedat different times in the secondframe. But in both frames

the light lieson a sphericalexpandingshell.Sothe one thing that is commonto

both frames is the value of)

(et)2- r2 == (et')2- (r')2== o.) (5.3))

This defines the invariant interval of specialrelativity and is the fundamental

algebraicconceptwe needto encode.)
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The precedingargument shows us that the algebrawe need to construct is
generatedby four orthogonal vectors

{'\"YO, '\"YI ,,2,,3}satisfying the algebraicre-
lations)

'\"Y5
== 1, '\"YO''\"Yi

== 0, '\"Yi.,j
== -6ij,) (5.4))

where i and j run from 1to 3.Theseare summarised in relativistic notation as)

'J-L ',v ==
TJJ-LV

== diag(+ - - -), /-l, v == 0, . .. ,3.) (5.5))

The notation {,J-L} for a spacetimeframe is a widely adopted convention in

the spacetimealgebraliterature. The notation is borrowed from Dirac theory
and we continue to employ it in this book. We have alsochosen the 'particle
physics'choice of signature, which has spacelikevectors with negative norm.
Generalrelativists often work with the oppositesignature and swap all of the
signsin

TJJ-Lv' Both choiceshave their advocates and all (known) physical laws
are independentof the choiceof signature.Throughout we useLatin indicesto
denotethe range 1-3and Greekfor the full spacetimerange 0-3.

The {'J-L}vectors are dimensionless,as is clear from their squares. Sincewe
are in a spaceof mixed signature, we must adopt the conventionsof section4.3
and distinguish between a frame and its reciprocal.For the {,J-L}

frame the
reciprocalframe vectors, {'\"YJ-L}, have ,0== ,0and ,i== -,i'A general vector in

the spacetimealgebracan be constructedfrom the {'J-L}vectors. A spacetime
event, for example,is encodedin the vector x,which has coordinatesxJ-L in the
{'J-L}frame. Explicitly, the vector x is)

x == xJ-L,J-L

== ct,o+ X\037'\"Yi,) (5.6))

which has dimensionsof distance. From this point on it will be convenient to
work in units where the speedof light cis 1.Factorsof ccan then be insertedin

any final result if the answer is requiredin different units. The mixed signature
means that the squareof a vector (a, say) is no longer necessarilypositive, and
insteadwe have)

a2
== aa == Ela

2
1.) (5.7))

E is the signature of the vector and can be :!:1or O. The mixed signature does
not affect the validity of the axiomatic development and resultsof chapter 4,
which made no referenceto the signature.)

5.1.1The bivectoralgebra
There are 4 x 3/2 == 6 bivectors in our algebra. These fall into two classes:
those that contain a timelike component (e.g.,iA '0),and those that do not
(e.g.,iA ,j)'For any pair of orthogonal vectors a and b, a.b== 0, we have)

(a A b)
2 == abab == -abba == -a2b2

.) (5.8))
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Time)

,0)

Space)

,1)

Figure 5.1A spacetimediagram. Spacetimediagrams traditionally have

the t axisvertical, so a suitable bivector for this plane is ,1,0.)

The two typesof bivectors therefore have different signsof their squares.First,
we have)

('Yi!\\'\"'(j)2
== _'i2'\"'(j2

== -1,) (5.9))

which is the familiar result for Euclideanbivectors. Each of these generates
rotations in a plane. For bivectors containing a timelike component, however,
we have)

(,i!\\'\"YO)2
== -'i2'02== +1.) (5.10))

Bivectorswith positive squarehave a number of new properties.One immediate
result we notice, for example,is that)

a2 a3
ea,l,O== 1+ a,l,O+ -+ -'\"'(1,0+ ...2! 3!

== cosh(a) + sinh( a )'\"'(1 '\"'(0.) (5.11))

This shows us that we are dealing with hyperbolic geometry. This will prove
crucial to our treatment of Lorentz transformations. Traditionally, spacetime
diagrams are drawn with the time axisvertical (seefigure 5.1).For thesedia-

grams the 'right-handed'bivector is, for example,'\"'(1,0'Thesebivectors do not

generate 90\302\260 rotations, however,as we now have)

'\"'(0' (,1'\"Yo)
== -'\"'(I, '\"'(I

.
('\"'(I '\"YO)

== -,0') (5.12))

5.1.2Thepseudoscalar
We definethe (grade-4)pseudoscalarI by

I == ,0,1,2,3.) (5.13))

In the literature the symbol i is often used for the pseudoscalar.We have de-

parted from this practiceto avoidconfusionwith the i of quantum theory. Using)
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the latter symbolpresentsa potential problem becauseof the fact that the pseu-
doscalaranticommutes with vectors. The pseudoscalardefines an orientation
for spacetime,and the reasonfor the above choicewill emergeshortly. We still
assumethat {'f1,,2,'f3} form a right-handed orthonormal set, as usual for a
three-dimensional Cartesianframe. SinceI is grade-4,it is equal to its own
reverse:) -I == 'f3,2,1'fa == I.) (5.14))
For relativistic applicationswe use the tilde - to denotethe reverse operation.
The problemwith the alternative symbol, the dagger t, is that it is usually
reserved for a different role in relativistic quantum theory. The fact that I == I
makes it easyto compute the squareof I :)

2 -I == II == ('10'11'12'13)('13,2,1'10)== -1.) (5.15))
Multiplication of a bivector by I resultsin a multivector of grade4 - 2 == 2, so
returns another bivector. This provides a map between bivectors with positive
and negative squares,for example)

1,1'10== '11'101== 'f1'10,0,1'12,3== -'12'13.) (5.16))
If we define Bi == ,z'fo then the bivector algebracan be summarised by)

Bi X Bj== Eijk IBk ,

(IBi) X (IBj) == -
Eij k IBk ,

(IBi ) xBj == -Ei]kBk')
(5.17))

Theseequations show that the pseudoscalarprovidesa natural complexstructure
for the set of bivectors.This in turn tellsus that there is a complexstructure
hidden in the group of Lorentz transformations.

As well as the four vectors, we also have four trivectors in our algebra. The
vectors and trivectors are interchanged by a duality transformation,)

,1'12,3== ,0,0'11,2,3== '101== -1,0') (5.18))
The pseudoscalarI anticommutes with vectors and trivectors, as we are In a
spaceof even dimensions.As always,I commutes with all even-grademultivec-
tors.)

5.1.3The spacetimealgebra)

Combining the precedingresults,we arrive at an algebra with 16terms. The
{'Itt} definean explicitbasisfor this algebraas follows:)

1
1scalar)

{'\"Ytt}

4 vectors)
{'\"YttA,v}

6 bivectors)
{I'tt}

4 trivectors)
I

1pseudoscalar)
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This is the spacetimealgebra, 9(1,3).The structure of this algebratells us

practically all one needsto know about (flat) spacetimeand the Lorentz trans-
formation group. A general element of the spacetimealgebracan be written
as)

AI == a + a + B + Ib + I{3,) (5.19))

where a and {3 are scalars,a and b are vectors and B is a bivector. The reverse
of this element is)

M == a + a -B - Ib + 1{3.) (5.20))

The vector generatorsof the spacetimealgebrasatisfy)

1J-l1v+ !v1J-l==
21]J-lv,) (5.21))

These are the defining relations of the Dirac matrix algebra,exceptfor the
absenceof an identity matrix on the right-hand side.It follows that the Dirac
matricesdefinea representationof the spacetimealgebra.This alsoexplainsour

notation of writing {1J-l}for an orthonormal frame. But it must be remembered
that the {!J-l} are basisvectors,not a set of matrices in 'isospace'.)

5.2Observers,trajectoriesand frames

From a study of the literature on relativity one can easily form the impression
that the subjectis in the main concernedwith transformations between frames.
But it is the subjectof relativistic dynamics that is of primary importance to

us, and one aim of the spacetimealgebradevelopment is to minimise the useof
coordinateframes. Instead,we aim to developspacetimephysicsin a frame-free
manner and, where necessary,then focus on the physicsas seenfrom different
observers.Developingrelativistic physicsin this manner has the addedadvan-

tage of clarifying preciselywhich aspectsof specialrelativity needmodification
to incorporate gravity.)

5.2.1Spacetimepaths)

Supposethat x(.\\) describesa curve in spacetime,where A is some arbitrary,
monotonically-increasingparameter along the curve. The tangent vector to the
curve IS)

I dx(A)x ==

dA
.) (5.22))

Under a change of parameter from A to T the tangent vector becomes)

dx
dT)

dA dx--
dT dA')

(5.23))
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It follows that)

(\037\037 r) (\037\037 r ( \037\037 r) (5.24))

so the sign of (x')2is an invariant feature of the path. We assumefor simplicity
that this sign doesnot change along the path. As we are working in a spaceof
mixed signature there are then three casesto consider.

The first possibilityis that (x')2> 0, in which casethe path is said to be
timelike. Timeliketrajectoriesare thosefollowedby massiveparticles.For these
paths we can define an invariant properinterval)

{A2

(
dX dX

)
1/2

6.7=
J)..1 dA

.
dA

dA.

It is straightforward to checkthat this interval is independentof how the path
is parameterised.If we considerthe simplestcaseof a particle(or observer) at
rest in the ,0system,its spacetimetrajectory can be written as x == t,o.In this
caseit is clear that the interval defines the elapsedtime in the observer'srest
frame. This must be true for all possiblepaths, so the interval (5.25)definesthe
time as measuredalong the path. This is calledthe propertime, and is usually
given the symbol T. The proper time defines a preferred parameter along the
curve with the unique property that the velocity v,)

(5.25))

dx .v==-==x
dT ') (5.26))

satisfies)

v2
== 1.) (5.27))

Throughout we use dots to denotedifferentiation with respect to proper time
T. The unit timelike vector v then defines the instantaneous rest frame. The
definition of 'propertime' makes it clear that in relativity observersmoving in

relative motion measure different times.
The secondcaseto consideris that (x')2== O. In this casethe trajectory is

said to be lightlike or null. Null trajectoriesare followedby massless(point)
particlesand (in the geometric opticslimit) they definepossiblephoton paths.
There is no preferred parameter along thesecurves, and the properdistance(or
time) measuredalong the curve is O. Photonsdo still carry an intrinsic clock,
definedby their frequency,but this can tick at an arbitrary rate.

The third possibilityis that (x')2< 0, in which casethe trajectory is said
to be spacelike.As with timelike paths there is a preferred (affine) parameter
along the path such that (X')2 == -1.In this casethe parameter defines the
properdistance. Spacelikecurves cannot arise for the trajectoriesof (known)
particles,which are constrainedto move at less than (or equal to) the speed
of light. Events which are separatedby spacelikeintervals cannot be in causal)
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t)

Timelike
A
I

I)

:f)

Elsewhere)

/
/)

Lightlike)

------;>
Spacelike)

x)

Figure 5.2 Spacetimetrajectories.Thereare three different types ofspace-
time trajectory: timelike, lightlike and spacelike.The set of lightlike tra-
jectoriesthrough a point separatespacetimeinto three regions:the past,
the future and 'elsewhere'.)

contactwith each other and cannot exert any classicalinfluenceovereach other.
The three possibilitiesfor spacetimetrajectoriesare summarised in figure 5.2.)

5.2.2Spacetimeframes)

The subjectof spacetimeframes and coordinatesdominates many discussionsof
the meaning of specialrelativity. The conceptof a frame is distinct from that
of an observer as it involves the notion of a coordinatelattice.We start with an
inertial observer with constant velocity v. This velocity vector is then equated
with the timelike vector eo from a spacetimeframe {eJl}'The remaining vectors
ei are chosenso that they form a right-handed set of orthonormal spacelike
vectorsperpendicularto eo == v. The {eJl}then define a set of frame vectors

satisfying)

eJl.ev ==
1]Jlv') (5.28))

Sofar thesevectors are only definedat a singlepoint on the observer'strajectory.
We now assumethat the vectors extendthroughout all spacetime,so that any

event can be given a set of spacetimecoordinates)

xJl == eJl .x.) (5.29))
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Clearlythesecoordinatesare a rather distinct conceptfrom what an observerwill

actually measure,sincethe observer is constrainedto remain in one placeand
only receivesincoming photons.Frequently one seesdiscussionsinvolving arrays
of clocksall cleverlysynchronisedto read the time xO at each spatiallocation.
But how such a frame is set up is not really the point. The assertionis that the
coordinatesasspecifiedaboveare a reasonablemodel for the sort of distanceand
time measurements performed in a laboratory systemusing physical measuring
devices. It is preciselythis assertionthat is challenged by general relativity,
which insiststhat one talk entirely in terms of physically-definedcoordinates,so
that the xJ.L definedabove have no physicalmeaning. That said,for applications
not involving gravity and for non-acceleratingframes, we can safely identify the
coordinatesdefined above with physical distancesand times and will continue
to do so in this chapter.)

5.2.3Relativevectors)

Now supposethat we follow a timelike path with instantaneous velocityv, v2 == 1.
What sort of quantities dowe measure?Firstwe construct a frameof restvectors
{ei}perpendicularto v == eo.We also take a point on the worldline as the spatial
origin. Then a general event x can be decomposedin this frame as)

x == tea + x't ei,) (5.30))

where the time coordinateis)

t == x.eo == x.v) (5.31))
and spatialcoordinatesare)

Xi == x.ei .) (5.32))

Supposenow that the event is a point on the worldlineof an objectat rest in
our frame. The three-dimensionalvector to this object is)

. ax't ei == x.eJ.L e
J.L

-x.e eo == x-x.v v == x/\\ v v.) (5.33))

Wedging with v projectsonto the componentsof the vector x in the rest frame
of v. The key quantity is the spacetimebivector x/\\ v. We call this the relative
vector and write)

x==x/\\v.) (5.34
))

With thesedefinitionswe have)

xv == x.v + x/\\v == t + x.) (5.35))
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The invariant distancenow decomposesas)

x2
== xvvx == (x.v + xAv)(x,v + vAx)

== (t + x)(t -x) == t2 -x2
,) (5.36))

recoveringthe invariant interval. A secondobserver with a different velocity
performs a different split of x into time and spacecomponents.But the interval

x2 is the samefor all observersas it manifestly doesnot dependon the choice
of frame.)

5.2.4The even subalgebra)

Eachobserverseesa set of relative vectors, which we model as spacetimebivec-
tors. What algebraicpropertiesdo these have? To simplify matters, we take
the timelike velocity vector to be rO and introduce a standard frame of relative
vectors)

O'i== rirO.) (5.37))

These define a set of spacetimebivectors representingtimelike planes. (The
notation is again borrowed from quantum mechanicsand is commonplacein the

spacetimealgebraliterature.)The {O'i}satisfy

O'i'O'j== !(rirOrjrO+ rjrOriro)
== !(-rirj- rjri)== 6ij.) (5.38))

Theseact as vector generatorsfor a three-dimensionalalgebra.This is the geo-
metric algebraof the relative spacein the rest frame definedby rO. Furthermore,
the volume element of this algebrais)

0'10'20'3== (r1rO)(r2rO)(r3rO) == -r1rOr2r3 == I,) (5.39))

so the algebraof relative spacesharesthe samepseudoscalaras spacetime.This
was the reasonfor our earlier definition of I. Of course,we still have)

!(O'iO'j-O'JO'i)== EijkIO'k,) (5.40))

so that both relative vectors and relative bivectors are spacetimebivectors.
The even-gradeterms in the spacetimealgebradefinethe evensubalgebra.As

we have just established,this algebrahas preciselythe propertiesof the algebra
of three-dimensional (relative) space.The even subalgebracontains scalarand

pseudoscalarterms, and six bivector terms.Theseare split into three timelike
vectorsand three spacelikevectors, which in turn becomerelative vectors and
bivectors. This is calleda spacetimesplit, and it is observer-dependent.Different
velocity vectors generatedifferent spacetimesplits. Algebraically,this provides
us with an extremely efficient tool for comparing physical effects in different
frames.)
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Spacetimebivectors which are also used as relative vectors are written in

bold. This conforms with our earlier usageof a bold face for vectors in three
dimensions.There is a potential ambiguity here-how are we to interpret the
expressional\\b? Our convention is that if all of the terms in an expressionare
bold,the dot and wedgesymbolsdropdown to their three-dimensionalmeaning,
otherwise they take their spacetimedefinition. This works pretty well in prac-
tice,though where necessarywe will try to draw attention to the fact that this
convention is in use.)

5.2.5Relativevelocity)

Supposethat an observerwith constant velocityv measuresthe relative velocity
of a particlewith propervelocityu(T) == x(T), u2 == 1.We have)

d d
uv ==

dT (X(T)V) ==

dT(t + x),) (5.41))

where t + x is the descriptionof the event x in the v frame. It follows that)

dt- == u.v
dT ')

dx
dT

== ul\\v.) (5.42))

The relative velocity u as measuredin the v frame is therefore)

dx dx dT ul\\vu--------
dt

-
dT dt

-
u.v .) (5.43))

This construction of the relative velocity is extremely elegant.It embodiesthe
conceptof relativity in its precise(anti)symmetry. If we interchange u and v the
secondobserver measurespreciselythe same relative speedas the first, but in

the oppositedirection.Expressionslike ul\\v/u,v arisefrequently in the subject
of projectivegeometry(seesection10.1).The resulting bivector is homogeneous,
which is to say we can rescaleu and v and still recover the sameresult. So the
choiceof parameterisation of the two spacetimetrajectoriesis irrelevant to their
relative velocity. The relative velocity is determinedsolely by the spacetime
trajectoriesthemselves,and not by any evolution parameter.

The definition of the relative velocityensuresthat the magnitude is)

(u1\\V)2
== 1_ 1 1

(u.v)2 (u.v)2
<

,) (5.44
))

so no two observersmeasure a relative velocity greater than the speedof light

(which is 1in our current choiceof units).If we form the Lorentz factor r using)

,-2== 1- u 2

== 1+ (U'V)-2[(UV-u.v)(vu -v.u)] == (U.v)-2,) (5.45))

136)))



5.2 OBSERVERS,TRAJECTORIESAND FRAMES)

we find that,== u.v. It follows that we can decomposethe velocity as)

U == uvv == (u.v+ ul\\v)v == ,(1+ u)v,) (5.46))

which shows a neat split into a part ,uv in the rest spaceof v, and a part ,V
along v.)

5.2.6Momentumand wave vectors)

The relativistic definitionsof energy and momentum can be motivated in various
ways. Perhapsthe simplestis to considerphotons with frequencywand wave-
vector k measuredin the ,0 frame. From quantum theory, the energy and
momentum are given by nw and tik respectively. If we define the wavevector
k by)

k == w,o+ ki,i,) (5.47))

then the energy-momentumvector for the photon is simply)

p == fik.) (5.48))

An observerwith velocity v, as opposedto ,0,measuresenergy and momentum

given by)

E==p.v, p==pl\\v.) (5.49))

We take this as the correctdefinition for massiveparticlesas well. Soa particle
of rest mass m and velocity u has an energy-momentumvector p == mu. A

spacetimesplit of this vector with the velocityvector v yields)

pv == p'V + pl\\v == E + p.) (5.50))

A significant feature of this definition is that the relative momentum is related
to the velocity by)

p == mu.v u == ,mu,) (5.51))
where again,is the Lorentz factor. One sometimesseesthis formula written in

terms of a velocity-dependentmassm' == ,m,but we will not adopt this practice
here.

From the definition of p we recover the invariant)

m2
== p2 == pvvp == (E+ p)(E _ p) == E2 _ p2.) (5.52))

Similarly, for a photon with wavevectork, k2 == 0, we have)

o == kvvk == (w + k)(w - k) == w
2 - k2

.) (5.53
))

This recoversthe relation jkl == w, which holds in all frames.)
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5.2.1Properacceleration

A final ingredient in the formulation of relativistic dynamics is the properaccel-
eration.A particlefollows a trajectory x(T), where T is the propertime.The

particlehas velocity v == X, v2 == 1.The properacceleration is simply)

. dv
v ==-.

dT)
(5.54))

Sincev2 == 1,the velocity and accelerationare perpendicular)

d
(

2
)

.
dT

V == 0 == 2v.v.) (5.55))

In many physicalphenomena it turns out that a more useful conceptisprovided
by the acceleration bivector)

Bv == v/\\v == vv.) (5.56))

This bivectordenotesthe accelerationprojectedinto the instantaneous rest frame

of the particle.Typically this bivector multiplied by the rest massis equated
with a bivector encodingthe forces acting on the particle.Any change in the

parameter along the curve will rescalethe velocityvector, so Bv can be written

as)

v' /\\ v
Bv ==

(v.v)3/2
') (5.57))

which is independentof the parameterisation of the trajectory.
Beforeapplying the variousprecedingdefinitionsto a range ofdynamicalprob-

lems,we turn to a discussionof the Lorentz transformations. This will pave the

way for a powerful method for studying relativistic problemswhich is unique to

geometric algebra.)

5.3Lorentztransformations)

Lorentz transformations are usually expressedin the form of a coordinate trans-
formation. We supposethat two inertial observershave set up 'coordinatelat-
tices'in their own rest frames, as discussedin section5.2.2.We denotethese
frames by SandS',and assumethat they are set up such that their 1and 2
axescoincide,but that S'movesat (scalar)velocity f3calong the 3 axisas seen
in the S frame. We denotethe 0 and 3 components by t and z respectively. If

the origins of the frames coincideat t == t' == 0, the coordinatesof the same

spacetimeevent as measuredin the two frames are relatedby)

t' ==
\"'((t

- f3z), xl'== Xl, x2' == x2 z' ==
\"'((z

-
f3t),) (5.58))

138)))



5.3LORENTZTRANSFORMATIONS)

where,== (1-{32)-I/2and {3 is the velocity in units of c ({3< 1).The inverse

relationsare easily found to be)

t == ,(t'+ {3z'),)
1 l' 2 2'

X ==x , x ==x
,)

z == ,(z'+ {3t').) (5.59))

The arguments leading to these transformation laws are discussedin all intro-

ductory texts on relativity (seee.g.Rindler (1977)or French (1968)).
Toget a clearerunderstanding of this transformation law we must first convert

theserelations into a transformation law for the frame vectors.The vector x has
beendecomposedin two frames, {eJl}and

{e\037},
so that)

x == xJleJl
== xJl'

e\037.)
(5.60))

We then have, for example,)

t == eO.x t' == eO'.x.
,) (5.61))

Concentratingon the 0 and 3 components we have)

teo + ze3 == t'
e\037

+ z'
e\037 ,

and from this we derive the vector relations)

(5.62))

e\037

== ,(eo+ {3e3), e;== ,(e3+ {3eo).) (5.63))

Thesedefinethe new frame in terms of the old. As a checkthe new frame vectors
have the correctnormalisation,)

(e\037 )
2

== ,2(1- {32)== 1, (e\037)

2
== -1.) (5.64

))

The geometry of this transformation is illustrated in figure 5.3.
We sawearlier that bivectorswith positivesquareleadto hyperbolicgeometry.

This suggeststhat we introduce an 'angle'a with)

tanh( a) ==
{3) (5.65))

so that)

(
2

( )
-1/2,== 1- tanh a) == cosh(a).) (5.66))

The vector
e\037

is now)

e\037

== cosh(a) eo+ sinh( a) e3
== (cosh(a)+ sinh(a)e3eo)eo
== exp(a e3eO)eo,) (5.67))

where we have expressedthe scalar+ bivector term as an exponential.Similarly,

we have)

e;== cosh(a) e3+ sinh( a) eo == exp(a e3eo) e3.) (5.68))

Now recall that these are just two of four frame vectors, and the other pair)
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t)

I
r)

r)

Figure 5.3 A Lorentz transformation. The transformation leavesthe mag-
nitude of a vector invariant. As the underlying geometry of a spacetime
planeis Lorentzian, vectorsof constant magnitude lie on hyperbolae,rather
than circles.The transformed axesdefine a new coordinategrid.)

are unchanged by the transformation. Sincee3eOanticommutes with eo and e3,
but commutes with el and e2, we can expressthe relationship between the two

frames as)

e\037

== RepR,)
, -

eP == RePR
,) (5.69))

where)

R == eD:e3eo/2
.) (5.70

))

The same rotor prescriptionintroduced for rotations In Euclidean spacealso
works for boostsin relativity! This is dramatically simpler than having to work

with 4 x 4 Lorentz transform matrices.)

5.3.1Addition ofvelocities)

As a simpleexample,supposethat we are in a frame with basisvectors {1p}.
We observe two objectsflying apart with 4-velocities)

VI == eD:1)'IfO /2roe-D:I)'1)'0/2 == eD:1)'l,O10) (5.71))

and)

V2 == eD:2)'IfO/2roe-D:2)'1)'0/2 == eD:2)'11010.) (5.72))

140)))



5.3LORENTZTRANSFORMATIONS)

What is the relative velocity they seefor each other? We form)

V1;\\ V2

V1'V2)

(eCO:
I + 0:2)')'1')'0)2 _ sinh(al+ a2)1110

(eC0:1+ 0:2)')'1')'0)0 cosh(a1+ (2))
(5.73))

Both observerstherefore measure a relative velocity of)

h( )
tanh(aI)+ tanh(a2)tan al+ a2 == .1- tanh(a1)tanh(a2)

Addition of (collinear) velocities is achieved by adding hyperbolic angles,and

not the velocitiesthemselves.Replacingthe tanh factors by the scalarvelocities
u == ctanh (a) recoversthe more familiar expression)

(5.74))

I U1 + U2
U == 1-UIU2/c2.

The surprisingconclusion is that addition of velocities in spacetimeis really a

generalizedrotation in a hyperbolicspace!Quite dramatically different from the
Newtonian prescriptionof simplevector addition of the velocities.)

(5.75))

5.3.2Photons,Dopplershifts and aberration)

For many relativistic applicationsinvolving the propertiesof light it is sufficient

to use a simplifiedmodel of a photon as a point particlefollowing a null tra-

jectory. The tangent vector to the path is the wavevectork. This provides for

simple formulae for Dopplershifts and aberration. Supposethat two particles
follow different worldlinesand that particle1emits a photon which is received

by particle 2 (seefigure 5.4).The frequencyseenby particle1is WI == vI.k,and
that by particle2 is W2 == V2' k. The ratio of thesedescribesthe Dopplereffect,
often expressedas a redshift, z:)

W1 V1 .k1+ z == - == -.
W2 V2 .k

This can be appliedin many ways. For example,supposethat the emitter is
recedingin the 11direction,and V2 == 10'We have)

(5.76))

k == W2 (10+ 11),) V1 == cosh(a)10- sinh(a)11,) (5.77))

so that)

W2 (cosh(a) + sinh(a)) 0:l+z== ==e .
W2)

(5.78
))

The velocity of the emitter in the 10frame is tanh( a), and it is easyto check
that)

eO:== (
1+ tanh (a)

)
1/2

.1- tanh(a))
(5.79))
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//
k

/
\"\"//// V2)

Figure 5.4 Photon emissionand absorption. A photon is emitted by par-
ticle 1 and receivedby particle2.)

This formula recoversthe standardexpressionfor the relativistic Dopplereffect:)

(
1_;3

)
1/2

W2 == 1+ ;3
WI.) (5.80))

In its current form this formula is appropriatefor a sourceand receivermoving

away from each other at velocity;3c.Had they beenapproaching each other the
sign of {3 would be reversed,leading to an increasedfrequencyat the receiver (a
blueshift).

Aberration formulae can be obtained in a similar manner. Supposethat ob-
server 1has velocity,0,and that this observer receivesphotons at an angle 0 to
the 1axis in the 12plane. The photons are therefore on a null trajectory with

tangent vector)

n == ,0-cos(0) ')'1- sin(0) ')'2,) (5.81))
and the ,0observer recoversthe angle 0 via

n'')'2
tan(O) == -.n',1

Supposenow that a secondobserver moveswith velocity ;3 relative to the first

along the 1axis.This observer'svelocity is)

(5.82))

v == eo == cosh(a) ')'0+ sinh( a) ')'1) (5.83))

and the frame vectors for this observer are)

e1== cosh(a) ')'1+ sinh (a)')'0, e2 == ')'2, e3 == ')'3.) (5.84))

Accordingto this observer the photons arrive at an angle

tan(O') = n.e2= sin(O)
n.e1 cosh(a)cos(O)+ sinh(a)

.) (5.85))
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A straightforward rearrangement gives)

cos(O')= cosh(a)cos(O)+ sinh(a)
cosh(a) + sinh( a) cos(0))

cos(0) + ;3
1+ ;3cos(0)

,) (5.86))

so observers in relative motion measuredifferent angles to a fixed light source.
Thiseffectcan be seenin observations of stars from the Earth. The Earth'sor-
bital velocityaround the sun has a;3of roughly 10-4 soto a goodapproximation
we have)

cos(0') \037 cos(0) + ;3sin2
(0).) (5.87))

The aberration angle rp
== 0 -0'satisfies the approximate formula)

rp \037 /3 sin(0),) (5.88))

which impliesthat the aberration variesovera year as0 varies through a complete
cycle. This variation was first observedby James Bradleyin 1727and was

explainedin terms of a particlemodel of light. Bradleywas ableto usehis data
to give an improved estimate of the speedof light, though the full relativistic
relation of (5.86)cannot be checkedin this manner.)

5.4TheLorentzgroup
The full Lorentz group consistsof the transformation group for vectors that pre-
serveslengths and angles.Theseinclude reflectionsand rotations. A reflection
in the hyperplane perpendicularto n is achievedby)

a 1---7 -nan-I.) (5.89))

Then-I is necessaryto accommodateboth timelike n 2 > 0 and spaceliken2 <0
cases. We cannot have null n, as the inverse does not exist. A timelike n

generates time-reversal transformations, whereas spacelikereflections preserve
time-ordering.Pairsof either of theseresult in a transformation which preserves
time-ordering. However, a combination of one spacelikeand one timelike re-
flection does not preserve the time-ordering.The full Lorentz group therefore
contains four sectors(table5.1).

The structure of the Lorentz group is easily understoodin the spacetimealge-
bra. We concentrate on even numbers of reflections,which have determinant +1
and correspondto type I and type IV transformations. The remaining types
areobtained from theseby a singleextrareflection. If we combineeven numbers
of reflectionswe arrive at a transformation of the form)

a 1---7
'ljJ a'ljJ

-I
,) (5.90

))

where
'ljJ

is an even multivector. This expressionis currently too general, as we)
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Parity preserving Spacereflection)

Timereversal)

I
Proper

orthochronous
III

I with time
reversal)

II
I with space

reflection
IV

I with)

Timeorderpreserving)

a 1----7 -a)

Table 5.1 The full Lorentz group. The group of Lorentz transforma-
tions falls into four disjoint sectors.SectorsI and IV have determinant
+1,whereasII and III have determinant -1.Both I and II preserve
time-ordering, and the properorthochronous transformations (type I) are
simply-connectedto the identity.)

have not ensuredthat the right-hand sideis a vector. To seehow to do this we
decompose'l/J into invariant terms.We first note that)

\037 -
'l/J 'l/J

==
('l/J 'l/J )

r.J)

(5.91))
-

so
'l/J'l/J

is even-gradeand equal to its own reverse.It can therefore only contain
a scalarand a pseudoscalar,)

\037

I\037

'l/J'l/J
== al+ Ia2 == pe ,) (5.92))

where p =I=-
0 in orderfor 'l/J-I to exist.We can now definea rotor R by)

R == 'l/J(peI\037)-1/2,) (5.93))

so that)

RR == 'l/J;j;(peI\037)-I == 1,) (5.94
))

as required.We now have)

'l/J
== pI/2eI/3/2R,) 'l/J-I == p-I/2e-I/3/2 R) (5.95))

and our general transformation becomes)

a \037 eI\037/2 Rae-I\037/2 R == eI/3RaR.) (5.96))
The term RaR is necessarilya vector as it is equal to its own reverse,sowe must

restrict{3 to either 0 or 7r, leaving the transformation)

a \037 -::1RaR.) (5.97))

The transformation a \037 RaR preservescausal ordering as well as parity.
Transformations of this type are called'properorthochronous' transformations.)
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We can prove that transformations parameterisedby rotors are properorthoch-
ronous by starting with the velocity ')'0 and transforming it to v == R')'oR. We

require that the ')'0component of v is positive, that is,)

')'0'v == (')'oR')'oR)> O.) (5.98
))

Decomposingin the ')'0 frame we can write)

R == a + a + Ib+ I{3) (5.99
))

and we find that)

(')'oR')'oR)== a2 + a2 + b2 + {32 > 0) (5.100))

as required. Our rotor transformation law describesthe group of proper or-
thochronoustransformations, often calledthe restrictedLorentz group. These
are the transformations of most physical relevance. The negative sign in equa-
tion (5.97)correspondsto {3 == 7r and givesclass-IVtransformations.)

5.4.1Invariantdecompositionand fixedpoints)

Every rotor in spacetimecan be written in terms of a bivector as

R == :!:eB/2
.) (5.101))

(Theminus sign is rarely required,and doesnot affect the vector transformation

law.) We can understandmany of the features of spacetimetransformations
and rotors through the propertiesof the bivector B. The bivector B can be
decomposedin a Lorentz-invariantmanner by first writing)

B2
== (B2)0+ (B2

)4 == pe1cjJ
,) (5.102))

and we will assumethat p i= O. (The caseof a null bivector is treated slightly

differently.) We now define)

B == p-I/2e-IcjJ/2B,) (5.103))

so that)

132 == p-Ie-IcjJB2
== 1.) (5.104))

With this we can now write)

B == pI/2e1cjJ /213== aE + {3IE,) (5.105))
A A

which decomposesB into a pair of bivector blades,aBand {3IB.Since)

B(IB)== (IB)B== I,) (5.106))

the separatebivector bladescommute. The rotor R now decomposesinto)

R == eOB/2ef3IB/2== ef3IB/2eoB/2
,) (5.107))
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T'me)

\037
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B

\

n+ /11//////////////
/) Space)

Figure 5.5 A timelike plane. Any timelike planeB, B2 == 1,contains two

null vectorsn+ and n-.Thesecan be normalised so that n+ I\\n- == 2B.)

exhibiting an invariant split into a boostand a rotation. The boostisgenerated
A A

by Band the rotation by lB.
For every timelike bivector 13,132 == 1,we can construct a pair of null vectors

n:l:satisfying)
AB.n::l:== ::f::n::l:.) (5.108))

Theseare necessarilynull, since)

n+.n+ == (B.n+).n+ == B.(n+l\\n+) == 0,) (5.109
))

with the same holding for n_. The two null vectors can also be chosenso that)

A

n+l\\n_ == 2B,) (5.110))

so that they form a null basisfor the timelike plane definedby 13(seefigure 5.5).
A A

The null vectors n::l:anticommute with B and therefore commute with lB.
The effectof the Lorentz transformation on n:l:is therefore

Rn:l:R== eaB/2n:l:e-aB/2
== cosh(ex) n::l:+ sinh( ex)13.n:l:
== e:::i::an:l:.) (5.111))

The two null directionsare thereforejust scaled-their direction is unchanged.
It follows that every Lorentz transformation has two invariant null directions.
The casewhere the bivector generator itself is null, B2 == 0, correspondsto the
specialsituation where thesetwo null directionscoincide.)

5.4.2The celestialsphere)

Oneway to visualisethe effectof Lorentz transformations is through their effect
on the past light-cone (seefigure 5.6).Each null vector on the past light-cone
mapsto a point on the sphereS--the celestialspherefor the observer.Suppose)
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'Yo)

t==O)

\037Past
\037 : light-cone)

Figure 5.6 The celestialsphere. Each observerseesevents in their past
light-cone,which canbe viewed as defining a sphere(shown hereas a circle
in a plane).)

then that light is received along the null vector n, with the observer'svelocity
chosento be ')'0'The relative vector in the ')'0frame is nA')'o. This has magnitude)

(n A ')'0)
2

== (n.')'0)2 - n2
')'5== (n.')'0)

2
.) (5.112))

We therefore define the unit relative vector n by the projective formula

n A ')'0n == .
n.')'o

Observerspassingthrough the same spacetimepoint at different velocitiessee
different celestialspheres.If a secondobserver has velocity v == R')'oR,the unit

relative vectors in this observer'sframe are formed from nAv /n.v. Thesecan be
brought to the ')'0 frame for comparisonby forming)

(5.113))

n'= ilnAv
R = n'A \"(0

,In .v n .')'0)
(5.114))

147)))



RELATIVITY AND SPACETIME)

wheren' == RnR. The effectsofLorentz transformations can bevisualisedsimply

by moving around pointson the celestialspherewith the map n 1---+ RnR. We

know immediately, then, that two directionsremain invariant and so describe
the samepointson the celestialspheresof two observers.)

5.4.3Relativisticvisualisation
We have endeavouredto separatethe conceptof a singleobserver from that of a
coordinatelattice.A clear illustration of this distinction ariseswhen one studies
how bodiesappearwhen seenby different observers.Concentrating purely on
coordinatesleadsdirectly to the conclusionthat there is a measurable Lorentz
contraction in the direction of motion of a body moving relative to somecoor-
dinate system.But when we considerwhat two different observersactually see,
the picture is rather different.

Supposethat two observersin relative motion observe a sphere.The sphere
and one of the observersare both at rest in the 10system. This observer sees
the edgeof the sphereas a circledefinedby the unit vectors)

n == sin(O)(cos(<jJ)0\"1 + sin(<jJ) 0\"2) + COs(O)0'3, 0 <
<jJ

< 27r.) (5.115))

The angle 0 is fixedso the spheresubtendsan angle 20 on the sky and is centred
on the 3 axis (seefigure 5.7).The incoming photon paths from the sphereare
defined by the family of null vectors)

n == (1-n)10.) (5.116))

Now supposethat a secondobserver has velocity (3 == tanh(a)along the 1axis,
so)

v == cosh(a)10+ sinh( a)11== R10R ,) (5.117))

where R == exp(a1I10/2).To compare what thesetwo observersseewe form)

n' == RnR == cosh(a)(1+ ;3sin(0) cos(<jJ)) 10- cosh(a)(sin(0) cos(<jJ) + ;3)11- sin(0) sin(<jJ) 12-cos(0)13' (5.118))

And from this the new unit relative outward vector is)

, cosh(a)(sin(0) cos(<p) + (3)0'1+ sin(0) sin(<p) 0'2+ cos(0)0'3n ==

cosh(a)(1+ (3sin(O)cos(<jJ))
.) (5.119))

N ow considerthe vector)

c == 0'3+ sinh( a) cos(0)0'1.) (5.120))

This vector satisfies)

c.n'== cosh(a)cos(O),) (5.121))
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Figure 5.7 Relativistic visualization of a shere. The sphereis at rest in

the 'Yo frame with its centrea unit distancealong the 3 axis.The sphere
is simultaneously observedby two observersplacedat the spatial origin.
Oneobserveris at rest in the 'Yo system, and the other is moving along the
1axis.)

which is independentof rjJ. It follows that, from the point of view of the second
observer,all pointson the edgeof the spheresubtendthe same angle to c.So
the vector c must lie at the centre of a circle,and the secondobserver still sees
the edgeof the sphereas circular.That is, both observersseethe sphereas
a sphere,and there is no observablecontraction along the direction of motion.
The only differenceis that the moving observerseesthe angular diameter of the

spherereducedfrom 20 to 20',where)

(0
'
)
_ cos(O)cosh(a)cos -

1/2'(1+ sinh2(a) cos2(O))

tan(0')= tan(0).
'\"Y)

(5.122))

More generally, moving observersseesolidobjectsas rotated, as opposedto
contracted along their direction of motion. Visualising Lorentz transformations
of solidobjectshas now been discussedby various authors (seeRau, Weiskopf
& Ruder (1998)).But the original observation that spheresremain spheres
for observersin relative motion had to wait until 1959-more than 50 years
after the development of specialrelativity! The first authors to point out this

invisibility of the Lorentz contraction were Terrell (1959)and Penrose(1959).
Both authors basedtheir studieson the fact that the Lorentz group is isomorphic
to the conformalgroup acting on the surfaceof a sphere.This type of geometry
is discussedin chapter10.)
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5.4.4Pure boostsand observersplits
Supposewe are travelling with velocity u and want to boost to velocity v. We

seekthe rotor for this which contains no additional rotational factors. We have)

v == LuL) (5.123))

with LaJ..L== aJ.. for any vector outsidethe u A v plane. It is clear that the

appropriatebivector for the rotor is uAv, and as this anticommutes with u and
v we have)

\037 2 2
V == LuL == L u =}L == vu.) (5.124))

The solution to this is

L ==
1+ vu

== exp(
a v Au

)[2(1+ U'V)]1/2 2 IvAul
'

where the angle a is defined by cosh(a)== u.v.
Now supposethat we start in the ')'0 frame and some arbitrary rotor R takes

this to v == R')'oR. We know that the pure boostfor this transformation is)

(5.125))

L ==
1+ V')'o

== exp(
a v A ')'0

)[2(1+ V'')'0)]I/2 2 IvA')'ol
'

where V'')'o == cosh(a).Now define the further rotor U by)

(5.126))

U == LR
,)

- - -
UU == LRRL == 1.) (5.127))

This satisfies) - -
U')'oU== LvL == ')'0,) (5.128))

so U')'o== ')'oU.We must therefore have U == exp(Ib/2),where Ibis a relative
bivector, and U generatesa pure rotation in the ')'0 frame. We now have)

R == LU
,) (5.129))

which decomposesR into a relative rotation and boost.Unlike the invariant

decompositioninto a boost and rotation of equation (5.107),the boost Land
rotation U will not usually commute. The fact that the LU decompositionini-

tially singledout the ')'0vector showsthat the decompositionis frame-dependent.
Both the invariant split of equation (5.107)and the frame-dependent split of
equation (5.129)are useful in practice.)

5.5Spacetimedynamics

Dynamics in spacetimeis traditionally viewedas a hard subject.This neednot
be the case,however. We have now establishedthat Lorentz transformations
which preserve parity and causalstructure can be describedwith rotors.By)
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parameterising the motion in terms of rotors many equations are considerably
simplified, and can be solved in new ways. This providesa simpleunderstanding
of the Thomas precession,as well as a new formulation of the Lorentz force law
for a particlein an electromagnetic field.)

5.5.1Rotorequationsand Fermitransport
A spacetimetrajectory x(T) has a future-pointing velocityvector x == v. This is
normalisedto v2 == 1by parameterisingthe curve in terms of the propertime.
This suggestsan analogy with rigid-bodydynamics.We write)

v == R1oR,) (5.130))
which keepsv future-pointing and normalised.This movesall of the dynamics
into the rotor R == RC:\"-), and this is the key idea which simplifies much of
relativistic dynamics.The next quantity we needto find is the acceleration)

d - . - :..
V ==

dT (R'Yo R) == R10R + R'YoR .) (5.131))

But just as in three dimensions,RR is of even gradeand is equal to minus its

reverse,so can only contain bivector terms. We therefore have)

v == RRv - vRR

== 2(RR) .v.) (5.132))
This equation is consistentwith the fact that v.v == 0, which follows from v2 == 1.

If we now form the acceleration bivector we obtain)

vv == 2(RR).vv.) (5.133))

This determinesthe projectionof the bivector into the instantaneous rest frame
definedby v. In this frame the projectedbivector is purely timelike and cor-
respondsto a pure boost.The remaining freedom in RR correspondsto an
additional rotation in R which doesnot change v.

For the purposesof determining the velocity and trajectory of a particlethe
componentof RR perpendicularto v is of no relevance. In someapplications,
however, it isuseful to attach physicalsignificanceto the comovingframe vectors

{eft},)

eft
== R'Y J-LR,) (5.134))

which have eo == v. The spatialset of vectors {ei}satisfy ei'v == 0 and span the
instantaneous rest spaceof v. In this case,the dynamics of the ei can be used
to determine the component of RR which is not fixed by valone.

The vectors {ei}are carriedalong the trajectory by the rotor R. They are said
to be Fermi-transported if their transformation from one instant to the next is)
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v(7+bT))

V(7))

Figur.e 5.8 The properboost. The change in velocity from T to 7 + b7
should be describedby a rotor solely in the iJ!\\v plane.)

a pure boost in the v frame. In this casethe {ei}vectors remain 'asconstant as
possible',subjectto the constraint ei'v== O. For example,the direction defined

by the angular momentum of an inertial guidance gyroscope(supportedat its
centre of massso there are no torques)is Fermi-transportedalong the path of
the gyroscopethrough spacetime.

To ensureFermi-transport of R1iRwe needto ensurethat the rotor describes
pure boostsfrom one instant to the next (seefigure 5.8).To first orderin 6Twe

have)

V(T + 6T) == V(T) + 6TV.) (5.135))

The pure boostbetween v(7) and v (T + 6T) is determined by the rotor)

L ==
1+v(T+6T)V(T) 1

[( ) ]1/2
= 1+'i8TiJV ,2 1+ V(T + 6T 'V(T)))

(5.136))

to first order in 6T. But since)

R(T + 6T) == R(T) + 6TR(T)== (1+ 6TRR)R(T),) (5.137))

the additional rotation that takes the {ei}frame from T to T + 6T is described
by the rotor 1+ 6TRR. Equating this to the pure boostL of equation (5.136),
we find that the correct expressionto ensure Fermi-transport of the {ei}is)

. \037 1 .RR ==
2VV,) (5.138

))

This is as one would expect.The bivector describingthe change in the rotor is
simply the acceleration bivector, which is the acceleration seenin the instanta-
neous rest frame.)
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Under Fermi-transport the {e2} frame vectors satisfy)

\342\202\254i

== 2(RR).e2 == -ei'(vv).) (5.139))

This leadsdirectly to the definition of the Fermi derivative)

Da .
(

'
)Dr

== a + a.vv .) (5.140
))

TheFermi derivativeof a vector vanishes if the vector isFermi-transportedalong
the worldline. The derivative preservesboth the magnitude a2 and a .v. The
former holdsbecause)

d\037

(a
2
) = -2a.(a.(vl\\v)) = o.) (5.141))

Conservationof a .v is alsostraightforward to check:)

d-(a .v) == -
(a .(vv )) .v + a.V

dT)

== -a.v+ a.vV.V + a.v == O.) (5.142))

It follows that if a starts perpendicularto v it remains so.In the casewhere
a.v == 0 the Fermi derivative takeson the simple form

Da. . .. .
DT

== a + a.vv == a -a.vv == a/\\vv.) (5.143))

This is the projectionof it perpendicularto v, as expected.The Fermi derivative
extendssimply to multivectors as follows:)

DM dM
DT

==

dT
+ M x (vv ).

Derivativesof this type are important in gauge theoriesand gravity.)

(5.144))

5.5.2Thomasprecession
As an application, considera particlein a circular orbit (figure 5.9).The world-
line is)

X(T) ==
t(T)\"YO + a(cos(wt)\"Yi + sin(wt)\"Y2),) (5.145))

and the velocity is)

v == x == i(,0+ aw(-sin(wt)'l+ coS(wt)\"Y2))') (5.146))

The relative velocity as seen in the ,0 frame, v == v /\\ \"Yo/v. \"Yo, has magnitude
Ivl == aw. We therefore introduce the hyperbolic angle Q, with)

tanh( Q) == aw, i == cosh(Q).) (5.147))
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/'1)

Figure 5.9 Thomas precession.The particle follows a helicalwor ldline,
rotating at a constant rate in the /'0 frame.)

The velocity is now)

v == cosh(Q)1'0+ sinh(Q)(-sin(wt)I'I+ coS(wt)1'2)
== ean/2,oe-an/2,)

where)

n == - sin(wt)lTl + coS(wt)lT2')

(5.148))

(5.149))

This form of time dependencein the rotor is inconvenient to work with. To
simplify, we write)

-wtI0'3 R R
-

n == e 0'2 == w lT2 w,)

where Rw == exp(-wtIO'3/2).We now have

an/2 - -
e == exp(QRwlT2Rw/2)== RwRo:Rw,)

where)

Ro: == exp(QO'2/2).)

The velocity is now given by)

v == RwRo:Rwl'oRwRo:Rw == RwRo:l'oRo:Rw.

The final expressionfollows becauseRw commutes with 1'0.
We can now seethat the rotor for the motion must have the form)

R == RwRo:<I>,)
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where <I> is a rotor that commutes with ,0'We want R to describeFermi trans-

port of the {ei},sowe must have vv == 2RR. We beginby forming the accelera-
tion bivector vv. We can simplify this derivation by writing v == Rwva:Rw, where
Va == Ra:1oRa:.We then find that

vv == Rw (2(RwRw)
.
Va: va:)Rw

== -w cosh(o:)Rw ((10'3).va:va:)Rw

== w sinh( 0:) cosh(0:)Rw (
-cosh(0:)0'1+ sinh( 0:)10'3)Rw.) (5.155))

We also form the rotor equivalent, 2RR, which is)

l1li .-..-........,

'2RR == 2RwRw + 2RwRa:<I><I>Ra:Rw

== -w cosh(o:)10'3+ 2RwRa:\037iPRa:Rw') (5.156))

Equating the two precedingresultswe find that
. \037 2-2<I> <I> == w cosh (0:)Ra:(

-sinh( 0:)0'1+ cosh(0:)10'3)Ra:
== W cosh2(0:)10'3.) (5.157))

The solution with <I> == 1at t == 0 is <I> == exp(wcosh(o:)tI0'3/2),so the full rotor
IS)

R == e-wtI0'3/2e\302\2600'2/2ecosh(o)wtI0'3/2.) (5.158))

This form of the rotor ensuresthat the ei == R1iRare Fermi transported. The
fact that the 'internal'rotation rate w cosh(0:) differs from w is due to the fact
that the accelerationis formed in the instantaneous rest frame v and not the fixed

rO frame. This differenceintroducesa precession\037 the Thomasprecession.We

canseethis effectby imagining the vector ')'1beingtransportedaround the circle.
The rotated vector is) -

el == R'IR.) (5.159))

In the low velocity limit cosh(0:) 1---+ 1the vector ,1continues to point in the rl
directionand the frame doesnot rotate, as we would expect.At larger velocities,
however, the frame starts to precess.After time t == 27r/w, for example,the 11
vector is transformed to)

el(27r/w) == ea0'2/2e27rcosh(a)I0'311e-00'2/2.) (5.160))

Dotting this with the initial vectorel(0) == 11we seethat the vectorhas precessed
through an angle)

() == 27r(cosh(0:)- 1).) (5.161))

This showsthat the effectisof order Ivl
2/c2. The form of the Thomas precession

justifies one of the relativistic correctionsto the spin-orbitcoupling in the Pauli

theory of the electron.)
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5.5.3The Lorentzforce law)

The non-relativistic form of the Lorentz force law for a particleof charge q is)

dp
dt

== q(E+ vxB),) (5.162))

where the X here denotesthe vector crossproduct,and all relative vectors are
expressedin someglobalNewtonianframe, which we will take to be the ,0frame.
We seeka covariant relativistic version of this law. The quantity p on the left-
hand sideis the relative vector pA\",/o, Sincedt == \",/dT, we must multiply through

by \"'/
== V',oto convert the derivative into one with respectto propertime.The

first term on the right-hand sidethen includes)

v''''/oE ==
\037 (E(v,o+ \"'/ov) + (v\",/o + ,0v)E)

==
\037((Ev

-
vE)\",/o

- ,0(Ev-vE))
== (E.v) A,0') (5.163))

Recall at this point that E is a spacetimebivector built from the (jk == ,k,O,so
E anticommutes with \"'/0.

For the magnetic term in equation (5.162)we first replacethe crossproduct
by the equivalent three-dimensional expression(IB) .v. Expandingout, and
expressingin the full spacetimealgebra,we obtain)

!v',o(IBv -vIB) ==
\037 (IB(v \"'/0

- ,ov)- (v\",/o
- ,0v)IB)

== \037((IBv
-

vIB)\",/o -\"'/o(IBv- vIB))
== ((IB).v)A,o, (5.164))

where we use the fact that ,0commuteswith lB.Combiningequations (5.163)
and (5.164)we can now write the Lorentz force law (5.162)in the form)

\037\037

= pl\\\"Io = q((E+ IB).v)1\\\"10,) (5.165))

We next define the Faraday bivectorF by)

F==E+IB.) (5.166))
This is the covariant form of the electromagnetic field strength. It unites the
electricand magnetic fields into a single spacetimestructure. We study this in

greater detail in chapter 7. The Lorentz force law can now be written)

pA\",/o == q(P,v)A,o.) (5.167))
The rate of working on the particleis qE.v,so

dpo
dt

== qE.v.) (5.168))
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Here,Po == p',ois the particle'senergy in the ,0frame. Multiplying through by
v. \"Yo, we find)

p',0== qE.(v /\\,0)== q(F.v ) ',0.) (5.169))

In the final step we have used (IB) .(v /\\ ,0) == O. Adding this equation to

equation (5.167),and multiplying on the right by \"Yo, we find)

p == qF.v.) (5.170))

Recallingthat P == mv, we arrive at the relativistic form of the Lorentzforce law,)

mv == qF.v.) (5.171))

This is manifestly Lorentz covariant, becauseno particular frame is pickedout.
The accelerationbivector is)

vv == .!LF.v v == .!L(F.v) /\\ v == .!LEv,
m m m)

(5.172))

where Ev is the relative electricfield in the v frame. A charged point particle
only respondsto the instantaneous electricfield in its frame. Algebraically,this

bivector is)

Ev == !(F- vFv).) (5.173))

SoEv is the component of the bivector F which antimcommutes with v.

Now supposethat we parameterisethe velocitywith a rotor, sothat v ==
R\"Yo R.

We have) . - . - q
v == 2RRv == 2(RR).v== -F.v.

m)
(5.174))

Thesimplestform ofthe rotor equation comesfrom equating the projectedterms:)

R == -LFR.
2m)

(5.175))

This is not the most general possibilityas we could include an extramultiple of
F!\\v v. The rotor determinedby equation (5.175)will not, in general, describe
Fermi-transport of the R\"YiR vectors.However,equation (5.175)is sufficient to
determinethe velocityof the particle,and is certainly the simplestform of rotor

equation to work with. As we now demonstrate,the rotor equation (5.175)is
remarkably efficient when it comesto solving the dynamical equations.)

5.5.4Constantfield)

Motion in a constant field iseasyto solvefor now. We can immediatelyintegrate
the rotor equation to give)

R = exp
C\037

FT) RD.) (5.176))
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Figure 5.10Particle in a constant field. The generalmotion is a combi-
nation of linear accelerationand circular motion. The plot on the left has
E and B colinear.The plot on the right has E entirely in the IB plane,
giving rise to cycloids.)

To proceedand recover the trajectory we form the invariant decompositionof
F.We first write)

F2
== (F2)O+ (F2

)4 == pelf),) (5.177))

so that we can set)

F == pl/2elf}/2 F == aF+ I(3F,) (5.178))
where F2 == 1.(If F is null a slightly different procedureis followed.) We now

have)

R = exp
C\037aFT)exp(2\037 I{3FT)Ro.) (5.179))

Next we decomposethe initial velocityva == Ro,oRo into components in and out
A

of the F plane:)

A2
A A A A

VA
== F va == F F.vo+ FFAva ==

vall + VO..l.) (5.180))

Now vall
== PP,vo anticommutes with P,and VO..l commutes with P,so)

x= exp(\037 aFT)vall + exp(\037 I{3FT)V01-.

This integratesimmediately to give the particlehistory

eqaFT/m_ 1A eq/3IFT/m -1 A

X - xo == F.vo- (IF).va.qa/m q(3/m)

(5.181))

(5.182))

The first term gives linear acceleration and the secondis periodicand drives
rotational motion (seefigure 5.10).One has to be slightly careful integrating the
velocity equation in the casewhere either a or (3 is zero, which correspondsto
perpendicularE and B fields.)
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5.5.5Particlein a Coulombfield)

As a further application we considerthe caseof a charged point particlemoving

in a central Coulombfield. If relativistic effectsare ignoredthe problem reduces
to the inverse-squareforce law describedin section3.2.1.We therefore expect
that the relativistic descriptionwill add additional perturbative effects to the

elliptic and hyperbolic orbits found in the inverse-squarecase.We assumefor

simplicity that the central charge has constant velocity \"Yo and is placedat the

origin. The electromagnetic field is)

P ==
Qx

47rEor3
') (5.183))

where x == xA,o and r2 == x2. In this sectionall boldsymbolsdenoterelative
vectorsin the \"Yo frame. The question of how to generalisethe non-relativistic
definitions of centre of massand relative separationturns out to be surprisingly

complexand is not tackledhere.Insteadwe will simply assumethat the sourceof
the Coulombfield is far heavier than the test charge so that the source'smotion

can be ignored.
There are two constantsof motion for this force law. The first is the energy)

qQE == mv',o+ 4
.

7rEor

If the chargesare opposite,qQ is negative and the potential is attractive. The
forcelaw can now be written in the \"Yo frame as

d2x qQx
(

E qQ
)

m
dT2 ==

41TEor3 m
-

47rEomr
.

Thesecondconservedquantity is the angular momentum, which isconservedfor

any central force, as is the casein equation (5.185).If we define the spacetime
bivectorL == xAp we find that)

(5.184))

(5.185))

t == qxA(P,v).) (5.186))
It follows that the trivector LA \"Yo is conserved.Equivalently, we can definethe
relative bivector)

Il ==
LA\"Yo \"Yo,) (5.187))

sothat the relative vector I is conserved.This is the relative angular momentum

vectorand satisfiesx.l== O. It follows that the test particle'smotion takesplace
in a constant plane as seenfrom the sourcecharge.

In orderto integrate the rotor equation we needto find a way to expressthe
field as a function of the particle'spropertime.This is achievedby introducing
an angular measurein the plane of motion. Supposethat we align the 3 axis
with l,so that we can write)

x(T) == l7I exp(Il73e(T)) ,) (5.188))
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where x is the unit relative vector x/r.It follows that

12
== m2r4\0372 == m2r4

iJ2.) (5.189))
If we set l ==

III we have l == mr 2e,which enablesus to expressthe Coulombfield
as)

QmB(71exp(I(73B(T))F--
47rEol

.) (5.190))

If we now let)

qQ
t\\;==

47rEol

the rotor equation takeson the simpleform)

(5.191))

dR t\\;

dB
==

2(71exp(I(73B)R.) (5.192))

Re-expressingthe differential equation in terms of B is a standardtechnique for
solving inverse-squareproblemsin non-relativistic physics. But this technique
fails to give a simplesolution to the relativistic equation (5.185).Instead,we
seethat the technique givesa simplesolution to the relativistic problemonly if

applieddirectly to the rotor equation.
To solveequation (5.192)we first set)

R == exp(-!(73B/2)U.) (5.193))
It follows that)

dU \037 1
dB

U == 2 (t\\;(71 + 1(73),

which integratesstraightforwardly. The full rotor is then

R == e-10'3()/2eA()/2Ro,)

(5.194))

(5.195))
where)

A == t\\;(71 + 1(73.) (5.196))
The initial conditions can be chosen such that B(O)== 0, which tells us how to
align the 1axis.The rotor Ro then specifiesthe initial velocityvo. If we are not
interestedin transporting a frame, Ro can be set equal to a pure boostfrom \"Yo

to vo.
With the rotor equation now solved,the velocitycan be integrated to recover

the trajectory.Clearly,different typesof path are obtained for the different signs
of A 2 == t\\;2 -1.The equation relating rand B is found from the relation

-
\037 (\037)

= 7xox.) (5.197))
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Toevaluate the right-hand sidewe need

X.x == (e
-I0'3B/2(7'1eI0'3B/2R,aR,o)

== _('leAB/2voe-AB/2)
== (e

-AB,1
va) .) (5.198))

It follows that)

d

(
1
)

m -AB 1-- - == -(e ,Va).de r l)

(5.199))

For a given land Vo this integrates to give the trajectory in the Ii plane.
Suppose,for example,that we are interestedin bound states.For these we

must have A 2 <0, which impliesthat fi2 < 1.We write)

JAI == (1- fi2)1/2) (5.200))

for the magnitude of A. To simplify the equations we will assumethat T == 0

correspondsto a point on the trajectory where v is perpendicularto x. In this
casewe have)

Vo == cosh(aa),0+ sinh( aa),2
so that the trajectory is determinedby

-:(}(\037)
=

l\0371
(I\\;cosh(ao)+ sinh(ao))sin(IAI(}).)

(5.201))

(5.202))

The magnitude of the angular momentum is given by l == mra sinh(aa),which

can be usedto write)

m(ficosh(ao)+ sinh(aa))== (E2-m2
IAI2)1/2.

The trajectory is then given by

llA
I

2
1

== -fiE+ (E2 -m2
jAI2)1/2cos(IAle),

r)

(5.203))

(5.204))

and sincethis representsa bound state, fi must be negative. The fact that the

angular term goesas cos(IAle)shows that this equation specifiesa precessing
ellipse(figure 5.11).The precessionrate of the ellipsecan be found simply using
the technique of section3.3.)

5.5.6 The gyromagneticmoment)

Particleswith non-zero spin have a magnetic moment which is proportional to
the spin. In non-relativistic physicswe write this as m == ,8,where, is the

gyromagneticratio and 8 is the spin (which has units of angular momentum).
The gyromagnetic ratio is usually written in the form)

q,== 92m ') (5.205))
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Figure 5.11Motion in a Coulomb field. For bound orbits (E < m) the
particle'smotion is describedby a precessingellipse.The plot is for IAI ==

0.95.The units are arbitrary.)

wherem is the particlemass,q is the chargeand 9 is the (reduced)gyromagneticratio.The last is determined experimentallyvia the precessionof the spinvector
which, in classicalphysics,obeys)

s == g\037(IB).s.2m) (5.206))

We seeka relativistic extensionof this equation. We start by introducing the
relativistic spin vector s,which is perpendicularto the velocity v, so s . v == O.
For a particle at rest in the fa frame we have 8 == 8fO. The particle'sspin
will interact with the magnetic field only in the instantaneous rest frame, so we
should regardequation (5.206)as referring to this frame.

Given that s == Sf0 we find that)

(1B).s == ((F;\\fO)f08fO)2
== (F'S);\\fO.) (5.207))

So,for a particleat rest in the fa frame, equation (5.206)can be written

ds q
dt

== 92m (F.s);\\fa fa') (5.208))

To write down an equation which is valid for arbitrary velocitywe must replace
the two factors of fa on the right-hand sidewith the velocityv. On the left-hand
sidewe need the derivative of s which preserves8 .V == O. This is the Fermi)
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derivative of section5.5.1,which tells us that the relativistic form of the spin
precessionequation is)

s + s.(vv) == g!L(F.s)A v v.
2m) (5.209))

This equation tells us how much the spin vector rotates, relative to a Fermi-

transported frame, which is physicallysensible.We can eliminate the accelera-
tion bivector vv by using the relativistic Lorentz force law to find

s == g!L(F.s)Avv-1-s.(F.vv)2m m
== !L(g(F'S)AV+ 2(F.s).v)v2m
== !IF.s+ (g - 2)!L(F.s)Av v.

m 2m) (5.210))

This is calledthe Bargmann-Michel-Telegdiequation.
For the value g == 2, the Bargmann-Michel-Telegdiequation reducesto)

. q ps == - .s,
m) (5.211))

which has the same form as the Lorentz force law. In this sense,9 == 2 is the
most natural value of the gyromagnetic ratio of a point particlein relativistic

physics.Ignoring quantum corrections,this is indeedfound to be the value for an
electron. Quantum correctionstell us that for an electron 9 == 2(1+ a/21r+.. . ).
Thecorrectionsare due to the fact that the electron is never truly isolatedand

constantly interacts with virtual particlesfrom the quantum vacuum.
Given a velocity v and a spin vector s,with v.s == 0 and s normalised to

82 == -1,we can always find a rotor R such that)

-
v == R.,oR, s == R.,3R.) (5.212))

For thesewe have)

v == 2(RR) .v, s == 2(RR) 's.) (5.213))
For a particle with 9 == 2, this pair of equations reducesto the single rotor

equation (5.175).The simpleform of this equation further justifies the claim
that g == 2 is the natural, relativistic value of the gyromagnetic ratio. This
alsomeans that once we have solved the rotor equation, we can simultaneously
computeboth the trajectory and the spin precessionof a classicalrelativistic

particlewith 9 == 2.)

5.6Notes)

There are many good introductions to specialrelativity. Standard references
include the booksby French (1968),Rindler (1977)and d'!nverno(1992).Prac-
tically all introductory booksmake heavy useof coordinate geometry. Geometric)
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algebra was first systematically appliedto the study of relativistic physicsin the
book Space-TimeAlgebra by Hestenes(1966).Sincethis book was published
in 1966many authors have appliedspacetimealgebratechniques to relativistic
physics.The two most significant papersare again by Hestenes,'Properparti-
cle mechanics'and 'Properdynamics of a rigid point particle'(1974a,b).These
papersdetail the useof rotor equations for solving problemsin electrodynamics,
and much of section5.5follows their presentation.)

5.7 Exercises)
5.1) Supposethat the spacetimebivector B satisfies B2

AB == a + Ibin the
\037o frame, show that we can write)

1.By writing)

B == cosh(u)d+ sinh( u)1b== eu1bad,)

2 ,,2 A -
where d == b == 1.Henceexplain why we can write B == Ru 3R. By
consideringthe null vectors

\037o
::f:\0373, prove that we can always find two

null vectors satisfying)
\"B.n::!:== ::f:n::l::.)

5.2 The boostL from velocity u to velocity v satisfies)
- 2V == LuL == L u

,)

with LL == 1.Prove that a solution to this equation is

L ==
1+ vu

[2(1+ V'U)]I/2')
Is this solution unique? Show further that this solution can be written
in the form)

(
a vl\\u

)L = exp 2 lv!\\ul
')

where a > 0 satisfiescosh(a)== u.v.
5.3 Compton scattering occurswhen a photon scatters off an electron.If

we ignore quantum effectsthis can be modelledas a relativistic collison
process.The incident photon has wavelength AD in the frame in which
the electron is initially stationary. Show that the wavelength after scat-
tering, A, satisfies)

27r 1i
A -

AD == (1-cos(O)),me)

where 0 is the angle through which the photon scatters.)
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5.4 A relativistic particlehas velocity v == RroR.Show that v satisfiesthe
Lorentz force equation mv == qF.v if R satisfies)

R == -5LFR.
2m

Show that the solution to this for a constant field is)

R == exp(qFT/2m)Ro.)

Given that F is null, F2 == 0, show that v is given by the polynomial

q 2 q2
V == va + T-F.vo-T -FvoF.m 4m2

Supposenow that F == 0\"1 + 10\"2 and the particle is initially at rest in

the ro frame. Sketchthe resultant motion in the rlr3 plane.
5.5 One way to construct the Fermi derivativeof a vector a is to argue that

we should 'de-boost'the vector at propertime T + 6Tbefore comparing
it with a(T). Explainwhy this leadsus to evaluate)

1 -
lim \037(La(T+6T)L-a(T)),

6T----1-0 uT)

and confirm that this evaluates to it + a.(vv ).

5.6 A frame is Fermi-transportedalong the worldlineof a particle with ve-

locity v == RroR.The rotor R is decomposedinto a rotation and boost
in the fO frame as R == LU.Show that the rotation U satisfies)

2UU== -(Lt+ roLtro),)

What is the interpretation of the right-hand side in terms of the ro
frame?

5.7 The bivector B == a/\\b is Fermi-transportedalong a worldline by Fermi-
transporting the two vectors a and b. Showthat Bremains a blade,and
that the bivector satisfies)

dB
dT

+ Bx (vv) == o.)

5.8 A point particlewith a gyromagnetic ratio 9 == 2 is in a circular orbit
around a central Coulomb field. Show that in one complete orbit the

spin vector rotates in the plane A ==
K,O\"I + 10\"3 by an amount 21TIAI,

where)

qQK,--
41TEol')

and l is the angular momentum.)
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5.9 Showthat the Bargmann-Michel-Telegdiequation of (5.210)for a rela-
tivistic point particlewith spinvector s can be written)

s==!\302\243(F+!(g-2)FAVV)'S,m)- -
Given that v == RroR and s == Rr3R, show that the rotor R satisfiesthe
equation) . q qR == -FR+-(9- 2)RIBo,2m 4m)

where)

IBo== (RFR)Aroro.)

Assuming that the electromagnetc field F is constant, prove that Bo
is alsoconstant. Hencestudy the precessionof S for a particlewith a
gyromagnetic ratio 9 =I=-

2.)
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Geometriccalculus)

Geometricalgebraprovides us with an invertible product for vectors. In this

chapter we investigate the new insights this provides for the subjectof vector
calculus. The familiar gradient, divergenceand curl operationsall result from

the action of the vector operator, \\7. Sincethis operator is vector-valued, we
can now form its geometric product with other multivectors. We call this the
vectorderivative. Unlike the separatedivergenceand curl operations,the vec-
tor derivative has the important property of being invertible. That is to say,
Green'sfunctions exist for \\7 which enable initial conditions to be propagated
off a surface.

The synthesisof vector differentiationand geometricalgebra describedin this

chapter is called'geometriccalculus'.We will seethat geometric calculus pro-
videsnew insights into the subjectofcomplexanalysisand enablesthe conceptof
an analytic function to be extendedto arbitrary dimensions.In three dimensions
this generalisation gives rise to the angular eigenstatesof the Pauli theory, and
the spacetimegeneralisationof an analytic function definesthe wavefunction for

a masslessspin-l/2particle.Clearly there are many insights to be gained from

a unified treatment of calculus basedaround the geometricproduct.
The early sectionsof this chapter discussthe vector derivative, and its asso-

ciated Green'sfunctions, in flat spaces.This way we can quickly assemblea
number of resultsof central importance in later chapters. The generalisations
to embeddedsurfaces and manifolds are discussedin the final section.This is

a large and important subject,which has beenwidely discussedelsewhere.Our

presentation here is kept brief, focusing on the key resultswhich are required
later in this book.)
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6.1Thevectorderivative)

The vector derivative is denotedwith the symbol V (or V in two and three

dimensions).Algebraically,this has all of the propertiesof a vector (grade-I)
objectin a geometricalgebra.The operatorpropertiesof V are contained in the
definition that the inner product of V with any vector a resultsin the directional
derivative in the a direction.That is,)

a.'VF(x)= hm F(x+ fa) -F(x)
,

Et---+O E)

(6.1))

where we assumethat this limit exists and is well defined. Supposethat we
now definea constant coordinateframe {ek}with reciprocalframe {ek}.Spatial
coordinatesare definedby xk == ek.x,and the summation conventionis assumed
exceptwhere stated otherwise.The vector derivative can be written)

\037 k a kV ==
\037 e oxk

== e Ok,
k)

(6.2))

where we introduce the useful abbreviation)

a
Oi ==

oxi '

The frame decompositionV == ekok showsclearly how the the vector derivative
combinesthe algebraicpropertiesof a vector with the operatorpropertiesof the

partial derivatives. It is a straightforward exerciseto confirm that the definition
of V is independentof the choiceof frame.)

(6.3))

6.1.1Scalarfields
As a first example,considerthe caseofa scalarfield <p( x). Acting on <p, the vector
derivative V returns the gradient, V <p. This is the familiar grad operation.The
result is a vector whosecomponents in the {ek}frame are the partial derivatives
with respectto the xk coordinates.The simplestexampleof a scalarfield is the

quantity a.x,where a is a constant vector. We write a.x== xjaj,so that the

gradient becomes)

.oxj ..
V(x.a)== e2

oxi aj = e2
aj8j.) (6.4))

But the right-hand sidesimply expressesthe vector a in the {ek} frame, so we
are left with the frame-freeresult)

V(x.a)== a.) (6.5))

This result is independentof both the dimensionsand signature of the vector

space.Many formulaefor the vector derivativecan be built up by combining this)
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primitive result with the chain and productrules for differentiation. A particular
applicationof this result is to the coordinatesthemselves,)

\\lx
k == \\l(x.ek ) == ek

,) (6.6))

a formula which generalisesto curvilinear coordinate systems.
As a secondexample,considerthe derivative of the scalarx2. We first derive

the result in coordinatesbefore discussinga more elegant, frame-freederivation.
We form)

2 . . k
\\l(x ) == e'toi(x)x)ej.ek

(
. k

i ax) k ax .
== e -x + -------:-x)

)
e..ek

ox't ox't )

k .
==xek+x)ej
== 2x,) (6.7))

which recoversthe expectedresult.It is extremely useful to be able to perform
such manipulations without referenceto any coordinateframe. This requiresa
notation to keeptrack of which terms are beingdifferentiated in a given expres-
sion. A suitableconvention is to use overdots to define the scopeof the vector
derivative. With this notation we can write)

\\l(x
2
) == \\7(x.x) + V(x.x)== 2V(x.x).) (6.8))

In the final term it is only the first factor of x which is differentiated,while the
second is held constant. We can therefore apply the result of equation (6.5),
which immediately gives \\l(x

2
) == 2x.More complexresultscan be built up in

a similar manner.
In Euclideanspaces\\l <p pointsin the direction of steepestincreaseof <p. This

is illustrated in equation (6.5).To get the biggestincreasein a.x for a given
stepsize you must clearly move in the positive a direction, sincemoving in any

orthogonaldirection doesnot changethe value. Moregenerally,suppose\\l <p
== J

and considerthe contraction of this equation with the unit vector n,)

n .\\l <p
== n.J.) (6.9))

We seekthe direction of n which maximises this value. Clearly in a Euclidean
spacethis must be the J direction, soJ pointsin the directionofgreatestincrease
of cpo Also, settingn in the J direction showsthat the magnitude of J is simply
the derivative in the direction of steepestincrease.

In mixed signature spaces,such as spacetime,this simple geometric picture
can break down. As a simpleexample,considera timelike plane defined by
orthogonalbasisvectors

{\037o, \037I}, with r6 == 1and ri == -1.We introduce the
scalar field)

<p
==

(x\037ox\037o)
== (xO)2+ (X

1
)2.) (6.10))
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Figure 6.1Spacetimegradients. The contours of the scalar field
cjJ

=
(X'fOX'fo) definecirclesin spacetime.But the direction of the vectorderiva-
tive is only in the outward normal direction along the 0 axis. Along the1axis the gradient points inwards, which reflectsthe oppositesignature.
Around the circlethe gradient interpolatesbetween these two extremes.
At points where x is null the gradient vectoris tangential to the circle.)

Contours of constant <p are circlesin the spacetimeplane, so the direction of
steepestincreasepointsradially outwards. But if we form the gradient of c/J we
obtain)

V' <p
== 2\037 (x/ox/o)== 2/oxro.) (6.11))

Figure 6.1showsthe direction of this vector for variouspointson the unit circle.
Clearly the vector does not point in the direction of steepest increaseof <p.

Instead, V' c/J points in a direction 'normal'to tangent vectors in the circle.In
mixedsignature spaces,the 'normal'doesnot point in the directionour Euclidean
intuition is used to.This example should be borne in mind when we consider
directedintegration in spacesof mixed signature. (Thisexample may appear
esoteric,but closedspacetimecurves of this type are of considerableimportance
in somemodern attempts to construct a quantum theory of gravity.))

6.1.2Vectorfields
Supposenow that we have a vector field J(x). The full vector derivative V'J
contains two terms,a scalarand a bivector. The scalarterm is the divergenceof)

170)))



6.1THE VECTORDERIVATIVE)

J(x).In terms of the constant frame vectors {ek}we can write)

o k oJk k'V.J==

oxk e .J ==

oxk
== OkJ .) (6.12))

The divergencecan alsobe defined in terms of the geometricproductas)

V.J== !C\\7J+ jV).) (6.13))

The simplestexampleof the divergence is for the vector x itself, for which we

find)

oxk
\\7.x ==

oxk
== n,) (6.14))

where n is the dimensionof the space.
The remaining, antisymmetric, term definesthe exterior derivativeof the vec-

tor field. In termsof coordinatesthis can be written)

V AJ == ei A (OiJ) == ei A ej OiJj .) (6.15))

The components are the antisymmetrised terms in OiJj. In three dimensions
theseare the componentsof the curl, though V AJ is a bivector, rather than an

(axial)vector. (In this chapter we write vectors in two and three dimensions in

bold face.)The three-dimensionalcurl requiresa duality operation to return a

vector,)

curl(J)== -IVAJ.) (6.16))

The exteriorderivative generalisesthe curl to arbitrary dimensions.
As an example,considerthe exterior derivative of the positionvector x. We

find that)

\\7 Ax == ei
Aei == ei Aej (ei.ej)== 0,) (6.17))

which follows becauseei A ej is antisymmetric on i and j,whereas ei'ej is sym-
metric. Again, we can give an algebraicdefinition of the exterior derivative in

terms of the geometricproductas)

V AJ == !(VJ - jV).) (6.18))

Equations (6.13)and (6.18)combine to give the familiar decompositionof a

geometricproduct:)

V J == V.J + V AJ.) (6.19))

So,for example,we have Vx == n.)
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6.1.3MultivectoT fields)

The precedingdefinitionsextendsimply to the caseof the vector derivativeacting
on a multivector field. We have)

\\7A == ek8kA,) (6.20))

and for an r-grademultivector field Ar we write)

\\7 .Ar == (\\7 Ar)r-I,
\\7 /\\A r == (\\7 Ar )r+l.)

(6.21)
(6.22))

These define the interior and exterior derivatives respectively. The interior
derivative is often referred to as the divergence, and the exterior derivative is
sometimescalledthe curl. This latter name conflicts with the more familiar

meaning of 'curl'in three dimensions,however, and we will avoid this name
where possible.

.An important result for the vector derivative is that the exteriorderivative of
an exterior derivative always vanishes,)

\\7 /\\(\\7 /\\A)
== ei

/\\8 i (ej /\\8 jA)
== eZ

/\\e j /\\(8i8jA) == O.) (6.23))

This follows becauseei /\\e j is antisymmetric on i,j,whereas 8i8jA is symmetric,
due to the fact that partial derivatives commute. Similarly, the divergenceof a
divergencevanishes,)

\\7.(\\7.A) == 0,) (6.24))

which is proved in the sameway, or by using duality. (Byconvention,the inner

productof a vector and a scalaris zero.)
Because\\7 is a vector, it doesnot necessarilycommutewith other multivectors.

We therefore needto be careful in describingthe scopeof the operator.We use
the following seriesof conventionsto clarify the scope:)

(i) In the absenceof brackets,\\7 acts on the objectto its immediate right.

(ii) When the \\7 is followedby brackets,the derivativeactson all of the terms
in the brackets.

(iii) When the \\7 acts on a multivector to which it is not adjacent, we use
overdots to describethe scope.)

The 'overdot'notation was introduced in the previous section,and is invaluable
when differentiating productsof multivectors. For example,with this notation
we can write)

\\7(AB) == \\7AB + V AB,) (6.25))
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which encodesa version of the product rule. If necessary,the overdots can be
replacedwith partial derivatives by writing)

. . k
\\7AB == e AakB.) (6.26))

Later in this chapter we alsoemploy the overdot notation for linear functions.

Supposethat f(a) is a position-dependentlinear function. We write)

Vf(a) == \\7f(a) - ekf(aka),) (6.27))

so that \\7f (a)only differentiates the positiondependencein the linear function,
and not in its argument.

We can continue to build up a seriesof useful basicresultsby differentiating
various multivectors that dependlinearly on x. For example,consider)

\\7 x.Ar == ek ek .Ar ?) (6.28))

where Ar is a grade-rmulti vector. Usingthe resultsof section4.3.2we find that)

\\7 x.Ar == rAr ,

\\7 x!\\A r == (n - r)Ar,
V Arx == (-I)r(n- 2r)Ar,)

(6.29))

where n is the dimensionof the space.)

6.2Curvilinearcoordinates)

Sofar we have only expressedthe vector derivative in terms of a fixedcoordinate
frame (which is usually chosento be orthonormal). In many applications,how-

ever,it is more convenientto work in a curvilinear coordinate system,where the
frame vectors vary from point to point. A general set of coordinatesconsistof a
set of scalarfunctions {xi(X)},i == 1,. .., n, definedover someregion.In this re-
gion we can equally write x(Xi), expressingthe positionvector x parametrically
in terms of the coordinates.If one of the coordinatesis varied and all of the
others are held fixed we specifyan associatedcoordinate curve. The derivatives

along thesecurves specifya set of frame vectors by

_ ( )
_ ax _ I. x(xl, .. ., Xi + E, .. .,xn

) - X
ez X -

a . - 1m ,
XZ 0-1-0 E)

(6.30))

where the ith coordinateis varied and all othersare held fixed. The derivative
in the ei direction,ei'\\7, is found by moving a small amount along ei.But this

is preciselythe same as varying the Xi coordinatewith all othersheld fixed. We

thereforehave)
a

ei .\\7 == _
a - == ai .

x\037)

(6.31))
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In orderthat the coordinatesystembe valid over a given region we require that
throughout this region)

el!\\e2/\\' ..!\\e n =I=-
O.) (6.32))

As this quantity can never pass through zero it follows that the frame has the
sameorientation throughout the valid region.

We can construct a secondframe directly from the coordinate functions by
defining)

ei
== \\7x

i
.) (6.33))

From their construction we seethat the {ei } vectors have vanishing exterior
derivative:)

\\7!\\e
i

==
V!\\(\\7x

i
) == O.) (6.34))

As the notation suggests,the two frames defined above are reciprocalto one
another. This is straightforward to check:

. . ax) .
ei.eJ == ei'Vx J == _

a . == bi. (6.35)
XZ

This result is very useful because,when working with curvilinear coordinates,
one usually has simpleexpressionsfor either xi(x) or x(xi ), but rarely both.
Fortunately, only one is neededto construct a set of frame vectors, and the
reciprocalframe can then be constructedalgebraically (seesection4.3).This
construction provides a simplegeometric picture for the gradient in a general
space.Supposewe view the coordinatexl(x)as a scalarfield. The contours of
constant Xl are a set of (n -1)-dimensionalsurfaces.The remaining coordinates
x2

, ...,xn definea set of directionsin this surface. At each point on the surface
of constant Xl the vector \\7x

I isorthogonal to all of the directionsin the surface.
In Euclideanspacesthis vector is necessarilyorthogonal (normal) to the surface.
In other spacesthis construct defineswhat we mean by normal.

Now supposewe have a function F(x) that is expressedin terms of the coor-
dinatesas F(xi ). A simpleapplication of the chain rule gives)

. -

\\7F == \\7xz aiF == ezaiF.) (6.36))
This is consistent with the decomposition

. [) . .
\\7 == eZ-

[)
. == eZ[)i == eZei'V,

xZ)
(6.37))

which holdsas the {ei}and {ei }are reciprocalframes.)

6.2.1Tensoranalysis
A consequenceof curvilinear frame vectors is that one has to be careful when
working entirely in terms of coordinates,as is the casein tensoranalysis.The)

174)))



6.2 CURVILINEAR COORDINATES)

problem is that for a vector, for example,we have J == Jiei'If we just keep
the coordinatesJi we lose the information about the positiondependencein
the coordinate frame. When formulating the derivative of J in tensor analysis
we must introduce connection coefficientsto keeptrack of the derivativesof the
frame vectors.This can often complicate derivations.

There are two casesof the vector derivative in curvilinearcoordinatesthat do
not require connection coefficients.The first is the exterior derivative, for which

we can write)

V /\\J == V /\\ (Jiei) == (V Ji ) /\\e
i

.) (6.38))

It follows that the exteriorderivative has coordinates
o\037JJ

-
OJJi regardlessof

chosencoordinatesystem. The secondexceptionis provided by the divergence
of a vector. We have)

V .J == V.(Jiei) .) (6.39))

If we define the volume factor V by)

el/\\e2 /\\. . ./\\e n == IV,) (6.40))

where I is the unit pseudoscalar,we can write (following section4.3)

ei == (_I)i-Ien
/\\e

n-I /\\.. ./\\e
i /\\.. ./\\e

I IV.) (6.41))

Recallingthat each of the ei vectors has vanishing exteriorderivative, one can

quickly establishthat)

1 0 .
)V .J == ----:-(V J\037 .

V OX\037

Similarly, the Laplacian V 2 can be written as)

(6.42))

V2\037 == \037\037
(V ij OrP.

)\\.f/

V 8x\037
9 oxJ ') (6.43))

where gij == ei .ej .)

6.2.2Orthogonalcoordinatesin threedimensions
A number of the most useful coordinatesystemsare orthogonal systemsof coor-
dinates in three dimensions.For thesesystemsa number of specialresultshold.
We define a set of orthonormal vectors by first introducing the magnitudes)

hi == lei I
==

(e\037 .ei)1/2.) (6.44
))

In terms of thesewe can write (no sumsimplied)

i 1Ae == -ei.
hi)

ei == hiei,) (6.45))
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We now usethe {ei}asour coordinate frameand, sincethis frame isorthonormal,
we can work entirely with loweredindices.For a vector J we have

3
J J A \037 Ji

== iez ==
\037 hi

ei.
z=1)

(6.46))

It follows that we can write)

1
(

8 8 a
)

V.J==

h h h
_
8 (h2h3JI)+ _8 (h3hIJ2)+ _8 (hlh2J3) .

I 2 3 XI x2 x3)
(6.47))

A compact formula for the Laplacian is obtainedby replacing each Ji term with

1/hi 8i ,)

V 2
cp

_ 1
(\037 (

h2h3 aCP

) + \037
(

h3hI aCP

)hlh2h 3 aXI - hI aXI 8X2 h 2 aX2
a

(
h Ih 2 8cp

))+
8X3 ---,;;;8X3

.

The componentsof the curl can be found in a similar manner. A number of
useful curvilinear coordinatesystemsare summarised below.)

(6.48))

Cartesiancoordinates
Theseare the basicstarting point for all other coordinate systems.We introduce
a constant, right-handed orthonormal frame {O\"i}, 0\"10\"20\"3 == I. This notation
for a Cartesianframe is borrowed from quantum theory and is very useful in

practice.The coordinatesin the {O\" i}frame are written, following standard
notation, as (x,y, z). To avoid confusionbetween the scalarcoordinatex and
the three-dimensionalpositionvector we write the latter as r. That is,)

r == XO\"I + Y0\"2 + Z0\"3.) (6.49))

Sincethe frame vectors are orthonormal we have hI h 2
divergenceand Laplacian take on their simplestforms.)

h3) 1,so the)

Cylindricalpolarcoordinates
Theseare denoted (p,cp,z) with p and cp the standard two-dimensionalpolar
coordinates)

p== (X
2

+y2)1/2,)
y

tancp == -.
x)

(6.50))

The coordinateslie in the ranges0 < r < 00 and 0 <
cp < 27r. The coordinate

vectors are)

ep == cos(cp) 0\"1 + sin(cp) 0\"2,

ecp
== -sin(cp) 0\"1 + cos(cp) 0\"2,) (6.51))

Aez == 0\"3')
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We have adoptedthe commonconventionof labelling the frame vectors with the
associatedcoordinate.The magnitudes are hp == 1,htfy

== rand h z == 1,and the
frame vectors satisfy)

epetfye z == 0'10'20'3== I) (6.52))

and so form a right-handed set in the order (p,cp,z).)

Sphericalpolarcoordinates
Sphericalpolarcoordinatesarisein many problemsin physics,particularly quan-
tum mechanics and field theory. They are typically labelled(r,0, cp) and are
definedby)

r == Irl == (r.r)I/2,) r cos(0) == z,)
ytan (cp) == -.
x)

(6.53))

The coordinaterangesare 0 < r < ex), 0 < 0 < 7r and 0 <
cp < 27r. The

cjJ
coordinate is ill defined along the z axis- a reflection of the fact that it is

impossibleto construct a global coordinatesystemover the surface of a sphere.
The inverserelation giving r (r, 0, cjJ) is often useful,)

r == rsin(O)(cos(cjJ)0'1+ sin(cjJ)0'2)+ rcos(O)0'3.) (6.54))

Thisexpressionmakesit a straIghtforwardexerciseto compute the orthonormal
frame vectors, which are)

er == sin(O)(cos(cjJ)0'1+ sin(cjJ)0'2)+ cos(O)0'3 == r-1r,
ee == cos(0)(cos(cjJ) 0'I + sin(rp ) 0'2) - sin(0)0'3,

etfy
== -sin(cjJ) 0'1+ cos(cjJ) 0'2.)

(6.55))

The associatednormalisation factors are)

hr == 1, he == r, htfy
== r sin(O).) (6.56))

The orthonormal vectors satisfy ereee<jJ == I so that {er ,ee,etfy} form a right-
handed orthonormal frame. This frame can be obtainedfrom the {ei}frame

through the application of a position-dependentrotor, so that er == R0'3R ,- -
eo == RO'lR and

etfy
== R0'2R.The rotor is then given by)

R == exp(-I0'3cjJ/2)exp(-10'20/2).) (6.57))

Spheroidalcoordinates
Thesecoordinatesturn out to be useful in a number of problemsin gravitation
and electromagnetism involving rotating sources.We introduce a vector a,so
that ::!::adenotethe foci of a family of ellipses.The distancesfrom the foci are

given by)

rI==lr+al, r2==lr-al.) (6.58))
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From thesewe definethe orthogonal coordinates

u ==
\037(r1 + r2), v ==

\037(r1
- r2)') (6.59))

The coordinate systemis completedby rotating the ellipsesaround the a axis.
This definesan oblatespheroidalcoordinate system.Prolatespheroidalcoordi-
natesare formed by starting in a plane, defining (U1,U2) as above, and rotating
this systemaround the minor axis.

If we define)
Ar1==)

r+a) A

r2 ==)

r-a
r2)

(6.60))

rl)

we seethat)

U l
(

A A

)e
==\"2 r1+ r2 ,)

V l
(

A A

)e == 2 r1- r2 ,) (6.61))

which are clearly orthogonal. The normalisation factors are found from

u2 - v2 u2- v2
h\037

== 2 2 ' h\037
== 2 2. (6.62)u -a a -v

If we align a with the 3 axis and let cp take its spherical-polarmeaning, the
coordinateframe is completedwith the vector

\342\202\254tfy,

and)

h\037
== (u

2 - a2)(a2 - v2
).) (6.63))

The frame vectors satisfy
\342\202\254u\342\202\254tfy\342\202\254v

== I. The hyperbolic nature of the coordinate
systemisoften bestexpressedby redefiningthe u and v coordinatesas a cosh(w)
and a cos(19)respectively.)

6.3Analytic functions)

The vector derivativecombinesthe algebraicpropertiesofgeometricalgebra with

vector calculus in a simpleand natural way. In this sectionwe show how the
vector derivative can be used to extend the definition of an analytic function

to arbitrary dimensions.We start by consideringthe vector derivative in two

dimensionsto establishthe link with complexanalysis.)

6.3.1Analytic functionsin two dimensions
Supposethat {e1,e2}define an orthonormal frame in two dimensions.This is
identified with the Argand plane by singling out e1as the real axis.We denote
coordinatesby (x,y) and write the positionvector as r:)

r == xe1+ ye2.) (6.64
))

With this notation the vector derivative is
a av = elax + e2

ay
.) (6.65))
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In section 2.3.3we showed that complexnumbers sit naturally within the geo-
metric algebraof the plane. The pseudoscalaris the bivector I :=ele2, which

satisfies12 == -1.Complexnumbers therefore map directly onto even-grade
elementsin the algebraby identifying the unit imaginary i with I.The position
vector r is mappedonto a complexnumber by pre-multiplying by the vector
representingthe real axis:)

z == x+ Iy == elr.) (6.66))

Now supposewe introduce the complexfield 7jJ
== u + Iv. The vector derivative

appliedto 7jJ yields

V7P =
( \037\037

-
\037\037 )

el+ ( \037\037

+
\037\037 ) e2. (6.67)

Theterms in-bracketsare preciselythe onesthat vanish in the Cauchy-Riemann
equations. The statement that 7jJ is an analyticfunction (a function that satisfies
the Cauchy-Riemann equations)reducesto the equation)

V7jJ == o.) (6.68))

Thisis the fundamental equation which can begeneralisedimmediatelyto higher
dimensions.Thesegeneralisationsinvariably turn out to be of mathematical and

physical importance, and it is is no exaggeration to say that equations of the
type of equation (6.68)are amongst the most studiedin physics.

To completethe link with complexanalysis we recall that the complexpartial
derivative 8z is defined by the properties

8z
== 1

8z '
with the complexconjugate satisfying)

8zt-==0
8z) (6.69))

8z
8zt

== 0,)
8zt

8zt
== 1.) (6.70))

From thesewe seethat)

8 1
(

8 8
)

-:=---1-8z 2 8x 8y')
8 1

(
8 8

)azt =\"2 ax + I
ay

.) (6.71))

An analytic function is one that dependson z alone. That is, we can write

1j;(x+ Iy) == 7jJ(z). The function is therefore independent of zt, and we have)

87jJ (z)
8zt

== O.) (6.72))

Thissummarisesthe content of the Cauchy-Riemannequations, though this fact
is often obscuredby the complexlimiting argument favouredin many textbooks.
Comparingthe precedingforms, we seethat this equation is equivalent to)

1
(

8 8
)

I- -+1- 7jJ
== -e1V7jJ == 0,2 8x 8y 2) (6.73))
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recoveringour earlier equation.
It is instructive to seewhy solutions to V'l/J == 0 can be constructedas power

serIesIn z. We first seethat)

Vz == V(elr)== 2eI'Vr -elVr == 2el- 2el == O.) (6.74))

This little manipulation drives most of analytic function theory! It follows im-

mediately, for example,that)

V(z- zo)n == nV(elr-zo)(z- zo)n-l== 0,) (6.75))

so a Taylor seriesexpansionin z about Zo automatically returns an analytic
function. We will delay lookingat polesuntil we have introduced the subjectof
directedintegration.)

6.3.2Generalizedanalyticfunctions
There are two problemswith the standard presentation of complexanalytic
function theory that prevent a natural generalisation to higher dimensions:)

(i) Both the vector operatorV and the functions it operateson are mapped
into the samealgebraby picking out a preferred direction for the real
axis.Thisonly works in two dimensions.

(ii) The 'complexlimit' argument doesnot generaliseto higher dimensions.
Indeed,one can argue that it is not wholly satisfactory in two dimensions,
as it confusesthe conceptof a directional derivative with the conceptof

being independentof zt
.)

Theseproblemsare solved by keepingthe derivative operatorV as a vector,
while letting it act on general multivectors. The analytic requirement is then

replacedwith the equation V'l/J == O. Functions satisfying this equation are said
to be monogenic. If

'l/J
contains all gradesit is clearthat both the even-grade

and odd-gradecomponents must satisfy this equation independently. Without

lossof generality,we can therefore assumethat
'l/J

has even grade.
We can construct monogenicfunctions by following the route which ledto the

conclusionthat z is analytic in two dimensions.We recall that Vr == 3 and)

V(ar) == -a.) (6.76))

It follows that)

'l/J
== ra+ 3ar) (6.77))

',' is a monogenic for any constant vector a. The main differencewith complex
analysis is that we cannot derive new monogenicssimply from power seriesin

this solution, due to the lack of commutativity. One can construct monogenic)
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functions from seriesof geometric products,but a more instructive route is to
classifymonogenicsvia their angular properties.

First we assumethat W is a monogeniccontainingterms which scaleuniformly

with T. If we introduce polarcoordinateswe can then write)

w (T) == rl'ljJ (B, cp ) .) (6.78))

The function
'ljJ (B, cp) then satisfies

lrl-Ier'ljJ+ rl V 'ljJ( B, cp) == O.) (6.79))

It follows that
'ljJ

satisfies the angular eigenvalueequation)

-r/\\V'ljJ ==
l'ljJ.) (6.80))

These angular eigenstatesplaya key role in the Pauli and Diractheoriesof the
electron. SinceW satisfies Vw == 0, it follows that)

V 2w == O.) (6.81))

So each component of W (in a constant basis)satisfies Laplace'sequation. It
follows that each component of

'ljJ
is a sphericalharmonic, and hence that l is an

integer. We can construct a monogenicby starting with the function (x+yI0\"3)1,
which is the three-dimensionalextension of the complexanalytic function zl. In
terms of polarcoordinates)

(x+ yI0\"3)[ == rl
sinl(B) elcj;Iu3

,) (6.82))

which givesus our first angular monogenicfunction)

'ljJj
== sin I

(B) elcj;IU3
.) (6.83))

The remaining monogenicfunctions are constructedfrom this by acting with an

operator which, in quantum terms,lowersthe eigenvalueof the angular momen-
tum around the z axis.Theseare discussedin more detail in section8.4.1.)

6.3.3The spacetimevectorderivative)

To construct the vector derivative in spacetimesupposethat we introduce the
orthonormal frame {fl-\"} with associatedcoordinatesxl-\". We can then write

\"(\"'7_ I-\"
a _ a

\037

a
v -f _

a
-1'0_a + f _

a ..
xl-\" t x1,)

(6.84))
G

This deriv\037ive is the key operator in all relativistic field theories, including
electromagnetismand Diractheory. If we post-multiply by /'0 we seethat)

\\71'0 == at + /,z1'oai == at - V,) (6.85))
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where V == Uiai is the vector derivative in the relative spacedefined by the 'fo
vector. Similarly,)

'f0\\7 == at + v.) (6.86))

Theseequations are consistentwith)

\\7x == \\7('fO'fox) == (at -V)(t- r) == 4,) (6.87))

where x is the spacetimepositionvector. The spacetimevector derivative satis-
fies)

\\72 ==
a2

_ V 2
at 2 '

which is the fundamental operatordescribingwaves travelling at the speedof

light. The spacetimemonogenicequation \\71/J
== 0 is discussedin detail in chap-

ters 7 and 8. We only note here that, if 1/J is an even-grade element of the

spacetimealgebra,the monogenicequation is preciselythe wave equation for a
masslessspin-1/2particle.)

(6.88))

6.3.4Characteristicsurfacesand propagation
The fact that \\72 can give riseto either ellipticor hyperbolicoperators,depending
on signature, suggeststhat the propagatortheory for \\7 will dependstrongly on

the signature. This is confirmedby a simpleargument which can be modified
to apply to most first-order differential equations. Supposewe have a generic
equation of the type)

\\71/J
== f( 1/J, x),) (6.89))

where 1/J is somemultivector field, f( 1/J, x) is a known function and x is the

positionvector in an n-dimensionalspace.We are presentedwith data on some

(n -1)-dimensionalsurface, and wish to propagatetheseinitial conditions away

from the surface. If surfacesexistfor which this isnot possiblethey are known as
characteristicsurfaces.Supposethat we construct a set of independenttangent
vectors in the surface, {eI,. .. ,en-I}.Knowledgeof 1/J on the surface enablesus

to calculate each of the directional derivativesei'\\71/J, i == 1,. .., n -1.We now

form the normal vector)

n == I eI/\\e2/\\\" ./\\en-I,) (6.90))

where I is the pseudoscalarfor the space.Pre-multiplying equation (6.89)with

n we obtain)

n.\\71/J == -n/\\\\71/J + nf(1/J, x).) (6.91))
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But we have)

n /\\ \\11/J == I(e1/\\ e2/\\. . ./\\ en-1) .
\\11/J)

n-l
== IL(_1)i+l-n(eI/\\\"./\\ei/\\\" ./\\en-I)ei.\\11/J,

i=l)
(6.92))

which is constructedentirely from known derivativesof 1/J. Equation (6.91)then
tells us how to propagate1/J in the n direction.The only situation in which we
can fail to propagate1/J is when n still lies in the surface. This happensif n is
linearly dependenton the surface tangent vectors.If this is the casewe have)

n/\\(el/\\e2/\\\" ./\\en-l)== O.) (6.93))

But this impliesthat)

(I-In)/\\n== I-1n.n== O.) (6.94))
We therefore only fail to propagatewhen n 2 == 0, socharacteristicsurfacesare al-
ways null surfaces.Thispossibilitycan only arisein mixed signature spaces,and
unsurprisingly the propagatorsin thesespacescan have quite different properties
to their Euclideancounterparts.)

6.4Directedintegrationtheory
The true power of geometric calculus beginsto emerge when we study directed
integration theory. This provides a very general and powerful integral theorem
which enablesus to construct Green'sfunctions for the vector derivative in var-
ious spaces.Thesein turn can be used to generalisethe many powerful results
from cm;p.plexfunction theory to arbitrary spaces.

r(\"l --)

6.4.1Lineintegrals
The simplestintegrals to start with are line integrals. The line integral of a
multivector field F(x) along a line X(A) is defined by)

J
dx

J \037
_0 -

F(x)
dA

dA == Fdx ==

nl\037\037\037F\037\037xz.
z=I)

(6.95))

In the final expressiona set of successivepointsalong the curve {Xi}are intro-
duced,with Xo and Xn the endpoints,and)

\037Xi == Xi -Xi-I, pi == \037(F(Xi-l) + F(Xi))') (6.96))

If the curve is closedthen Xo == Xn. The result of the integral is independent
of the way we chooseto parameterisethe curve, provided the parameterisation
respectsthe requiredorderingofpointsalongthe curve. Curves that doubleback)
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where V == Uiai is the vector derivative in the relative spacedefined by the 'fa
vector. Similarly,)

'fa\\7 == at + V.) (6.86))

Theseequations are consistentwith)

\\7x == \\7 ('fa'fox) == (at -V) (t - r) == 4,) (6.87))

where x is the spacetimepositionvector. The spacetimevector derivative satis-
fies)

\\72 ==
a2

_ v2
at 2 ') (6.88))

which is the fundamental operatordescribingwaves travelling at the speedof

light. The spacetimemonogenicequation \\71/J == 0 is discussedin detail in chap-
ters 7 and 8. We only note here that, if 1/J is an even-grade element of the

spacetimealgebra,the monogenicequation is preciselythe wave equation for a
masslessspin-l/2particle.)

6.3.4Characteristicsurfacesand propagation
The fact that \\72 can give riseto either ellipticor hyperbolicoperators,depending
on signature, suggeststhat the propagatortheory for \\7 will dependstrongly on
the signature. This is confirmedby a simple argument which can be modified
to apply to most first-order differential equations. Supposewe have a generic
equation of the type)

\\71/; == f(1/J,x),) (6.89))

where 1j; is some multivector field, f (1/;,x) is a known function and x is the

positionvector in an n-dimensionalspace.We are presentedwith data on some

(n -1)-dimensionalsurface, and wish to propagatetheseinitial conditions away

from the surface. If surfacesexistfor which this isnot possiblethey are known as
characteristicsurfaces.Supposethat we construct a set of independenttangent
vectors in the surface,{eI,...,en-I}.Knowledgeof 1j; on the surface enablesus

to calculate each of the directional derivativesei'\\71/;, i == 1,. .., n -1.We now

form the normal vector)

n == IelA e2A. . .Aen-l,) (6.90
))

where I is the pseudoscalarfor the space.Pre-multiplying equation (6.89)with

n we obtain)

n.\\71j;
== -nA \\71/; + nf(1j;,x).) (6.91))
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But we have)

n/\\ \"V7jJ
== J(eI/\\e2/\\\" ./\\e n -I).\"V7jJ)

n-1
== IL(_1)2+1-n(eI/\\\"./\\ei/\\\" ./\\en-I)ei.\"V7jJ,

i=1)
(6.92))

which is constructedentirely from known derivativesof 'l.jJ. Equation (6.91)then
tells us how to propagate1/J in the n direction.The only situation in which we
can fail to propagate1/J is when n still lies in the surface. This happensif n is
linearly dependenton the surface tangent vectors.If this is the casewe have)

n/\\(eI/\\e2/\\\" ./\\en-1)== O.) (6.93))

But this implies that)

(I-1n)/\\n== J-1n.n== O.) (6.94))

We thereforeonly fail to propagatewhen n2 == 0, socharacteristicsurfacesare al-
ways null surfaces.This possibilitycan only arisein mixed signature spaces,and
unsurprisingly the propagatorsin thesespacescan have quite different properties
to their Euclideancounterparts.)

6.4Directedintegrationtheory
The true power of geometric calculus beginsto emerge when we study directed
integration theory. This provides a very general and powerful integral theorem
which enablesus to construct Green'sfunctions for the vector derivative in var-
ious spaces.Thesein turn can be usedto generalisethe many powerful results
from complexfunction theory to arbitrary spaces.)

6.4..1Lineintegrals
The simplestintegrals to start with are line integrals. The line integral of a
multivector field F(x)along a line X(A) is defined by)

J
dx J \037

-> >F(x)
dA

dA == Fdx ==

nl\037\037 \037
F2

\037x
2.

L=1)

(6.95))

In the final expressiona set of successivepointsalong the curve {Xi}are intro-
duced, with Xo and Xn the endpoints,and)

\037XL == Xi -Xi-1, pi == \037(F(Xi-I) + F(Xi))') (6.96))

If the curve is closedthen Xo == Xn. The result of the integral is independent
of the way we chooseto parameterisethe curve, provided the parameterisation
respectsthe requiredorderingof points alongthe curve. Curves that doubleback)

183)))



GEOMETRICCALCULUS)

on themselves are handled by referring to the parameterisedform x(.:\\), which

tellsus how the curve is traversed.
The definition of the integral (6.95)lookssostandardthat it is easyto overlook

the key new feature, which is that dx is a vector-valuedmeasure,and the product
Fdx is a geometricproductbetweenmultivectors. Thissmall extensionto scalar
integration is sufficient to bring a wealth of new features. We refer to dx, and
its multivector-valuedextensions,as a directedmeasure. The fact that dx is no

longer a scalarmeans that equation (6.95)is not the most general line integral
we can form. We can also considerintegrals of the form)

JF(x)
\037\037

G(x)dA=JF(x)dxG(x),) (6.97))

and more generallywe can considersums of terms like these.The most general
form of line integral can be written)

JL(8).x;x)dA =JL(dx),) (6.98))

where L(a) == L(a;x) is a multivector-valuedlinear function of a. The position
dependencein L can often be suppressedto streamline the notation.

Supposenow that the field F is replacedby the vector-valuedfunction v(x).
We have)

Jvdx =Jv.dx+JvAdx,) (6.99))

which separatesthe directedintegral into scalarand bivector-valuedterms.If
v is the unit tangent vector along the curve then the scalarintegral returns the

arc length. In many applicationsthe scalarand bivector integrals are considered
separately. But to take advantage of the most powerful integral theorems in

geometric calculus we need to use the combined form, containing a geometric
productwith the directedmeasure.)

6.4.2Surfaceintegrals)

The natural extensionof a line integral is to a directedsurface integral. Suppose
now that the the multivector-valued field F is defined over a two-dimensional
surface embeddedin some larger space.If the surface is parameterisedby two

coordinatesx(xI ,x2
) we definethe directedmeasure by the bivector

ax ax 1 2 1 2dX ==

ax1 1\\ ax2 dx dx == eII\\e2dx dx
,) (6.100))

whereei == aix.This measure is independent ofhow the surfaceis parameterised,
provided we orient the coordinate vectors in the desiredorder.Sometimesmore
than one coordinatepatch will be neededto parameterisethe entire surface, but)
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Figure 6.2A triangulated surface.Thesurfaceis representedby a seriesof
points, and eachset of three adjacentpoints definesa triangle, or simplex.
As more points are added the simplicesbecomea closerfit to the true
surface. Each simplex is given the sameorientation by ensuring that for

adjacentsimplices,the common edgein traversed in oppositedirections.)

the directedmeasuredX is still definedeverywhere. A directedsurface integral
then takesthe form)

JFdX =JFell\\e2dx1dx2
,

or a sum of such terms if more than one coordinate patch is required.Again, we
form the geometric productbetween the integrand and the measure.As in the
caseof a line integral, this is not the most general surface integral that can be
considered,as the integrand can multiply the measure from the left or the right,

giving
+\037J3\037

to different integrals.
As an exampleof a surface integral, considera closedsurface in three dimen-

sions,with unit outward normal n. We let F be given by the bivector-valued
function rpnI-1, where rp is a scalarfield. The surface integral is then)

(6.101))

f rjJnr1dX = f 1MBI.) (6.102))

Here!dSI== I-1n dX is the scalar-valuedmeasureoverthe surface. The directed
measureis usually chosensothat n dX has the sameorientation asI.As a second
example,supposethat F == 1.In this casewe can show that)

f dX = 0,

which holdsfor any closedsurface (seelater). If the surface is open,the result
of the directedsurface integral dependsentirely on the boundary, sinceall the
internal simplicescancelout. This result is sometimescalled the vector area,
though in geometric algebrathe result is a bivector.

In order to construct proofs of someof the more important results it is nec-
essaryto expressthe surface integral (6.101)in terms of a limit of a sum. This
involves the ideaof a triangulated surface (figure 6.2).A set of points are chosen)

(6.103))
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e2)

Xo) el) Xl)

Figure 6.3A planar simplex. The points xo,Xl, X2 define a triangle. The
orderspecifieshow the boundary is traversed,which definesan orientation

for the simplex.)

on the surface, and adjacent sets of three pointsdefine a seriesof planar trian-

gles,or simplices.As more pointsare addedthesetriangles becomesmaller and
are an ever better model for the surface. (In computer graphicsprogramsthis
is preciselyhow 'smooth'surfaces are representedinternally.) Each simplexhas
an orientation attached such that, for a pair of adjacent simplices,the common

edge is traversed in oppositedirections. In this way an initial simplexbuilds
up to define an orientation for the entire surface. For somesurfaces, such as
the Mobiusstrip, it is not possibleto define a consistent orientation over the
entire surface. For these it is not possibleto define a directedintegral, so our

presentationis restrictedto orientable surfaces.
Supposenow that the three pointsXo, Xl, x2 define the cornersof a simplex,

with orientation specifiedby traversing the edgesin the order Xo I---t Xl I---t X2

(seefigure 6.3). We define the vectors)

el == Xl -
Xo,) e2 == X2 - Xo.) (6.104))

The surface measure is then definedby

\037X == !eI!\\e2==
\037(XI!\\X2 + X2!\\XO + XO!\\XI)') (6.105))

\037X has the orientation defined by the boundary, and an area equal to that of
the simplex.The final expressionmakesit clear that \037X is invariant under even

permutations of the vertices. With this definition of \037X we can expressthe
surface integral (6.101)as the limit:)

n

f FdX == lim \"Fk\037Xk.
nl---+ CXJ \037

k=l)
(6.106))

The sum here runs overall simplicesmaking up the surface,and for each simplex
F is the averagevalue of F overthe simplex.For well-behavedintegrals the value
in the limit is independentof the precisenature of the limiting process.)
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6.4.3n-dimensionalsurfaces)

The simplexstructure introduced in the previous sectionprovides a means of

defining a directedintegral for any dimensionofsurface. We discretisethe surface

by consideringa seriesof points, and adjacent sets of pointsare combined to

define a simplex. Supposethat we have an n-dimensional surface, and that

one simplexfor the discretisedsurface has vertices Xo,... , Xn , with the order

specifyingthe desiredorientation. For this simplexwe definevectors)

ei == Xl - xo, i == 1,. .., n,) (6.107))

and the directedvolume element is)

1
\037X == ,el!\\'. .!\\e n .

n.)
(6.108))

A point in the simplexcan be describedin terms of coordinatesAI,. .. , An by

writing)
n)

x == Xo + LAlei.
i=I)

(6.109))

Each coordinateliesin the range 0 < Ai < 1,and the coordinatesalso satisfy)

C::)

!j)

n)

LAi < 1.
i=I)

(6.110))

Now supposewe have a multivector field F(x) defined over the surface. We

denote the value at each vertex by Fi == F(Xi)' A new function f(x) is then

introduced which linearly interpolatesthe Fl over the simplex. This can be
written)

n)

f(X) == Fo + LAi(F i -Fo).
i=l)

(6.111))

As the number of pointsincreasesand the simplicesgrow smaller, f(x) becomes
an ever better approximation to F(x),and the triangulated surface approaches
the true surface.

The directedintegral ofF overthe surfaceis now approximated by the integral
of f over each simplexin the surface. To evaluate the integral overeach simplex
we use the Ai as coordinates,so that)

dX == el!\\. . .!\\e n dA I ...dA n.) (6.112))

It is then a straightforward exercisein integration to establishthat)

JdX=\037X) (6.113))
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and)

JAi dX ==
1

\037X r;AZ .
n + 1 ') (6.114))

Combiningthesetwo resultswe find that the integral off(x) overa singlesimplex
evaluates to) .)

Jf dX =
n \037 1 (\037Fi)

\037x.) (6.115))

The function is therefore replacedby its average value over the simplex. We
write this as F. Summing over all the simplicesmaking up the surface we can
now define)

n

JFdX == lim \"pkdXk
,

nl---+ CXJ \037
k=l)

(6.116))

where k runs over all of the simplicesin the surface. More generally, suppose
that L(An) is a position-dependentlinear function of a grade-nmultivector An.
We can then write)

n

JL(dX)== lim \"\" [k(dXk),n 1---+ CXJ \037
k=I)

(6.117))

with [1\037(dXk) the average value of L(dXk
) over the vertices of each simplex./

/-')

6.4.4Thefundamentaltheoremofgeometriccalculus)

Most physicistsare familiar with a number of integral theorems,including the
divergenceand Stokes'theorems, and the Cauchy integral formula of complex
analysis. We will now show that these are all specialcasesof a more general
theorem in geometric calculus. In this sectionwe will sketchof proof of this
important theorem.Readerswho are not interestedin the detailsof the proof
may want to jump straight to the following section,where someapplications
are discussed. The proof given here usessimplicesand triangulated surfaces,
which means that it is relevant to methods of discretisingintegrals for numerical
computation.

We start by introducing a notation for simpliceswhich helpsclarify the nature
of the boundary operator.We let (XO, Xl,.. ., Xk) denotethe k-simplexdefined
by the k + 1pointsXo, ... , Xk. This is abbreviated to)

(X)(k) == (XO,XI,...,Xk).) (6.118))

The orderof points is important, as it specifiesthe orientation of the simplex.
If any two adjacent points are swappedthen the simplexchanges sign. The)
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boundary operatorfor a simplexis denotedby 8and is definedby

k

8(X)(k) == L(-l)i(xo,...,Xi\",\" Xk)(k-l),
i=O)

(6.119))

where the checkdenotesthat the term is missing from the product. So, for

example,)

8(XO,Xl)== (Xl) - (XO),) (6.120))

which returns- the two pointsat the end of a line segment.The boundary of a

boundary vanishes,)

88(x)(k)== O.) (6.121))

Proofsof this can be found in most differential geometry textbooks.
Sofar we have dealt only with orderedlistsof points,not geometricsumsor

products.To addsomegeometrywe introduce the operator\037 which returns the

directedcontent of a simplex,)

1
G,6.(X)(k)= k!(XI-XO)/\\(X2-xo)/\\.../\\(Xk-xo).

/)

(6.122))

This is the result of integrating the directedmeasureover a simplex

J dX = ,6.(X)(k)
= ,6.x.

(X)(k)

The directedcontent of a boundary vanishes,)

(6.123))

\037(8(X)(k))== o.) (6.124))

As an example,considera planar simplexconsistingof three points.We have)

8(XO,Xl,X2)== (Xl,X2) - (XO,X2) + (XO,XI).) (6.125))

Sothe directedcontent of the boundary is)

\037(8(xo, Xl, X2)) == (X2
-XI) - (X2

-
XO) + (XI

-
XO) == O.) (6.126))

The general result of equation (6.124)can be establishedby induction from the

caseof a triangle. These results are sufficient to establishthat the directed

integral over the surface of a simplexis zero:
k

f dS=L(-l)\037J dX=,6.(8(x)(k))=0.
i=O

B(X)(k) (X\037)(k-l))

(6.127))

A general volume is built up from a chain of simplices. Simplicesin the
chain are defined such that, at any common boundary, the directedareas of

the bounding faces of two simplicesare equal and opposite.It follows that the

surface integrals over two simplicescancelout over their common face. The)
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surface integral over the boundary of the volume can therefore be replacedby
the sum of the surface integrals over each simplexin the chain. If the boundary
is closedwe establishthat)

n

f dS=
nl!..\037Lf dSa = o.

a=I)
(6.128))

The sum runs over each simplexin the surface, with a labeling the simplex.It
is implicit in this proof that the surface boundsa volume which can be filled by
a connectedset of simplices.So,as well as beingoriented, the surface must be
closedand simply connected.

Next, we return to equation (6.114)and introduce a constant vector b. If we
define bi == b.ei we seethat)

k

LbiA
i == b.(x-xo),

i=I)
(6.129))

which is valid for all vectors x in the simplexof interest. Multiplying equa-
tion (6.114)by bi and summing over i we obtain)

J 1 k

b.(x-xo)dX=k 1Lb'ei\037X+ i-I
(X)(k)

-
where the integral runs over a simplexdefined by k + 1vertices.A simplere-
ordering yields)

(6.130))

\\=fb.XdX=k:1(t,b'(Xi-
X

o)+(k+1)b.XO)
\037X

== b.x\037X
,) (6.131))

where x is the vector representingthe (geometric)centre of the simplex,

1 k

x =
k + 1LXi'

i=O)

(6.132))

Now supposewe have a k-simplexspecifiedby the k + 1points (xo,...,Xk)
and we form the directedsurface integral of b.x.We obtain)

f
1 k .

b.xdS=
k + 1L(-1)'b.(xo+ ... Xi ...+ Xn)\037(Xi)(k-1)'

z-o
8(X)(k)

-
To evaluate the final sum we needthe result that

k
_ 1L(-1)
,b.(xa + ...Xi\" .+ xn ) \037 (Xi) (k-1)= k!

b .(e1/\\.. ./\\ en) .
1..=0)

(6.133))

(6.134
))
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The proof of this result is purely algebraic and is left as an exercise.We have

now establishedthe simpleresult that)

f b.xdS= b.(LlX),
8(X)(k))

(6.135))

where \037X ==
\037((X)(k\302\273)'

The orderand orientations in this result are important.
The simplex(xY(k)

is oriented, and the orderofpoints specifieshow the boundary
is traversed. With dB the oriented element over each boundary, and \037X the

volume element for the simplex,we find that the correct expressionfor the surface

integral is b.(\037X) .
We are now in a positionto apply these resultsto the interpolated function

f(x) of equation (6.111).Supposethat we are working in a (flat) n-dimensional

spaceand considera simplexwith points (xo,...,xn ). The simplexis chosen

such that its volume is non-zero, so the n vectors ei == Xi - Xo define a (non-
orthonormal) frame. We therefore write)

ei == Xi
-

XO,) (6.136))

and introduce the reciprocalframe {ei}.Thesevectors satisfy

ei .(x- xo) == ,,\\ i.
It follows that the surface integral of f(x)over the simplexis given by)

(6.137))

,---/)

n

f f(x)dS= 2:(Fi-Fa)f ei.(x-xo)dS
\037-I

(8(X)(k)
-

:0, n

== 2:(Fi - Fo)ei.(\037X).
i=l)

(6.138))

But if we considerthe directional derivativesof f(x)we find that)

8f(x) _ F.-R
8,,\\i

-
z o.

The result of the surface integral can therefore be written)

(6.139))

n

f f(x)dS= 2:(Fi-Fo)ei.(LlX)
i-I

8(X)(k)
-

\037 8f i ..
==

\037 8,,\\i
e .(\037X) == f\\l.(\037X).

i=l)
(6.140))

Here we have usedthe result that \\l == ei8i , which follows from using the ,,\\
i as

a set of coordinates.
We now considera chain of simplices,and add the result of equation (6.140))
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overeach simplexin the.chain. The interpolatedfunction f(x)takeson the same
value over the common boundary of two adjacent simplices,sincef(x) is only
defined by the values at the common vertices. In forming a sum over a chain,
all of the internal faces canceland only the surface integral over the boundary
remaIns.We therefore arrive at)

1f(x)dS= Ljv.(\037xa),
a)

(6.141))

with the sum running over all of the simplicesin the chain. Taking the limit as
more pointsare addedand each simplexis shrunk in size we arrive at our first
statement of the fundamental theorem,)

1FdS== f ptJdX.
lav lv

We have replacedthe interpolatedfunction f with F,which is obtainedin the
limit as more points are added. We have also used the fact that \\7 lies en-
tirely within the spacedefined by the pseudoscalarmeasure dX to remove the
contraction on the right-hand sideand write a geometricproduct.

The above proof is easily adapted for the casewhere the function sits to the
right of the measure,giving)

(6.142))

1dSG == f tJ dXG.
lav lv

Since\\7 is a vector, the commutation propertieswith dX will dependon the
dimensionof the space.A yet more general statement of the fundamental theo-
re\037 can be constructedby introducing a linear function L(An-l) == L(An-I;x).
This function takes a multivector An-I of graden - 1as its linear argument,
and returns a general multivector. L is alsoposition-dependent,and its linear
interpolation over a simplexis defined by)

(6.143))

n)

L(A) == L(A;xo)+ LAi(L(A;Xi)- L(A,xo)).
i=I)

(6.144
))

The linearity of L(A) means that sums and integrals can be moved insidethe
argument, and we establishthat)

1L(dS)= L(IdS;XO)
+t L(IAidS;

Xi)
-t L(IAidS;XO))

n)

== LL(e
i .6.X;Xi)

- L(e
i.6.X;XO)

i=l)

== L(tJ.6.X).) (6.145))
There is no positiondependencein the final term as the derivative is constant)
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over the simplex.Building up 'achain of simplicesand taking the limit we prove
the general result)

1L(dS)=1L(\037dX).
Jav v)

(6.146))

This holds for any linear function L(An-I) integrated over a closedregion of

an n-dimensionalflat space.This is still not the most general statement of the

fundamental theorem, aswe will later provea versionvalid for surfacesembedded
in a curved space,but equation (6.146)is sufficient to make contact with the

main integral theorems of vector calculus.)

6.4.5The divergenceand Green'stheorems)

Toseethe fundamental theorem of geometric calculus in practice,first consider
the scalar-valuedfunction)

L(A) == (JAI-1).) (6.147))

HereJ isa vector, and I is the (constant) unit pseudoscalarfor the n-dimensional

space.The argument A is a multivector of graden -1.Equation (6.146)gives)

1(j't1dXI-l)== 1V.JIdXI = J (JdSr1),
v v Jav)

(6.148))

where IdXI c I-1dX is the scalarmeasure over the volume of interest. The

normal to the surface, n is defined by)

nldSI== dSI-I,) (6.149))

where IdSIis the scalar-valuedmeasureover the surface. This definition ensures

that, in Euclideanspaces,n dShas the orientation definedby I, and in turn that

n points outwards.With this definition we arrive at)

1V.JIdXI = J n.JIdSI,
v Jav

which is the familiar divergencetheorem.This way of writing the theorem hides
the fact that nidSIshould be viewedas a single entity, which can be important
in spacesof mixed signature.

Now return to the fundamental theorem in the form of equation (6.143),and

let G equal the vector J in two-dimensionalEuclideanspace.We find that)

(6.150))

1dSJ == 1V dXj == _ 1V J dX,
Jav v v

where we have usedthe fact that dX is a pseudoscalar,so it anticommutes with)

(6.151))
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vectors in two dimensions.Introducing Cartesiancoordinateswe have dX
ldxdy, so)

1dSJ= - r VJldxdy.lav Jv
If we let J == Pel+ Qe2 and take the scalarpart of both sides,we prove Green's
theorem in the plane)

(6.152))

fPdX+Qdy=J(\037\037

-
\037: ) dxdy.) (6.153))

The line integral is taken around the perimeterof the area in a positive sense,as specifiedby I == eIe2.)

6.4.6Cauchy'sintegralformula)
The fundamental theorem of geometric calculus enablesus to view the Cauchy
integral theorem of complexvariable theory in a new light. We let

'l/J denotean
even-grademultivector, which therefore commutes with dX, so we can write)

JV?j; dX = f ds?j;= f \037\037

?j; dA.) (6.154))

In the final expressionA is a parameter along the (closed)curve. Now recall
from section6.3.1that we form the complexnumber z by z == elr.We therefore
have)

f ?j;dz=JelV?j; dX,) (6.155))
where the term on the left is now a complexline integral. The condition that

'l/J

is analytic can be written V'l/J == 0 so we have immediately proved that the line
integral of an analytic function around a closedcurve always vanishes.

Cauchy'sintegral formula states that, for an analytic function,)

J(a) = \037 1 J(z)
dz,

27rZ Ie z - a

where the contour C enclosesthe point a and is traversed in a positive sense.
\" ''filepreciseform of the contour is irrelevant, becausethe differencebetween two

contour integrals enclosinga is a contour integral around a region not enclosing
a (seefigure 6.4).In such a region f(z)/(z - a) is analytic so the differencehas
zero contribution.

To understandCauchy'stheorem in terms of geometric calculus we need to
focus on the propertiesof the Cauchy kernel1/(z- a). We first write)

(6.156))

(z-a)t r-a
== el

I(z-a)12 (r - a)2 ') (6.157))
1)

z-a)
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Figure 6.4 Contour integrals in the complexplane. The two contours C1
and C2 can be deformed into one another, provided the function to be
integrated has no singularities in the intervening region. In this case the
differencevanishes, by Cauchy'stheorem.)

where a == ela is the vector correspondingto the complexnumber a. The
essentialquantity here is the vector (r- a)/(r - a)2, which we can write as)

r-a
( )2

= Vlnlr-al.r-a) (6.158))

But In Ir-alis the Green'sfunction for the Laplacianoperatorin two dimensions,)

V 2 ln Ir - al == 27fb'(r - a).) (6.159))
It follows that the vector part of the Cauchy kernel satisfies)

r-a
V

(r _ a)2
= 27r8(r-a).

The Cauchykernel is the Green'sfunction for the two-dimensionalvector deriva-
tive! The eXIst\037lice of this Green'sfunction proves that the vector derivative is
invertible, which is not true of its separatedivergenceand curl components.

The Cauchy integral formula now follows from the fundamental theorem of

geometriccalculus in the form of equation (6.155),)

(6.160))

f
j(z) J (

r \037 a
)z_adz=e1 V (r_a)2ed(x) dX

=elJ (27r8(X-a)ed(z)+Vf(Z)(;\037\0372el) IldXI

== 27flj(a), (6.161))
where we have assumedthat j is analytic, V j(z)== O. We can now understand
preciselythe rolesof each term in the theorem:)
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.
(i) The dz encodesthe tangent vector and forms a geometricproduct in the

integrand.
(ii) The (z - a)-I is the Green'sfunction for the vector derivative V and

ensuresthat the area integral only picksup the value at a.
(iii) The I (which replacesi) comesfrom the directedvolume element dX ==

Idxdy.)

Much of this is hidden in conventional accounts, but all of these insights are
crucial to generalising the theorem.Indeed,we have already proved a more
general theorem in two dimensionsapplying to non-analytic functions. For these
we can now write, following section6.3.1,)

f
f J 8f 1

27rIf(a)== dz - 2
\037 t IldXI.z - a uZ z - a)

(6.162))

A secondkey ingredient in complexanalysis is the seriesexpansionof a func-
tion. In particular, if f (z) is analytic apart from a poleof ordern at z == a, the
function has a Laurent seriesof the form)

00

f( )
a-n a-I L ( )

i
Z == . .. + ai Z - a .

(z - a)n z - a .
\037=O)

(6.163))

The powerful residuetheorem states that for such a function

t f(z)dz = 27ria-l'

We now have a new interpretation for the residueterm in a Laurent expansion-
it is a weightedGreen'sfunction. The residuetheorem just recoversthe weight!
Geometriccalculus unifies the theory of polesand residues,supposedlyunique
to complexanalysis, with that of Green'sfunctions and 5-functions.

We now have an alternative picture of complexvariable theory in terms of
Green'sfunctions and surface data. Suppose,for example,that we start with a
function f(x) defined of the real axis.We seekto propagatethis function into
the upper half-plane, subjectto the boundary conditions that f falls to zero as
IZII---+ 00.The Cauchy formula tellsus that we should propagateaccording to
the forrrmia)

(6.164))

/
--')

f(a) = \037 J
OO f(x) dx.

21T'l -00 X - a)
(6.165))

But supposenow that we form the Fourier transform of the initial function f(x),)

f(x) == J
OO dk

J(k)eikx ,
-00 21T)

(6.166))

We now have)

f(a) = \037 J
OO dk

J(k)J
OO eikx dx.

21T'l -00 21T -00 X - a)
(6.167))
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..)

Now we only closethe x integral in the upper half-plane for positive k. For

negative k there is no residueterm, sincea liesin the the upperhalf-plane. The

Cauchy integral formula now returns)

f(a) = roo dk
J(k)eika,Ja 27f

Thisshowsthat only the part of the function consistent with the desiredbound-

ary conditions is propagatedin the positive y direction.The remaining part of
the function propagatesin the -y direction, if similar boundary conditions are

imposedin the lower half plane. In this way the boundary conditions and the
Green'sfunction between them specify preciselywhich parts of a function are

propagated in the desireddirection.No restrictionsare placedon the boundary
values f(x),which neednot be part of an analytic function.

A secondexample,which generalisesnicely,is the unit circle.Supposewe have
initial data f (0) defined over the unit circle.We write f(0) as)

(6.168))

00)

f(0) == Lfn einB .) (6.169))
-00)

Theterms in exp(inO)are replacedby zn overthe unit circle,and we then choose
whether to evaluate in interior or exterior closureof the Cauchy integral. The
result is that only the negative powersare propagatedoutwards from the circle,
resulting in the function)

00)

f(z) == Lf_n z-n
,

n=l)
Iz!> 1.) (6.170))

(Theconstant component fa is technically propagatedas well, but this can be
removed trivially.) Iheseobservations are simple from the point of view of

complexvariable thBciry, but are considerablylessobvious in propagatortheory.)

6.4.7Green'sfunctionsin Euclideanspaces
The extensionof complexvariable theory to arbitrary Euclideanspacesis now

straightforward. The analogue of an analytic function is a multivector
'ljJ

sat-
isfying \\7

'ljJ
== O. We chooseto work with even-grade multivectors to simplify

matters. The fundamental theorem states that)

tV'I/J
dS=J '\\l'I/J dX = 0,) (6.171))

where we have used the fact that 'ljJ commutes with the pseudoscalarmeasure
dX. For any monogenic function 'ljJ, the directedintegral of

'ljJ
over a closed

surfacemust vanish.)
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\

The Green'sfunction for the vector derivative in n dimensionsis simply)

1 x-
yG(x;y) =

Sn Ix
_

yln
') (6.172))

where x and yare vectors and Sn is the surface area of the unit ball in n-
dimensionalspace.The Green'sfunction satisfies)

\\7G(x; y) == \\7.G(x;y) == r5(x
- y).) (6.173))

In order to allow for the lack of commutativity between G and 'l/J
we use the

fundamental theorem in the form)

j GdS7/J
= r

(0'\\7 7/J + GV 7/J ) dX
lav Jv

=[0'\\77/J dX,) (6.174))

where we have used the fact that
'l/J

is a monogenicfunction. SettingG equal
to the Green'sfunction of equation (6.172)we find that Cauchy'stheorem in

n dimensionscan be written in the form)

1 i x-y
'l/J(y)

== _IS
I In

dS7/J(x).
n av x -

Y)

(6.175))

This relatesthe value of a monogenicfunction at a point to the value of a surface

integral over a region surrounding the point.
One consequenceof equation (6.175)is that a generalisation of Liouville's

theorem appliesto monogenic functions in Euclideanspaces.We define the
modulus function)

1MI
== (MMt)1/2,) (6.176))

which is a well-definedpositive-definite function for all multivectors M in a
Euclideanalgebra.The modulus function is easily shown to satisfy Schwarz
inequality in the form)

IA+BJ < IAI+IBI.) (6.177))
If we let a denotea unit vector and let \\7y denotethe derivativewith respectto
the vector y we find that

.\\7
'l/J ( ) =-\037j a(x-y)2+na.(x-y)(x-y)

dS7/J( )a y y ISn lev Ix
_

yln+2
x .

It follows tb\037t)

(6.178))

1i n+l
la.\\7y'l/J(y) I

<-s
I I

IdSII7/J(x)l.
n ev x-

y
n) (6.179))

But if
'ljJ

is bounded,I'l/J(x) I
never exceedssome given value. Taking the surface

of integration out to large radius r == Ix I , we find that the right-hand sidefalls
off as 1/r. This is sufficient to prove that the directional derivative of

'l/J
must)
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.)

vanish in all directions,and the only monogenicfunction that is boundedover
all spaceis constant 'l/J.

Equation (6.175)enablesus to propagatea function off an initial surface in

Euclideanspace,subjectto suitableboundary conditions.Suppose,for example,
that we wish to propagate 'l/J

off the surface of the unit ball, subject to the
condition that the function falls to zero at large distance. Much like the two-
dimensional case,we can write)

00)

'l/J
== L CYl'l/Jl,

l=-oo)
(6.180))

where the 'l/Jl are angular monogenics,satisfying)

x/\\ \\l 'l/J
== -l'l/J.) (6.181))

Eachangular monogenicis multiplied by rl to yield a full monogenicfunction,
and only the negative powershave their integral closedover the exterior region.
The result is the function)

00

'l/J
== LCY_lr-l'l/J_l, r > 1.

l=l)
(6.182))

Similarly, the positive powersare pickedup if we solvethe interior problem.)

6.4.8Spacetimepropagators
Propagation in mixed signature spacesis somewhat different to the Euclidean
case.There is no analogue of Liouville's theorem to call on, so one can easily
construct boundedsolutions to the monogenicequation which are non-singular
over all space.Plane wave solutions to the masslessDiracequation are an ex-
ample of such functions. Furthermore, the existenceof characteristicsurfaces
has implicationsfor the how boundary valuesare specified.To seethis, consider
a two-dimensionalLorentzian spacewith basisvectors {'TO,11},'T5 == -,?== 1,
and pseudoscalarI == 'I'TO, The monogenicequation is V'l/J == 0, where

'l/J
is an

even-grademultivector built from a scalarand pseudoscalarterms.We define
\"- ',L- \"-

the null vectors ')

n::l::== ,0:::!:,1.) (6.183))

Pre-multiplying the monogenicequation by n+ we find that)

n+'V'l/J == -n+/\\V'l/J == I (n+I).\\l== -In+.\\l'l/J,) (6.184))

where we have usedthe result that In+ == n+. It follows that)

(1+ I)n+'V'l/J== 0,) (6.185))
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40)

and similarly,)

(1- I)n_.
'V1/J == O.) (6.186))

If we take 1/J and decomposeit into 1/J
== 1/J+ + 1/J-,)

1/JT-
== !(1:I::I)1);,) (6.187))

we seethat the valuesof the separate1);T-componentshave vanishing derivatives

along the respectivenull vectors nT-' Propagation of 1); from an initial surface
is therefore quite straightforward. The function is split into 1);T-,and the values
of theseare transportedalong the respectivenull vectors.That is, 1);+ has the
same value along each vector in the n+ direction, and the samefor 1);_.There
is no needfor a complicatedcontour integral.

The fact that the valuesof 1/J are carriedalong the characteristicsillustratesa
key point. Any surface on which initial values are specifiedcan cut a character-
isticsurface only once.Otherwise the initial values are unlikely to be consistent
with the differential equation. For the monogenicequation, 'V1); == 0, suitable
initial conditions consistof specifying 1); along the 11axis, for example.But
the fundamental theorem involves integrals around closedloops. The theorem
is still valid in a Lorentzian space,so it is interesting to seewhat happensto
the boundary data if we attempt to construct an interior solution with arbitrary
surfacedata.The first stepis to construct the LorentzianGreen'sfunction. This
can be found routinely via its Fourier transformation. With x == xO,o+ Xl,Iwe
find)

G(x)== i J
dw dk w,o+ k/1ei{kx

1-wxO)
21T27T w 2 - k2

== iJ
dw dk

(
'0+ II + 10-,1

) ei{kxI
-wxO)

2 27T 21T W - k w + k

E(XO)
== (6(x

1-xO)(/o+ 11)+ 5(xi + xO)(/o-,1))'4)
(6.188

))

The function E(XO) takesthe value +1or -1,dependingon whether xOis positive
or negative respectively.

To apply the fundamental theorem, supposewe take the contour of figure 6.5,
which runs along the 11axis for two different times ti < t f and is closedat

spatial infinity. We assumethat the function we are propagating, 1);,falls off at

large spatialdistance,and write 1);(x)as 1);(xO,Xl). The fundamental theorem)
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,..)

tf)

ti)

Figure 6.5 A spacetimecontour. The contour is closedat spatial infinity.)

then gives)

'IjJ(y) =1I:dA G(ti'Yo + Arl
-y)rl 'IjJ(ti, A)

-1I:dAG(tJio+ Arl - y)rI'IjJ(tf,A)

1=
4(1+ I) ('IjJ(ti , yl - yO + ti) + 'IjJ( tf, yl - yO + t f ))

-
\037

(1- I) ('IjJ(ti' _yl + yO + ti) + 'IjJ(tf, _yl + yO + tf)).) (6.189))

The construction of 7/J (y) in the interior region has a simpleinterpretation. For
the function 7/J+ (y), for example,we form the null vector n+ through y. The
value at y is then the average value at the two intersectionswith the boundary.
A similar construction holdsfor 7/J-. Much like the Euclideancase,only the part
of the function on the boundary that is consistent with the monogenicequation
is propagatedto the interior.

These insights hold in other Lorentzianspaces,suchas four-dimensionalspace-
time. The Green'sfunctions becomemore complicated,and typically involve

derivatives of 6-functions. Theseare more usefully handled via their Fourier
transforms, and are discussedin more detail in section8.5.In addition, the lack
of a Liouville'stheorem means that any monogenicfunction can be addedto a
Green'sfunction to generatea new Green'sfunction. This has no consequences
if one rigorouslyappliessurface integral formulae. In quantum theory, however,
this is n\037' usually the case.Rather than a rigorousapplication of the generalised
Green'stheorem, it is common insteadto talk about propagatorswhich transfer
initial data from one timesliceto a later one.Usedin this role, the Green'sfunc-
tions we have derived are referred to as propagators.As we are not specifying
data overa closedsurface, adding further terms to our Green'sfunction can have
an effect. Theseeffects are related to the desiredboundary conditions and are
crucialto the formulation of a relativistic quantum field theory. There one is led)
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to employthe complex-valuedFeynman propagator,which ensuresthat positive
frequencymodesare propagatedforwardsin time, and negativefrequencymodes
are propagatedbackwardsin time.We will meet this object in greater detail in

section8.5.)

6.5Embeddedsurfacesand vectormanifolds)

We now seeka generalisationof the precedingresultswherethe volume integral is
taken overa curved surface. We will do this in the settingof the vectormanifold

theory developedby Hestenesand Sobczyk(1984).The essentialconceptis to
treat a manifold as a surface embeddedin a larger, flat space.Points in the
manifold are then treated as vectors, which simplifiesa number of derivations.

Furthermore, we can exploit the coordinate freedom of geometric algebrato
derive a set of general results without ever needing to specify the dimension
of the backgroundspace.The price we pay for this approach is that we are

working with a more restrictive conceptof a manifold than is usually the case
in mathematics. For a start, the surface naturally inherits a metric from the

embeddingspace,sowe are already restricting to Riemannianmanifolds. We will

also insist that a pseudoscalarcan be uniquely defined throughout the surface,
making it orientable.

While this may all appearquite restrictive, in fact thesecriteria rule out hardly

any structuresof interest in physics.This approach enablesus to quickly prove
a number of key resultsin Riemannian geometry,and to unite thesewith results
for the exteriorgeometry of the manifold, achievinga richer general theory. We

are not prevented from discussingtopologicalfeatures of surfaceseither.Rather
than build up a theory of topology which makes no reference to the metric,
we insteadbuild up resultsthat are unaffected if the embeddingis (smoothly)
transformed.

We define a vector manifold as a set of pointslabelledby vectors lying in a

geometricalgebraof arbitrary dimensionand signature.If we considera path in

the surface x(\"X), the tangent vector is defined in the obviousway by)

x'==) 8x(\"x)

8\"X)

== lim x(\"Xo + E)
-

x(\"Xo) .
0-+0 E)

(6.190))
Ao)

An advantage of the embeddingpicture is that the meaning of the limit is well

defined,sincethe numerator existsfor all E. This is true even if, for finite epsilon,
the differencevector doesnot lie entirely in the tangent spaceand only becomesa
tangent vector in the limit. Standardformulations of differential geometry avoid

any mention of an embedding,however, so have to resort to a more abstract
definition of a tangent vector.

An immediate consequenceof this approach is that we can define the path)
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length as)

1
A2

S == !x'.x'11/2
d:\\.

Al)

(6.191))

Theembeddedsurface therefore inherits a metric from the 'ambient'background
space.All finite-dimensionalRiemannian manifoldscan be studiedin this way

since,given a manifold, a natural embeddingin a larger flat spacecan always be
found. In applicationssuch as general relativity one is usually not interestedin

the propertiesof the embedding,sincethey are physicallyunmeasurable.But in

many other applications,particularly those involving constrained systems,the

embeddingarisesnaturally and useful information is contained in the extrinsic

geometryof a manifold.)

6.5.1Thepseudoscalarand projection
Supposethat we next introduce a set of paths in the surface all passingthrough

the same point x. The paths definea set of tangent vectors {eI,. .. ,en}'We as-
sume that theseare independent,so that they form a basisfor the n-dimensional

tangent spaceat the point x. The exteriorproductof the tangent vectorsdefines
the pseudoscalarfor the tangent spaceI(x) :)

l(x) eI/\\e2;\\\" .;\\en /l el;\\e2;\\\" ';\\enl.) (6.192))

The modulus in the denominator is taken as a positive number, so that I has
the orientation specifiedby the tangent vectors.The pseudoscalarwill satisfy)

12 == :1:1
,) (6.193))

with the sign dependingon dimension and signature. Clearly, to define I in

this manner requiresthat the denominator in (6.192)is non-zero. This provides
a restriction on the vector manifolds we considerhere,and rules out certain
structures in mixed signature spaces.The unit circle in the Lorentzian plane

(figure 6.1),for example,falls outsidethe classof surfaces of studiedhere, as
the tangent spacehas vanishing norm where the tangent vectors becomenull.

Of course,there is no problemin referring to a closedspacetimecurve as a
vector manifold. The problem ariseswhen attempting to generalisethe integral
theorems of the previous sectionsto such spaces.

The pseudoscalarI(x) contains all of the geometric information about the
surfaceand unites both its intrinsic and extrinsicproperties.As well asassuming
that I(x) can be defined globally, we will also assumethat I(x) is continuous
and differentiableover the entire surface, that it has the same gradeeverywhere,
and that it is single-valued. The final assumption implies that the manifold is

orientable,and rulesout objectssuchas the Mobiusstrip,wherethe pseudoscalar
is double-valued. Many of the restrictionson the pseudoscalarmentioned above)
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can be relaxedto construct a more general theory, but this is only achievedat
somecost to the easeof presentation.We will follow the simplerroute, as the
resultsdevelopedhere are sufficiently general for our purposesin later chapters.

The pseudoscalarI(x)defines an operatorwhich projectsfrom an arbitrary
multivector onto the component that is intrinsic to the manifold. This operator
IS)

P(A(x),x) == A(x) .!(x)I-I(x)== A.II-I,) (6.194))

which definesan operatorat everypoint x on the manifold. It is straightforward
to prove that P satisfiesthe essentialrequirement of a projectionoperator,that)

IS,)

p2
(A) == P(P(A))== P(A).) (6.195))

The effect of P on a vector a is to project onto the component of a that lies
entirely in the tangent spaceat the point x. Suchvectors are saidto be intrinsic
to the manifold. The complement,)

P\037(a)
== a - P(a),) (6.196))

liesentirely outsidethe tangent space,and is saidto be extrinsicto the manifold.
Supposenow that A(x) is a multivector field defined over some region of the

manifold. We do not assumethat A is intrinsic to the manifold. Given a vector
a in the tangent space,the directional derivativealonga is definedin the obvious
manner:)

a.V'A(x) = lim A(x + fa) -A(x) .
{\" t---+ 0 f)

(6.197))

Again, the presenceof the embeddingenablesus to write this limit without

ambiguity. The derivative operatora.V is therefore simply the vector derivative
in the ambient spacecontractedwith a vector in the tangent space.Givena setof
linearly independent tangent vectors {ei},we can now definea vector derivative
8 intrinsic to the manifold by)

a == ei ei'V == P(V).) (6.198))
This is simply the ambient spacevector derivative projectedonto the tangent
space.The useof the 8 symbol should not causeconfusionwith the boundary
operatorintroduced in section6.4.4.The definition of a requiresthe existence
of the reciprocalframe {ei},which is why we restrictedto manifoldsover which

I is globally defined. The projectionof the vector operatora satisfies)

p(a) == a.) (6.199))
The contraction of 8with a tangent vector a satisfiesa.a== a.V, which is simply
the directional derivative in the a direction.)
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6.5.2Directedintegrationforembeddedsurfaces
Now that we have defined the 8operator it is a straightforward task to write

down a generalizedversion of the fundamental theorem of calculus appropriate
for embeddedsurfaces.We can essentially follow through the derivation of sec-
tion 6.4.4with little modification. The volume to be integrated over is again
triangulated into a chain of simplices.The only differencenow is that the pseu-
doscalarfor each simplexvaries from one simplexto another. This changesvery
little. For examplewe still have)

f dS= 0,) (6.200))

which holdsfor the directedintegral over the closedboundary of any simply-
connectedvector manifold.

The linear interpolation resultsusedin deriving equation (6.138)are all valid,
becausewe can again fall backon the embeddingpicture.In addition, the as-

sumption that the pseudoscalarI(x)isgloballydefinedmeans that the reciprocal
frame requiredin equation (6.138)is well defined. The only change that has to
be made is that the ambient derivative \\7 is replacedby its projectioninto the

manifold, becausewe naturally assemblethe inner productof \\7 with the pseu-
doscalar.The most general statement of the fundamental theorem can now be
written as)

j L(dS)= r L(8dX)= r L(V.dX).Jav lv lv)
(6.201))

The form of the volume integral involving 8 is generally more useful as it forms

a geometric product with the volume element. The function L can be any

multivector-valuedfunction in this equation- it is not restrictedto lie in the

tangent space.An important feature of this more general theorem is that if we

write dX == I!dX!we see that the directedelement dX is position-dependent.
But this positiondependenceis not differentiated in equation (6.201).It is only

the integrand that is differentiated.
There are two main applicationsof the general theorem derivedhere.The first

is a generalisation of the divergencetheorem to curved spaces.We again write)

L(A) == (JAI-I ),) (6.202))

where J is a vector field in the tangent space,and I is the unit pseudoscalarfor

the n-dimensionalcurved space.Equation (6.201)now gives

j n.JldSI= r (8.J+ (J8j-1I))ldXI, (6.203)
Jav lv

where [dX!== I-1dX and n[dS[== dSI-I. The final term in the integral van-

ishes,as can be shown by first writing 1-1 == -::iIand using)

(JajI)== !(J8(jI+ Ij))== !(J8(I2)) == O.) (6.204))
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It follows that the divergencetheorem in curved spaceis essentially unchanged
from the flat-space version, so)

r f).JIdXI = 1 n.JIdSI.Jv Jav)
(6.205))

As a secondapplication we derive Stokes'theorem in three dimensions.Sup-
posethat a denotesan open,connectedsurface in three dimensions,with bound-
ary 8a.The linear function L takesa vector as its linear argument and we define)

L(a) == J .u.) (6.206))

Equation (6.201)now gives

,[ J .dl== 1(jV.dX) == _ 1(V AJ) .dX,Jau u u)
(6.207))

where the line integral is taken around the boundary of the surface,and sincethe
embeddingis specifiedwe have chosena form of the integral theorem involving
the three-dimensional derivative V. We now define the normal vector to the
surface by)

dX == InldXI,) (6.208))

where I is the three-dimensional (right-handed) pseudoscalar.This equation
defines the vector n normal to the surface. The direction in which this points
dependson the orientation of dX. Around the boundary, for example,we can
denote the tangent vector at the boundary by I, and the vector pointing into
the surface as Tn. Then dX has the orientation specifiedby I A Tn, and from

equation (6.208)we seethat I,Tn, n must form a right-handed set.This extends
inwards to define the normal vector n over the surface (seefigure 6.6).We now
have)

,[ J.dl== l -(IVAJ).nIdXI == l(curlJ).njdXI,Jau u u)
(6.209))

which is the familiar Stokes'theorem in three dimensions. This is only the
scalarpart of a more general (and less familiar) theorem which holds in three
dimensions.To form this result we remove the projectiononto the scalarpart,
to obtain)

,[ dl J == -11nA V J IdXI.
Jau u)

(6.210))

A versionof this result holds for any openn-dimensionalsurfaceembeddedin a
flat spaceof dimensionn + 1.)

6.5.3Intrinsicand extrinsicgeometry
Supposenow that the directional derivative a.a acts on a tangent vector field

b(x) == P(b(x)). There is no guarantee that the resulting vector also liesentirely)
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..)

l)

Figure 6.6 Orientationsfor Stokes'theorem. The bivector measuredX
definesan orientation over the surfaceand at the boundary. With landm
the tangent and inward directionsat the boundary, the normal n is defined

so that l, m,n form a right-handed set.)

in the tangent space,even if a does.For example,considerthe simplecaseof a
circlein the plane. The derivative of the tangent vector around the circleis a
radial vector, which is entirely extrinsicto the manifold. In orderto restrict to

quantities intrinsic to the manifold we define a new derivative- the covariant
derivative D-as follows:)

a.DA(x)== P(a.8A(x)).) (6.211))

The operatora.D acts on multivectors in the tangent space,returning a new

multivector field in the tangent space.Sincethe a.8operatorsatisfiesLeibniz's
rule, the covariant derivative a.D must as well,)

a.D(AB)== P(a.8(AB))== (a.DA)B+ Aa.DB.) (6.212))

The vector operatorD is then defined in the obvious way from the covariant
directionalderivatives,)

D==eiei.D .) (6.213))

So,for example,we can write)

DAr == ei(ei.DAr)== P(8Ar).) (6.214))

The result decomposesinto grade-raisingand grade-loweringterms,sowe write)

D.Ar == (DAr)r-l,
D/\\A r == (DAr)r+I'

So,like 8,D has the algebraicpropertiesof a vector in the tangent space.Acting
on a scalarfunction a(x) definedover the manifold the two derivativescoincide,)

(6.215))
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so)

aa(x)== Da(x).) (6.216))

Supposenow that a is a tangent vector to the manifold, and we look at how

the pseudoscalarchanges along the a direction. It should be obvious, from

consideringa 2-spherefor example,that the resulting quantity must lie at least
partly outsidethe manifold. We let {ei}denotean orthonormal frame, so)

I == ele2. .. en.) (6.217))
It follows that)

n

a.aII-I== LeI'\"(a.Dei+ p\037(a.aei))...en I-I
i=I)

== a.DII-I+ P
\037 (a .aei)J\\ ei

.) (6.218))
The final term is easily shown to be independent of the choice of frame. But
a.DImust remain in the tangent space,so it can only be a multiple of the
pseudoscalarI. It follows that)

(a.DI)I== ((a.DI)I)== !(a.D(I2))== 0,) (6.219))
so)

a.DI==O.) (6.220))

That is, the (unit) pseudoscalaris a covariantconstant over the manifold. Equa-
tion (6.218)now simplifiesto give)

a.aI == P
\037 (a .aei)J\\ ei I == -S(a)I,) (6.221))

which defines the shape tensor S(a). This is a bivector-valued, linear function
of its vector argument a, where a is a tangent vector. Sincethe result of a.aI
has the same gradeas I, we can write)

a.aI== IxS(a)) (6.222))

with)

S(a).I== S(a)J\\I== O.) (6.223))

The fact that S(a).I == 0 confirms that S(a) liespartly outsidethe manifold, so
that P(S(a)) == O.

The shapetensorS(a)unites the intrinsic and extrinsicgeometry of the man-
ifold in a single quantity. It can be thought of as the 'angular momentum' of
I(x)as it slidesoverthe manifold. The shapetensorprovidesa compact relation
between directional and covariant derivatives. We first form)

b.S(a)== bip-L(a.aei)== P\037(a.ab),) (6.224))
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where a and b are tangent vectors.It follows that)

a.8b== P(a.8b)+ P\037(a.8b)== a.Db + b.S(a),) (6.225))

which we can rearrange to give the neat result)

a.Db == a.8b+ S(a).b.) (6.226))

Applying this result to the geometricproductbewe find that)

a.D(be) == (a.8b)e + S(a).b e + b(a .8e)+ b S(a) .e
== a.a(be)+ S(a) x (be),) (6.227))

where x is the commutator product,AxB == (AB -BA)/2.It follows that for

any multivector field A taking its values in the tangent spacewe have)

a.DA== a.aA+ S(a)xA.) (6.228))

The fact that S(a) is bivector-valuedensuresthat S(a)xA doesnot alter the

gradeof A. As a check,setting A == I recoversequation (6.222).If we now write)

a.8b== a.8P(b) == a.aP(b)+ P(a.8b)== a.aP(b)+ a.Db) (6.229))

we establishthe further relation)

a.8P(b)== b.S(a).) (6.230))

Thisholds for any pair of tangent vectors a and b.)

6.5.4Coordinatesand derivatives)

A number of important results can be derived most simply by introducing a
coordinateframe. In a region of the manifold we introduce local coordinatesxi
and define the frame vectors)

ax
e2 ==

8xi') (6.231))

From the definition of 8 it follows that ei == 8xi . The {ei}are usually referred
to as tangent vectors and the reciprocalframe {ei}as cotangent vectors (or 1-
forms). The fact that the spaceis curved implies that it may not be possibleto
construct a global coordinatesystem. The 2-sphereis the simplestexampleof
this. In this casewe simply patch together a seriesof local coordinate systems.
The covariant derivative along a coordinate vector, ei .D,satisfies)

ei.DA== DiA == ei.oA+ S(ei)xA == 8iA + SixA,) (6.232))

which definesthe Di and Si symbols.
The tangent frame vectors satisfy

8iej-8jei== (8i8j-OjOi)X== O.) (6.233))
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Projectingthis result into the manifold establishesthat)

Diej-Djei== O.

Projectingout of the manifold we similarly establishthe result)

(6.234))

ei,Sj== ej,Si') (6.235))

In terms of arbitrary tangent vectors a and b this can be written as)

a.S(b)== b.S(a).) (6.236))

The shapetensorcan be written in terms of the coordinatevectors as)

S(a) == ek
1\\ P

\037 (a.oek)') (6.237))

It follows that)

Si == ek AP J..(Oiek)== ek
I\\P 1-(Okei).) (6.238))

The tangent vectors therefore satisfy)

oAei == ek
1\\ (P(Okei)+ PJ..(Okei))== DAei + Si.) (6.239))

If we decomposea vector in the tangent spaceasa == aieiwe establishthe general
result that)

oAa == DAa + S(a).) (6.240))

This gives a further interpretation to the shapetensor.It is the object which

picksup the component of the curl of a tangent vector which liesoutsidethe
tangent space.As we can write)

oAa == oA(P(a))== 81\\P(a)+ P(oAa) == Dl\\a + 8AP(a),) (6.241))

we establishthe further result)

81\\P(a)== S(a).) (6.242))

This is easily seen to be consistent with the definition of the shape tensor in

terms of the derivative of pseudoscalar.
If we now apply the precedingto the caseof the curl of a gradient of a scalar,

we find that)

oAoq;== P(\\7) AP(\\7q;) == P(\\7 A \\7q;) + 8I\\P(\\7q;).) (6.243))

But the ambient derivative satisfies the integrability condition \\7 A \\7 == O. It
follows that we have)

oAoq; == S(\\7 q;),) (6.244))

which liesoutsidethe manifold. The covariant derivative therefore satisfies)

DI\\(Dq;)== O.) (6.245))
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An important application of this result is to the coordinatescalarsthemselves.
We find that)

DA(Dxi
) == Dl\\ei

== 0,) (6.246))

which can alsobe proved directly from equation (6.234).Applying this result to
an arbitrary vector a == aieiwe find that)

DI\\a == D 1\\ (ajej) ==
e\037 I\\e j (Oiaj) ==

\037ei
Aej (Oiaj-Ojai)') (6.247))

This demonstratesthat the D1\\ operatoris preciselythe exteriorderivative of
differential geometry.)

6.5.5Riemanniangeometry
To understand further how the shapetensorcan specify the intrinsic geometry
of a surface, we now make contact with Riemannian geometry. In Riemannian
geometry one focuses entirely on the intrinsic propertiesof a manifold. It is

customaryto formulate the subjectusing the metric tensoras the starting point.
In terms of the {ei}coordinateframe the metric tensorisdefinedin the expected
manner:)

gij == ei.ej.) (6.248))

In what followswe will not placeany restriction on the signature of the tangent
space.Sometexts prefer to usethe adjective 'Riemannian' to refer to extensions
of Euclidean geometry to curved spaces(as Riemann originally intended).But
in the physicsliterature it is quite standardnow to refer to general relativity as
a theory of Riemannian geometry,despitethe Lorentzian signature.

After the metric, the next main objectin Riemanniangeometryis the Christof-
fel connection. The directional covariant derivative,Di , restrictsthe result of its
action to the tangent space.The result of its action on one of the {ei}vectors
can therefore be decomposeduniquely in the {ei}frame. The coefficientsof this
define the Christoffelconnection by)

r\037k
== (Djek).ei .) (6.249))

Thecomponentsof the connectionare clearlydependenton the choiceof coordi-
nate system,as well as the underlying geometry. It follows that a connection is
necessaryeven when working in a curvilinear coordinate systemin a flat space.
A connection on its own doesnot imply that a spaceis curved. A typical use
of the Christoffelconnection is in finding the components in the {ei }frame of a
covariant derivative a.D b, for example.We form)

(a.Db).ei == aj (Dj(bkek)).ei == aj(ojbi + r\037kbk),
,) (6.250))

which shows how the connection accounts for the positiondependencein the
coordinate frame.)
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The components of the Christoffelconnection can be found directly from the
metric without referringto the frame vectors themselves.To achievethis we first

establisha pair of results. The first is that the connectionr;k is symmetric on

the jk indices.This follows from

r;k-
r\037j

== (Djek-Dkej).ei== 0, (6.251)
wherewe have usedequation (6.234).The secondresult is for the curl of a frame

vector,)

DAei == DI\\(9i)ej ) == (D9ij)Aej .) (6.252))

We can now write)
. 1.rjk ==

2e\037' (Djek+ Dkej)
==

!e\037' (ej'(D9kll\\e
l
) + ek'(D9jlAe l

) + D9jk)
1ill== 2e .(Oj9kle + Ok9jle-D9jk)
1 .l

==
29\037 (Oj9kl+ Ok9jl-Olgjk),) (6.253))

which recoversthe familiar definition of the Christoffelconnection.
We now seeka method of encoding the intrinsic curvature of a Riemannian

manifold. Supposewe form the commutator of two covariant derivatives)

[Di , Dj]A == oi(OjA+ S)xA) + Six (OJA + SjxA)

-OJ(OiA + SixA) -Sjx (OiA + SixA)
== (OiSj-OjSi)xA + (SixSj)xA,) (6.254))

where we have usedthe Jacobiidentity of section4.1.3.Remarkably, all deriva-
tives of the multivector A have cancelledout and what remains is a commutator
with a bivector. To simplify this we form

8iSj -OjSi== -oi(OjII-I)+ OJ(oilI-I)
== -SjISiI-I+ SiISjI-1

== -2Si X S),) (6.255))

where we have used the fact that S(a) anticommutes with I. On substituting
this result in equation (6.254)we obtain the simpleresult)

[Di,Dj]A== -(SixSj)xA.) (6.256))

The commutator of covariantderivativesdefinesthe Riemann tensor.We denote
this by R(aAb), where)

R(eil\\e\037) xA == [Di,Dj]A.) (6.257))

R(al\\b) is a bivector-valuedlinear function of its bivector argument. In terms of
the shapetensorwe have)

R(al\\b) == P(S(b)AS(a)).) (6.258))
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.)

The projectionis requiredhere becausethe Riemann tensor is defined to be
entirely intrinsic to the manifold. The Riemann tensor (and its derivatives) fully

encodesall of the local intrinsic geometry of a manifold. Sinceit can be derived
easilyfrom the shape tensor, it follows that the shape tensor also capturesall
of the intrinsic geometry. In addition to this, the shape tensor tells us about
the extrinsicgeometry \037 how the manifold is embeddedin the larger ambient

space.
The Riemann tensorcan also be expressedentirely in terms of intrinsic quan-

tities. To achieve this we first write)

R(ei!\\ej)'ek== [Di , DjJek== Di(rjkea) -Dj(rfkea)') (6.259))

It follows that)

Rijk
l

== R(eil\\ej)'(ek!\\el
)

==
Oir\037k

-Ojr;k+ rjkr\037a
- rfkr;a,) (6.260))

recoveringthe standarddefinition of Riemannian geometry. An immediate ad-
vantage of the geometric algebraroute is that many of the symmetry properties
of Rijk

l
follow immediately from the fact that R(a!\\b) is a bivector-valuedlin-

ear function of a bivector. This immediately reducesthe number of degreesof
freedomto n2

(n -1)2/4.
A further symmetry of the Riemann tensorcan be found as follows:

R(eil\\ej)'ek== DiDjek-DjDiek
== DiDkej-DjDkei
== [Di,DkJej- [Dj,DkJei+ Dk(Diej-Djei)
== R(ei!\\ek).ej- R(ej!\\ek).ei') (6.261))

It follows that)

a.R(b!\\c)+ c.R(a!\\b)+ b.R(cl\\a)== 0,) (6.262))

for any three vectors a, b, c in the tangent space.This equation tells us that
a vector quantity vanishes for all trivectors a 1\\ b 1\\ c, which provides a set of
n 2

(n - 1)(n- 2)/6 scalar equations. The number of independent degreesof
freedomin the Riemann tensor is therefore reducedto)

1 2 2 1 2 1 22-n (n -1) - -n (n - l)(n- 2) == -n (n -1).4 6 12) (6.263))

Thisgivesthe values1,6 and 20 for two, three and four dimensionsrespectively.
Further propertiesof the Riemann tensor are covered in more detail in later
chapters, where in particular we are interestedin its relevanceto gravitation.

The fact that Riemannian geometry is founded on the covariant derivative
D, as opposedto the projectedvector derivative0 limits the application of the

integral theorem of equation (6.201).If one attempts to add multivectors from)
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different points in the surface, there is no guarantee that the result remains
intrinsic. The only quantities that can be combined from different pointson the
surface are scalars,or functions taking their values in a different space(suchas a
Liegroup).The most significant integral theorem that remains isa generalization
of Stokes'theorem, applicableto a grade-rmultivector Ar and an opensurfacea
of dimensionr + 1.For this casewe have)

J Ar. dS == l(A r /\\8)'dX== (-I)rl (D/\\A r ).dX,
lau a a)

(6.264))

which only features intrinsic quantities. A particular caseof this is when r ==

n -1,which recoversthe divergencetheorem.This is important for constructing
conservationtheorems in curved spaces.)

6.5.6Transformationsand maps
The study of maps between vector manifolds helps to clarify someof the re-

lationships between the structuresdefined in this chapter and more standard
formulations of differential geometry. Supposethat f(x) definesa map from one
vector manifold to another. We denotetheseM and M',so that)

x' == f (x)) (6.265))

associatesa point in the manifold M' with one in M. We will only consider
smooth, differentiable,invertible mapsbetween manifolds. In the mathematics
literature theseare known as diffeomorphisms.Theseare a subsetof the more

general conceptof a homeomorphism,which mapscontinuously between spaces
without the restriction of smoothness.Somewhat surprisingly, these two con-

cepts are not equivalent. It is possiblefor two manifolds to be homeomorphic,
but not admit a diffeomorphism between them. This implies that it is possible
for a single topological spaceto admit more than one differentiablestructure.
The first exampleof this to bediscoveredwasthe sphereS7,which admits 28dis-
tinct differentiablestructures!In 1983Donaldsonproved the even more striking
result that four-dimensionalspaceR4 admits an infinite number of differentiable
structures.

A path in M,X(A), maps directly to a path in M'. The map accordingly
inducesa map between tangent vectors, as seenby forming)

ox'(>.)= of(x(>'))= f ( )
8A 8A

v
,) (6.266))

where v is the tangent vector in M, v == 8,XX(A) and the linear function f is

defined by)

f(a) == a.8f(x)== f(a;x).) (6.267))

The function f(a) takesa tangent vector in M as its linear argument, and returns)
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the imagetangent vector in M'.If we denotethe latter by a/, and write out the
positiondependenceexplicitly,we have)

a/(x/)== f(a(x);x).) (6.268))

This map is appropriatefor tangent vectors, so appliesto the coordinateframe
vectors{ei}.Thesemap to an equivalent frame for the tangent spaceto M /

,)

e\037

== f(ei) .) (6.269))

The reciprocalframe in the transformed spaceis therefore given by

ei /
== f-l(ei ).) (6.270))

The fact that the map x 1--+ f(x) is assumedto be invertible ensuresthat the
adjoint function f(a) is also invertible.

Under transformations, therefore, vectors in one spacecan transform in two

different ways. If they are tangent vectors they transform under the action
of f(a). If they are cotangent vectors they transform under action of f-I(a).
In differential geometry it is standard practiceto maintain a clear distinction
betweenthesetypesof vectors, so one usually thinks of tangent and cotangent
vectorsas lying in separatelinear spaces.The contraction relation ei .ej == 6}
identifies the spacesas dual to each other.This relation is metric-independent
and is preservedby arbitrary diffeomorphisms.Thesemaps relate differentiable
manifolds, and two diffeomorphicspacesare usually viewedas the samemanifold.

A metric is regardedas an additional construct on a differentiablemanifold,
which !llapsbetween the tangent and cotangent spaces.In the vector manifold

picture this map is achieved by constructing the reciprocalframe using equa-
tion (4.94).In using this relation we are implicitly employing a metric in the
contractionwith the pseudoscalar.For the theory of vector manifoldsit is there-
fore useful to distinguish objectsand operationsthat transform simply under
diffeomorphisms.Thesewill define the metric-independentfeatures of a vector
manifold. Metric-dependentquantities, like the Riemann tensor,invariably have
more complicatedtransformation laws.

The exteriorproductof a pair of tangent vectors transforms as)

eil\\ej 1--+ f(ei)l\\f(ej)== f(eil\\eJ ).) (6.271))

For example,if 1/ is the unit pseudoscalarfor M'we have)

f(I) == det (f)I') (6.272))

and for invertiblemaps we must havedet (f) :/:O. Similarly, for cotangent vectors
we seethat)

ei
1\\ ej 1--+ f

-1
(e

i
) 1\\ f

-1
(ej ) == f

-1
(e

i
1\\ ej ) .) (6.273))

Soexterior productsof like vectors give riseto higher gradeobjectsin a manner)
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that is unchanged by diffeomorphisms.Metric invariants are constructedfrom

inner productsbetween tangent and cotangent vectors.Sincethe derivative of a
scalarfield is)

8cp==
e\0378iCP,) (6.274))

we seethat 8cpis a cotangent vector, and we can write)

8'== f-1(8).) (6.275))

A similar result holdsfor the covariant derivativeD. If a is a tangent vector the
directional derivative of a scalarfield a.8cpis therefore an invariant,)

a'.8'cp'== f(a).f-1(8)cp== a.8cp,) (6.276))

where cp'(x') == cp(x).
In constructing the covariant derivative in section6.5.3,we made use of the

projectionoperation P(a). This is a metric operation, as it relieson a contraction
with I. Hencethe covariant derivatives Diejdo dependon the metric (via the

connection).Toestablisha metric-independentoperation we let a and b represent
tangent vectors and form)

a.8b-b.8a== a.Db-b.Da+ a.S(b)-b.S(a)
== a.Db- b.Da.) (6.277))

The shape terms cancel,so the result is intrinsic to the manifold. Under a

diffeomorphismthe result transforms to)

a.8f(b)-b.8f(a)== f(a.8b-b.8a)+ a.af(b)-b.af(a).

But f(a) is the differential of the map f(x), sowe have

(8i8j -8j8i)f(x) == 8if(ej)-8j f(ei) == aif(ej)-ajf(ei)== O.)

(6.278))

(6.279))

It follows that, for tangent vectors a and b,)

a .af (b) - b.af (a) == O.) (6.280))

We therefore definethe Lie derivative .cabby)

.cab== a.8b- b.8a.) (6.281))

This resultsin a new tangent vector, and transforms under diffeomorphismsas)

.cab\037
.c\037/b'

== f(.cab).) (6.282))

Relations betweentangent vectorsconstructedfrom the Liederivativewill there-
fore be unchanged by diffeomorphisms.

A similar construction is possiblefor cotangent vectors.If we contract equa-
tion (6.279)with f-I(ek

) we obtain)

(
-1 k

) (
-1 k

)f(ej)'8jf-(e) - f(ei)' 8if- (e) == O.) (6.283))
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Now multiplying by f-I(ei
I\\e j ) and summing we find that)

P'(f
-1

(a)1\\ f
-1

(e
k
)) == o.) (6.284))

This result can be summarisedsimply as

Dll\\ek' == D'l\\r-l(ek) == o.) (6.285))

This is sufficient to establishthat the exterior derivative of a cotangent vector
results in a cotangent bivector (equivalent to a 2-form). The result transforms
in the requiredmanner:)

DI\\A \037 D'I\\A '
== r-I(DI\\A).) (6.286))

Thisis the result that makesthe exterioralgebraof cotangent vectorssopowerful
for studying the topologicalfeatures of manifolds. This algebrais essentiallythat
of differential forms, as is explainedin section6.5.7.For example,a form is said
to be closedif its exteriorderivative is zero, and to be exactif it can be written
as the exteriorderivative of a form of one degreelower. Both of theseproperties
are unchangedby diffeomorphisms,so the size of the spaceof functions that are
closedbut not exactis a topological feature of a space.This is the basisof de
Rham cohomology.

It is somewhat lesscommon to seediffeomorphismsdiscussedwhen studying
Riemannian geometry. Moreusually one focusesattention on the restrictedclass
of isometries,which are diffeomorphismsthat preserve the metric.Thesedefine
symmetries of a Riemannian space.In the vector manifold setting,however,it is
natural to study the effectof mapson metric-dependentquantities.The reason
being that vector manifolds inherit their metric structure from the embedding,
and if the embeddingis changed by a diffeomorphism,the natural metric is

changedas well. Onedoesnot have to inherit the metric from an embedding.
Onecan easily imposea metric on a vector manifold by defining a linear transfor-
mation over the manifold. This takesus into the subjectof inducedgeometries,
which is closerto the spirit of the approach to gravity adopted in chapter 14.
Similarly, when transforming a vector manifold, one need not insist that the
transformed metric is that inherited by the new embedding.One can instead
simply define a new metric on the transformed spacedirectly from the original
one.

The simplestexampleof a diffeomorphisminducing a new geometry is to
considera flat plane in three dimensions.If the plane is distortedin the third

direction,and the new metric taken as that impliedby the embedding,the surface
clearlybecomescurved. Formulae for the effects of such transformations are
generallyquite complex.Mostcan bederived from the transformation properties
of the projectionoperation,)

p'== fPf-i.) (6.287))
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This identity ensuresthat the projectionand transformation formulae can be

appliedin either order.If we now form)

e\037.Sj
==

p\037 (ojf(ez ))
== f(ei,Sj)+ p\037(ajf(ei))') (6.288))

we seethat the shapetensortransforms according to)

a'.S'(b')== f(a.S(b))+ p\037(b.af(a)).) (6.289))

Further resultscan be built up from this. For example,the new Riemann tensor
is constructedfrom the commutator of the transformed shapetensor.)

6.5.7Differentialgeometryand forms
Sofar we have beendeliberatelyloosein relating objectsin vector manifold the-

ory to thoseof modern differential geometry texts.In this sectionwe clarify the
relations and distinctionsbetween the viewpoints. In the subjectof differential

geometry it is now commonpracticeto identify directional derivativesas tangent

vectors, so that the tangent vector a is the scalaroperator)

.0
za == a oxi

') (6.290))

Tangent vectors form a linear space,denotedTxM, where x labelsa point in

the manifold M. This notion of a tangent vector is slightly different from that

adopted in the vector manifold theory, where we explicitly let the directional
derivative act on the vector x. As explainedearlier, the limit implied in writing

ax/oxi is only well defined if an embeddingpicture is assumed. The reason
for the more abstract definition of a tangent vector in the differential geometry
literature is to remove the need for an embedding,so that a topological space
can be viewed as a single distinct entity. There are arguments in favour, and

against, both viewpoints. For all practical purposes,however,the philosophies
behindthe two viewpoints are largely irrelevant, and calculations performed in

either schemewill return the sameresults.
The dual spaceto TxM is calledthe cotangent spaceand is denotedT;M.

Elementsof T;M are calledcotangent vectors, or I-forms.The inner product
between a tangent and cotangent vector can be written as (w, a). A basisfor the
dual spaceis definedby the coordinatedifferentialsdxi , so that)

(dxi
,0/oxj) ==

b}.) (6.291))

A I-form therefore implicitly contains a directedmeasure on a manifold. So, if

a is a I-form we have)

a == 0:i dxi == A. (dx) ,) (6.292))
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where A is a grade-lmultivector in the vector manifold sense.Similarly, if dX
is a directedmeasureover a two-dimensionalsurface, we have)

dX == eiAej dx i dxj
,) (6.293))

so that)

(ej I\\e
i
) .dX == dxi dxj - dxJ dxi

.) (6.294))

An arbitrary 2-formcan be written as
1 . - ..

t
ct2 == ,ctij(dx'l dxJ - dxJ

dxZ) == A 2.dX.2.
HereA 2 is the multivector)

(6.295))

1 ..
A 2 == -ct..eZ

l\\e J
2! ZJ ,) (6.296))

which has the same components as the differential form. More generally, an

r-form ctr can be written as)

ctr == At.dXr == Ar. dX;.) (6.297))

Clearlythere is little differencein working with the r-form ctr or the equivalent
multivector Ar. So,for example,the outer productof two I-forms resultsin the
2-form) i. t t

ctII\\(31 == cti(3i(el\\e J ).dX2 == (A I ABI).dX2 ,) (6.298))

where dX2 is a two-dimensionalsurface measureand AI, BI are the grade-l
multivectors with components cti and /3i respectively. Similarly, the exterior
derivative of an r-form is given by)

dct r == (DI\\A r ) .dX;+I') (6.299))

The fact that forms come packagedwith an implicit measure allows for a

highly compact statement of Stokes'theorem, as given in equation (6.264).In
ultra-compactnotation this saysthat

1dct == J ct (6.300)
ar fear

')

where ct is an (r- I)-form integrated over an openr-surface ar . This is entirely
equivalent to equation (6.264),as can be seenby writing

1da == 1(At_1AD).dXr= 1 (At_l).dSr-1 =i a.
Ur ar fear ear)

(6.301))

Onecan proceedin this manner to establisha direct translation schemebetween
the languagesof differentialforms and vector manifolds. Many of the expressions
are so similar that there is frequently little point in maintaining a distinction.

If the languageof differential forms is appliedin a metric setting,an important)
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additional conceptis that of a duality transformation, alsoknown as the Hodge
* (star) operation.To define this we first introduce the volume form)

n == Jf9Tdx
I !\\dx 2

!\\. . ./\\dx n
== Jf9T(en/\\e

n-1
/\\. . ./\\e

1
) .dX.) (6.302))

The pseudoscalarfor a vector manifold, given a coordinateframe with the spec-
ified orientation, is given by)

1I =
Jf9T

(e1I\\e 21\\\" .I\\e n ).) (6.303))

This definition was chosenearlier to ensurethat 12 == ::f:land that I keepsthe
orientation specifiedby the frame. It follows that)

n == I-1.dX
,) (6.304))

so that the equivalent multivector is I-It. This will equal ::f:1,dependingon

signature.The Hodge* of an r-form ar is the (n - r)-form

*a = Jf9T w' . Ei!,...,ir.. dxjr+!I\\...I\\dx jnr ,( _ ) , \037l,\" ',\037r Jr+l,...,Jn ,r.m r.) (6.305))

where Eil,...,indenotesthe alternating tensor.If Ar is the multi vector equivalent
of ar , the Hodge* takeson the rather simpler expression)

*Ar == (1-1Ar)t == (1-I .Ar )t.) (6.306))

In effect, we are multiplying by the pseudoscalar,as one would expectfor a
duality relation.Applied twice we find that)

**Ar == (I-1(I-1.Ar)t)
t

== (_I)r(m-r)Ar(ItI).) (6.307))

In spaceswith Euclidean signature, ItI == +1. In spacesof mixed signature
the sign dependson whether there are an even or odd number of basisvectors
with negative norm. It is a straightforward exerciseto prove the main resultsfor
the Hodge* operation,given equation (6.307)and the fact that I is covariantly
conserved.)

6.6Elasticity)

As a more extendedapplication of some of the ideasdevelopedin this chapter,
we discussthe foundations of the subjectof elasticity. The behaviour of a solid
objectis modelledby treating the objectas a continuum. Locally, the strains
in the objectwill tend to be small, but thesecan build up to give large global
displacements.As such, it is important to treat the full, non-linear theory of
elasticity. Only then can one be sureabout the validity of variousapproximation
schemes,such as assuming small deflections.)
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Our discussionis basedon a generalisationof the ideasemployedin the treat-

ment of a rigid body.We first introduce an undeformed, referenceconfiguration,
with points in this labelledwith the vector x. This is sometimesreferred to as
the material configuration. Points in the spatial configuration, y, are obtained

by a non-linear displacementf of the referenceconfiguration,so that)

y == y(x,t) == f(x,t).) (6.308))

We usenon-bold vectors to labelpoints in the body, and bold to label tangent
vectors in either the referenceor spatialbody. We assumethat the background

spaceis flat, three-dimensionalEuclideanspace.)

6.6.1Body strains)

To calculate the strains in the body, considerthe image of the vector between

two nearby pointsin the referenceconfiguration,)

(x+ Ea) - X r-+ y(x+ Ea) - y(x) == Ef(a) + O(E
2

),) (6.309))

where f is the deformation gradient,)

f(a) == a.Vy == a.V f(x,t).) (6.310))

The function f mapsa tangent vector in the referenceconfigurationto the equiva-
lent vector in the spatialconfiguration. That is, if x(A) is a curve in the reference

configuration with tangent vector)

I 8X(A)x ==

8A
') (6.311))

then the spatialcurve has tangent vector f (v). The length of the curve x(A) in

the referenceconfiguration is)

J \037\037

d>' = Jlx'id>'.) (6.312))

The length of the inducedcurve in the spatialconfigurationis therefore

Jd>'(f(x')2)
1/2= Jd>'(x'.ff(x'))1/2.

We define the (right) Cauchy-Greentensor C, by)

(6.313))

C(a)== ff(a).) (6.314))

This tensorisa symmetric,positive-definitemap betweenvectors in the reference

configuration.It describesa setofpositivedilations alongthe principaldirections
in the referenceconfiguration. The eigenvaluesof Ccan bewritten as (Ai, A\037, A\037),

where the Ai define the principalstretches.The deviations of these from unity

measurethe strains in the material.)
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fle2)
y == f(x,t)

>)
el)

Figure 6.7 An elasticbody. The function f(x,t) maps points in the refer-
enceconfiguration to points in the spatialconfiguration. Coordinatecurves
el and e2 map to f(eI) and f(e2). The normal vector in the spatialconfig-
uration thereforelies in the 7-1 (e3

) direction.)

6.6.2Body stresses
If we take a cut through the bodythen the contact forcebetweenthe surfaceswill

be a function of the normal to the surface (and positionin the body). Cauchy
showedthat, under reasonablecontinuity conditions, this force must be a linear
function of the normal, which we write 0'(n) == 0'(n;x). The tensor0'(n) maps
a vector normal to a surface in the spatialconfigurationonto the force vector,
also in the spatialconfiguration. We will verify shortly that 0'is symmetric.

The total forceon a volume segment in the bodyinvolves integrating 0'(n) over
the surface of the volume. But, as with the rigid body, it is simplerto perform
all calculations back in the referencecopy. To this end we let xi denotea set of
coordinatesfor positionin the referencebody.The associatedcoordinate frame
is {ei},with reciprocalframe {ei }.Supposenow that Xl and x2 are coordinates
for a surface in the referenceconfiguration. The equivalent normal in the spatial
configuration is (seefigure 6.7))

n == f(eI)i\\f(e2)I-I == det (f) f-1(e3).) (6.315))

The force over this surface is found by integrating the quantity)

0'(f(e1i\\ e2)1-1)dxI dx2
== det (f)O'(f-1(e3

))dxI dx2
.) (6.316))

We therefore definethe first Piola-Kirchoff stresstensorT by)

T(a) == det (f)O'f-
I
(a).) (6.317))

The stress tensorT takes as its argument a vector normal to a surface in the
referenceconfiguration, and returns the contact force in the spatialbody. The)
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forcebalanceequation tellsus that, for any sub-body,we have

\037!d3xpv = f T(ds)+!d3
xpb,) (6.318))

where p is the density in the referenceconfiguration,v == iJ is the spatialvelocity,
and b is the appliedbody force. The fundamental theorem immediatelyconverts
this to the local equation)

pi; == t(V) + pb.) (6.319))

The checksymbol is usedfor the scopeof the derivative, to avoidconfusionwith

time derivatives (denotedwith an overdot). This equation is sensibleas V is
the vector derivative in the referenceconfiguration,and t (V) is a vector in the

spation configuration.
The total torque on a volume element, centredon Yo, is (ignoring bodyforces))

M = f (y -Yo)/\\ T(ds).) (6.320))

This integral runs over the referencebody, and returns a torque in the spatial
configuration.This must be equatedwith the rate of changeof angular momen-

tum, which is)

\037!d3xp(y -yo)!\\fJ =!d3x (y -Yo)/\\ t(V)

=
f(Y-Yo)/\\T(dS)-!d3xy /\\T(V).

Equating this with M we seethat)

(6.321))

Y /\\T(V) == (8if(x)) /\\T(ei) == f(ei)/\\T(ei) == O.) (6.322))

It follows that)

f(ei)/\\ T(ei) == det (f) f(ei)/\\(7f-l(ei) == 0,) (6.323))

and we seethat (7 must be a symmetric tensor in orderfor angular momentum

to be conserved.
It is often convenientto work with a versionof T that is symmetricand defined

entirely in the material frame. We therefore define the secondPiola-Kirchoff
stresstensorT by)

T(a) == f-lT(a).) (6.324))

It is meaninglessto talk about symmetries of T, sinceit mapsbetween differ-

ent spaces,whereasT is defined entirely in the referenceconfigurationand, by

construction, is symmetric.
The equations of motion for an elasticmaterial are completedby defining a

constitutive relation. This relatesthe stressesto the strains in the body.These
relationsare most easilyexpressedin the referencecopyasa relationshipbetween)
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Tand C. There is no universaldefinition of the strain tensorE, though for certain
applicationsa useful definition is)

E(a) == (I/2(a)- a.) (6.325))

This tensor is zero if the material is undeformed. Linear materials have the
property that 9 and E are linearly related by a rank-4 tensor. This can, in

principle,have 36 independentdegreesof freedom,all of which may needto be
determined experimentally. If the material is homogeneousthen the components
of the rank-4 tensorare constants. If the material is also isotropicthen the 36
degreesof freedom reduceto two. Theseare usually given in terms of the bulk

modulus Band shearmodulus G, with T and E relatedby an expressionof the
form)

T(a) == 2GE(a)+ (B-
\037G)tr(E)a.) (6.326))

In many respectsthis is the simplestmaterial one can consider,though even in

this casethe non-linearity of the force law makesthe full equations very hard to
analyse.The analysis can be aidedby the fact that thesematerials are described
by an action principle,as discussedin section12.4.1.)

6.7Notes)

The treatment of vector manifoldspresentedhere is a condensedversion of the
theory developedby Hestenes& Sobczykin the bookClifford Algebra to Geomet-
ricCalculus(1984)and in a seriesofpapers.There are a number ofdifferencesin
our presentation,however.Most significant is our definition of the orientations in

the fundamental theorem of integral calculus.Our definition of the boundary op-
erator ensuresthat a boundary inherits its orientation from the directedvolume
measure.Hestenes& Sobczykusedthe oppositespecificationfor their boundary
operator,which givesriseto a number of (fairly trivial) differences.A significant
advantage of our conventionsis that in two dimensionsthe pseudoscalarhas the
correctorientation implied by the imaginary in the Cauchy integral formula.

A further difference is that from the outset we have emphasisedboth the
implied embeddingof a vector manifold, and the fact that this gives rise to a
metric.A vector manifold thus has greater structure than a differentiableman-
ifold in the senseof differential geometry. For applicationsto finite-dimensional
Riemannian geometry the different approachesare entirely equivalent, as any
finite-dimensionalRiemannian manifold can be embeddedin a larger dimen-
sional flat spacein such a way that the metric is generatedby the embedding.
This result was provedby John Nash in 1956.Hisremarkablestory is the subject
of the bookA Beautiful Mind by Sylvia Nasar (1998)and, more recently,a film
of the samename. In other applicationsof differential geometry the full range
of validity of the vector manifold approach has yet to be fully established.The)
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approachcertainly doesgive streamlinedproofs of a number of key results.But

whether this comeswith somelossof generality is an openquestion.
A final, small differencein our approachhere to the originalone of Hestenes&

Sobczykisour definition of the shapetensor.We have only consideredthe shape
tensor S(a) taking intrinsic vectors as its linear argument. This conceptcan be
generalisedto define a function that can act linearly on general vectors.One of
the most interesting propertiesof this generalizedversionof the shapetensoris

that it providesa natural squareroot of the Riccitensor.This theory isdeveloped
in detail in chapter 5 of Clifford Algebra to GeometricCalculus,to which readers
are referred for further information. There is no shortage of goodtextbookson
modern differential geometry. The booksby Nakahara (1990),Schutz (1980)
and Gockeler& Schucker(1987)are particularly strong on emphasisingphysical
applications.Elasticity is describedin the booksby Marsden& Hughes(1994)
and Antman (1995).)

6.8Exercises)

6.1 Confirm that the vector derivative is independentof the choiceof coor-
dinate system.

6.2 If we denotethe curl of a vector field J in three dimensionsby V X J,
show that)

VxJ == -IVI\\J.)

Henceprove that)

V.(VxJ)== 0,

Vx(VxJ)== V(V.J)-V 2J.)

6.3 An oblatespheroidalcoordinatesystemcan be defined by

acosh(u)sin(v) == J(x2 + y2),
a sinh (u) cos(v) == z,

tan (<p)
== y /x,)

where (x,y, z) denotestandardCartesiancoordinatesand a is a scalar.
Prove that)

e\037
== e;== a2

(sinh
2

(u) + cos2(V)) == p2,

which definesthe quantity p. Henceprove that the Laplacian becomes)

2 1 [J

(
[J'ljJ

)
1 [J

(
. [J'ljJ

)V 'ljJ
= 2 h() \037 cosh(u)\037 + 2 .

( ) 8 sm(v)\037
p cos u uu uU p SIn v v uv

1 [J2'ljJ _

+
a2 cosh2(u) sin2

(v) 8(p')
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and investigatethe propertiesof separablesolutions in oblatespheroidal
coordinates.

6.4 Prove that overthe surfaceof a tetrahedron the directedsurfaceintegral
satisfies)

f dB= O.

By consideringpairs of adjacent tetrahedra, prove that this integral
vanishes for all orientable, connectedclosedsurfaces.

6.5 For a circlein a plane confirm that the line integral around the perimeter
satisfies)

f b.xdl= b.A,

w here A is the oriented area of the circle.
6.6 Prove that

k . 12:)-1)\"b. (xo+ ... Xi ...+ Xn)\037(Xi)(k-l)
=

k!
b.(el/\\\" ./\\e n ),

i=O)

where the notation follows section6.4.4.
6.7 Supposethat a is an n-dimensionalsurface embeddedin a flat spaceof

dimensionsn + 1with (constant) unit pseudoscalarI.Prove that

1dSJ== -111/\\ V J IdXI,
laer er)

where the normallis defined by dX == IlldXI.
6.8 The shapetensoris defined by)

a.8I== IS(a)== IxS(a).)
Prove that the shapetensorsatisfies)

a.S(b)== b.S(a))
and)

8/\\P(a)== S(a),)

where P projectsinto the tangent space,and a and b are tangent vectors.
6.9 An open two-dimensionalsurface in three-dimensionalspaceis defined

by)

r(x,y) == xel+ ye2 + a(r)e3,
where r == (x2 + y2)1/2 and the {ei}are a standard Cartesianframe.
Prove that the Riemann tensorcan be written)

a'a\"
R(a/\\b) == 2 a/\\b,r(l+ a' )2)
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where the primesdenotedifferentiation with respect to r. The scalar
factor K., in R(ai\\b) == K.,ai\\b is calledthe Gaussiancurvature.

6.10 A linear, isotropic,homogeneousmaterial is describedby a bulk modulus
B and shear modulus G. By linearising the elasticity equations,show
that the longitudinal and transverse sound speedsVz and Vt are given by

vf = \037 (3B+ 4G), v; = G

3p P

6.11 Consideran infinite linear, isotropic,homogeneousmaterial containing
a sphericalhole into which air is pumped.Showthat, in the linearised
theory, the radial stress Tr is related to the radius of the hole r by
Tr ex r-3. Discusshow the full non-linear theory might modify this
result.)
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Classicalelectrodynamics)

Geometricalgebraoffersa number of new techniques for studying problemsin
electromagnetismand electrodynamics.Theseare describedin this chapter.We

will not attempt a thorough development of electrodynamics,which is a vast

subject with numerous specialistareas.Instead we concentrate on a number
of selectedapplicationswhich highlight the advantages that geometric algebra
can bring. There are two particularly significant new features that geometric
algebraadds to traditional formulations of electrodynamics.The first is that,
through employing the spacetimealgebra,all equations can be studied.in the
appropriatespacetimesetting. This is much more transparent than the more
traditional approach basedon a 3+ 1formulation involving retardedtimes.The
spacetimealgebrasimplifiesthe study of how electromagnetic fields appear to
different observers,and is particularly powerful for handling acceleratedcharges
and radiation. These results build on the applicationsof spacetimealgebra
describedin section5.5.3.

The secondmajor advantage of the geometric algebratreatment is a new,
compact formulation of Maxwell'sequations. The spacetimevector derivative
and the geometric product enable us to unite all four of Maxwell'sequations
into a single equation. This is one of the most impressiveresults in geometric
algebra.And, as we showed in chapter 6, this is more than merely a cosmetic
exercise.The vector derivative is invertible directly, without having to passvia

intermediate, second-orderequations.This has many implications for scattering
and propagatortheory. Huygen'sprincipleis encodeddirectly,and the first-order

theory is preferable for numericalcomputation of diffractioneffects. In addition,
the first-order formulation ofelectromagnetismmeans that plane wavesare easily
handled,as are their polarisation states.)

228)))



7.1MAXWELL'S EQUATIONS)

7.1Maxwell'sequations
Beforewriting down the Maxwellequations, we remind ourselvesof the notation
introduce in chapter 5. We denotean orthonormal spacetimeframe by {,p,},
with coordinatesxp, == fp, .x.The spacetimevector derivative is)

v == ,p,ap\
a

ap, ==

axp,
') (7.1))

The spacetimesplit of the vector derivative is)

o iV,o== (, at + f ai),o== at -O'iai == at - v,) (7.2))

where the O'i == ,i,Odenotea right-handed orthonormal frame for the relative

spacedefinedby the timelike vector ,0'The three-dimensionalvector derivative

operator is)

av == O'i-a . == O'iai,
x.\

(7.3))

and all relative vectors are written in bold.
The four Maxwellequations,in SIunits, are)

V.D== p,
a-VxE== -B
at ')

V.B== 0,
aVxH==
at D+J,)

(7.4))

where)

D==EOE+P,
1H == -B-]\\;f,

/-Lo)

(7.5))

and the X symbol denotesthe vector crossproduct. The crossproductis ubiq-
uitous in electromagnetic theory, and it will be encountered at various points in

this chapter.To avoid any confusion,the commutator product (denotedby x)
will not be employed in this chapter.

The first step in simplifying the Maxwellequations is to assumethat we are

working in a vacuum region outsideisolatedsourcesand currents.We can then

removethe polarisation and magnetisation fieldsP and]\\;f. We also replacethe
crossproduct with the exteriorproduct,and revert to natural units (c == EO

==

/10 == 1),so that the equationsnow read)

V.E== p,

V AE == -at(IB),)
V.B== 0,

V AB == I(J+ atE).)
(7.6))

We naturally assembleequationsfor the separatedivergenceand curl parts of
the vector derivative. We know that there are many advantages inuniting these)
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into a single equation involving the vector derivative. First we take the two
equations for E and combine them into the single equation)

V E == p -at (IB).) (7.7))

A similar manipulation combinesthe B-fieldequations into)

V(IB) == -J-atE,) (7.8))

where we have multiplied through by I. This equation is a combination of
(spatial)bivector and pseudoscalarterms,whereas equation (7.7)contains only
scalarand vector parts. It follows that we can combine all of these equations
into the single multivector equation)

V(E+ IB)+ at(E+ 1B)== p -J.) (7.9))

This is already a significant compactificationof the original equations.We have
not lost any information in writing this, sinceeach of the separate Maxwell
equations can be recoveredby picking out terms of a given grade.

In section5.5.3we introduced the Faraday bivector F. This representsthe
electromagneticfield strength and is defined by)

F==E+IB.) (7.10))
The combination of relative vectors and bivectors tellsus that this quantity is a
spacetimebivector. Many authors have noticed that the Maxwellequations can
be simplified if expressedin terms of the complexquantity E + iB.The reason
is that the spacetimepseudoscalarhas negativesquare,socan be representedby
the unit imaginary for certain applications.It is important, however, to work
with I in the full spacetimesetting,as I anticommutes with spacetimevectors.

In terms of the field strength the Maxwellequations reduceto)

V F+ at F == P - J.) (7.11))
We now wish to convert this to manifestly Lorentz covariant form. We introduce
the spacetimecurrent J, which has)

p == J'10,) J == J /\\10,) (7.12))
It follows that)

p -J == 10'J + 10/\\J== 10J.) (7.13))
But we know that at + v == 10\\7. We can thereforepre-multiply equation (7.11)
by 10to assemblethe covariant equation)

\\7F == J.) (7.14))

This unites all four Maxwellequations into a singlespacetimeequation basedon)
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the geometricproductwith the vector derivative. An immediate consequenceis
seen if we multiply through by \\7, giving)

\\72 F == V J == V.J + V /\\ J.) (7.15))

SinceV 2 is a scalaroperator,the left-hand sidecan only contain bivector terms.
It follows that the current J must satisfy the conservationequation)

apV.J==

at
+ V.J== O.) (7.16))

This equation tells us that the total charge generating the fields must be con-
served.

The equation V F == J separatesinto a pair of spacetimeequations for the
vectorand trivector parts,)

V.F==J,) V /\\F == O.) (7.17))

In tensor language, thesecorrespondto the pair of spacetimeequations)

8J-LFJ-LV
== JV

,)
cJ-LVpa a F -0\\.... V pa - .) (7.18))

These two tensorequations are as compact a formulation of the J\\;Iaxwell equa-
tions as tensoralgebracan achieve, and the same is true of differential forms.

Only geometricalgebraenablesus to combinethe Maxwellequations (7.17)into
the singleequation V F == J.)

7.1.1The vectorpotential
Thefact that V /\\F == 0 tellsus that we can introduce a vector field A such that)

F == V /\\A.) (7.19))

The equation V /\\ F == V /\\ V /\\ A == 0 then follows automatically. The field

A is known as the vector potential. We shall seein later chapters that the
vector potential is key to the quantum theory of how matter interacts with

radiation. The vector potential is alsothe basisfor the Lagrangian treatment of

electromagnetism,describedin chapter 12.
The remaining sourceequation tellsus that the vector potential satisfies)

V . (V /\\ A) == V 2A -V (V.A) == J.) (7.20
))

There is someresidualfreedom in A beyond the restriction of equation (7.19).
We can always add the gradient of a scalarfield to A, since)

V /\\ (A + V A) == V /\\ A + V /\\ (V A) == F.) (7.21))
For historical reasons,this ability to alter A is referred to as a gauge freedom.)
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Before we can solve the equations for A, we must therefore specify a gauge.A
natural way to absorbthis freedom is to imposethe Lorentz condition)

V.A==O.) (7.22))

This doesnot totally specifyA, as the gradient of a solutionof the wave equation
can still be added, but this remaining freedom can be removed by imposing
appropriateboundary conditions. The Lorentz gauge;condition implies that

F == V A. We then recovera wave equation for the comPonentsof A, since)

V F == V 2A == J.) (7.23))

Oneroute to solving the Maxwellequations is to solvethe associatedwave equa-
tion V 2A == J,with appropriateboundary conditionsapplied,and then compute
F at the end.In this chapter we explorealternative, more direct routes.

The fact that a gauge freedomexistsin the formulation in terms of A suggests
that some conjugate quantity should be conserved.This is the origin of the
current conservation law derived in equation (7.16).Conservation of charge is

therefore intimately relatedto gauge invariance. A more detailedunderstanding
of this will be provided by the Lagrangian framework.)

7.1.2The electromagneticfieldstrength
In uniting the Maxwellequationswe introduced the electromagneticfield strength

F == E+ lB.This is a covariantspacetimebivector. Its components in the {rJ-L}
frame give rise to the tensor)

FJ.lV == }Iv
.

CyJ.l. F) == Cyv A rJ-L)
.F.) (7.24

))

Theseare the components of a rank-2 antisymmetric tensorwhich, written out

as a matrix, has entries)

0 -E -E -Ex y z
Ex 0 -B By (7.25)FJ.lV ==

z

Ey Bz 0 -Bx

Ez -B Bx 0
y)

Thismatrix form of the field strength isoften presentedin textbookson relativis-
tic electrodynamics.It has a number of disadvantages.Amongst theseare that

Lorentz transformations cannot be handled elegantly and the natural complex
structure is hidden.

Writing F == E + IB decomposesF into the sum of a relative vector E and
a relative bivector lB.The separateE and IB fieldsare recoveredfrom)

E == !(F- raFro),
IB == !(F+ raFro).)

(7.26))
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This showsclearly how the split into E and IB fieldsdependson the observer

velocity ('0here).Observersin relative motion seedifferent fields. For example,
supposethat a secondobserver has velocity v == R,oR and constructsthe rest
frame basisvectors)

,\037
== R'/-LR.) (7.27))

This observer measurescomponents of an electricfield to be)

E\037
== (,\0371b).F== (RUiR).F== ui.(RFR).) (7.28))

The effect of a Lorentz transformation can therefore be seenby taking F to
RFR. The fact that bivectors are subjectto the same rotor transformation law

as vectors is extremely useful for computations.
Supposenow that two observersmeasure the F-field at a point. One has 4-

velocity ,0,and the other is moving at relative velocity v in the 10frame. This
abserverhas 4-velocity)

v == R10R,) R == exp(av/2),) (7.29))

\037here
v == tanh(a)v. The secondobserver measuresthe {1/-L}components of

RFR. To find thesewe decomposeF into terms parallel and perpendicularto)

v,)

F ==
FII + FJ..,) (7.30))

where)

vF11 ==
F11v,) vFJ.. == -FJ..v.) (7.31))

We quickly seethat the parallel components are unchanged, but the perpendic-
ular components transform to)

RFJ..R== exp(-av)FJ..== 1(1-v)FJ..,) (7.32))

where 1is the Lorentz factor (I_V2)-I/2.This result is sufficient to immediately
establishthe transformation law)

E\037
== ,(E+ vxB)J..,

B\037
== ,(B-vxE)J...)

(7.33
))

Herethe primedvectors are formed from E' ==
E\037Ui, for example.Thesehave

the components of F in the new frame, but combined with the original basis
vectors.

Further useful information about the F field is contained in its square,which

definesa pair of Lorentz-invariantterms.We form)

F2 == (FF)+ (FF)4== ao + Ia4,) (7.34))
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which is easily seento be Lorentz-invariant,)

(RFR)(RFR)== RFFR== ao + Ia4.) (7.35))

Both the scalarand pseudoscalarterms are independentof the frame in which

they are measured.In the {oframe theseare)

\037\"

Q == ((E+ IB)(E+ IB)):z:E2 -B2) (7.36))

and)

j3 == -(I(E+ IB)(E+ IB))== 2E.B.) (7.37))

The former yieldsthe Lagrangian density for the electromagnetic field. The
latter is seen less often. It is perhapssurprisingthat E.B is a full Lorentz

invariant, rather than just beinginvariant under rotations.)

7.1.3Dielectricand magneticmedia)

The Maxwellequations insidea medium, with polarisation and magnetisation
fields P and lVI, were given in equation (7.4). Theseseparate into a pair of

spacetimeequations.We introduce the spacetimebivector field G by)

G==D+IH.) (7.38
))

Maxwell'sequations are now given by the pair of equations)

\\7 /\\F == 0,
\\7 .G == J.)

(7.39))

The first tells us that F has vanishing curl, so can still be obtained from a
vector potential, F == \\7 /\\ A. The secondequation tells us how the D and H
fieldsrespondto the presenceof free sources.Theseequations on their own are
insufficient to fully describethe behaviour of electromagnetic fields in matter.

They must be augmented by constitutive relations which relate F and G.The

simplestexamplesof these are for linear, isotropic,homogeneousmaterials, in

which casethe constitutive relations amount to specifyinga relative permittivity

Er and permeability J-Lr. The fieldsare then relatedby)

D == ErE,) B == J-LrH.) (7.40))

More complicatedmodelsfor matter can involve consideringresponsesto differ-
ent frequencies,and the presenceof preferred directionson the material. The

subjectof suitableconstitutive relations is one of heuristic model building.We

are, in effect,seekingmodelswhich account for the quantum propertiesof matter
in bulk, without facing the full multiparticle quantum equations.)
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7.2 Integraland conservationtheorems

A number of important integral theorems exist in electromagnetism.Indeed,
the subjectof integral calculus was largely shapedby consideringapplications
to electromagnetism.Herethe resultsare all derived as examplesof the funda-

mental theorem of integral calculus,derived in chapter 6.)

7.2.1Staticfields)

We start by deriving a number of resultsfor static field configurations. When

the fieldsare static the Maxwellequations reduceto the pair)

VE == \037 ,
EO)

VB==MoIJ,) (7.41))

where (for this section)we have reinsertedthe constantsEO and J.Lo. A current J
is static if the charge flows at a constant rate.The fact that V I\\E == 0 implies
that around any closedpath)

1E.dl== 0,
Jaa)

(7.42))

which appliesfor all staticconfigurations. We can thereforeintroduce a potential
cp such that)

E == -VcjJ.) (7.43))

The potential cjJ is the timelike component of the vector potential A, cjJ
==

\"Yo' A.

One can formulate many of the main resultsof electrostaticsdirectly in terms

of <p. Herewe adopt a different approach and work directly with the E and B
fields.

An extremely important integral theorem is a straightforward application of

Gauss'law (indeedthis is Gauss'original law))

1E-nldAI= \037 [pldXI= Q
,

Jav EO Jv EO)

(7.44
))

where Q is the enclosedcharge.In this formula n is the outward pointing normal,
formed from dA == InldA], where dA is the directedmeasure over the surface,
and the scalarmeasure IdXI is simply)

IdXI == dxdydz.) (7.45))

For the next application,recall from section6.4.7the form of the Green'sfunction

for the vector derivative in three dimensions,

1 r -r'
G(r;r') == _

4
1 '13

'
7r r-r) (7.46))
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An application of the fundamental theorem tellsus that)

r (GVE+GVE)ldXI= -[1 GdAE.
Jv Jav

If we assumethat the sourcesare localised,sothat E falls off at large distance,we
can take the integral overall spaceand the right-hand sidewill vanish. Replacing
G by the Green'sfunction above we find that the field from a static charge
distribut ion is given by)

(7.47))

E(r) = \037Jp(r')(r- r') IdX'I.
47rEo Ir - r'13

If p is a single b-function source,p == Qb(r'- ro), we immediately recover the
Coulomb field)

(7.48))

E(r) = \037(r - ro) .
47rEo Ir - rol3

Unsurprisingly, this is simply a weightedGreen'sfunction.
For the magnetic field B, the absenceof magnetic monopoles is encodedin

the integral equation)

(7.49))

f B.dA= O.) (7.50))

This tellsus that the integral curvesof Balways form closedloops.This is true
both insideand outsidematter, and holdsin the time-dependentcaseas well.
Next we apply the integral theorem of equation (7.47)with E replacedby B.If
we again assumethat the fieldsare producedby localisedchargesand fall off at
large distances,we derive)

IB(r)== _ JLo J (r - r')J(r')IdX'I.47r Ir - r'I3
The scalarterm in the integrand vanishesas a consequenceof the static conser-
vation law V.J == O. The bivector term gives the magnetic field bivector lB.
N ow supposethat the current is carriedentirely in an 'ideal'wire. This is taken
as an infinitely thin wire carrying a current J,)

(7.51))

J=JJd>-'
d\037\037>-')

J(r_y(>-.))=JJdlJ(r-y(>-.)).) (7.52))

We have little option but to useJ for the current as the morestandardsymbolI is
already taken for the pseudoscalar.The result is that the B-fieldis determined
by a line integral along the wire. This is the Biot-Savartlaw, which can be
written)

B(r)= JLoJJdl'x(r- r')
47r Ir -r'13 '

where r' is the positionvector to the line element dl'.)

(7.53
))
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A further integral theorem for magnetic fields is found if we considerthe

integral around a loop enclosinga surface u. We have)

j B.dl == 1(13A V) .dA == Mo1J.(-IdA).
Jaa a a)

(7.54))

Again, we write dA == InldAI, where n is the unit right-handed normal. That

is, if we grip the surface in our right hands in the manner specifiedby the

line integral, our thumbs point in the normal direction. The result is that we

integrate J.nover the surface. This returns the total current through the loop,
J,recoveringAmpere'slaw,)

j B.dl== Maj.
Jaa)

(7.55))

This is routinely used for finding the magnetic fields surrounding electricalcir-

cuits.)

7.2.2Time-varyingfields)

If the fields vary in time, someof the precedingformulae remain valid, and

others only require simplemodifications. The two applicationsof Gauss' law,

equations (7.44)and (7.50),remain unchanged. The two applicationsof Stokes'
theorem acquire an additional term.For the E-fieldwe have)

j E.dl== !i1(IB).dA= _ dcJ>

,
Jaa dt a dt

where <I> is the linked magnetic flux. The flux is the integral of B.nover the area

enclosedby the loop,with n the unit normal. Magnetic flux is an important

conceptfor understanding inductance in circuits.
For the magnetic field we can derive a similar formula,)

(7.56))

j B.dl== MoJ + EoMod
d 1E.nIdAj.

Jaa t a)
(7.57))

This is useful when studying boundary conditions at surfacesof media carrying

time-varying currents. The equations involving the EuclideanGreen'sfunction

are no longer valid when the sourcesvary with time.In section7.5we discussan

alternative Green'sfunction suitablefor the important caseof electromagnetic
radiation.)

7.2.3The energy-momentumtensor)

The energy density contained in a vacuum electromagnetic field, measuredin

the 10frame, is)

E == !(E2 + B2),) (7.58))
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wherewe havereverted to natural units. In section7.1.2we saw that the quantity
E2-B2 isLorentz-invariant. This\037is not true of the energydensity,which should
clearly dependon the observer performing the measurement. The total energy
in a volume V is found by integrating E over the volume. If we look at how this
varies in time, assuming no sourcesare present,we find that)

\037 [ldXI!(E
2 +B2)= [ldXI(-EV(IB)+IBVE)

= 1
IdAI n.(E.(IB)).Jav

We therefore establishthat the field momentum is describedby the Poynting
vector)

(7.59))

P \037 -E.(IB) == ExB.) (7.60
))

The energyand momentum should to be the componentsof a spacetime4-vector
P,so we form)

P == (E + P),a==
\037(E2 + B2),a+ !(IBE-EIB),a

==
\037(E + IB)(E-IB),a

== !F(-,aF,a),a== -\037F,aF.) (7.61))
Thisquantity is still observer-dependentas it contains a factor of ,a.We have in

fact constructedthe energy-momentum tensorof the electromagneticfield. We
wri te this as)

1 1-T(a)== -2FaF== 2FaF.) (7.62))

This is clearly a linear function of a and, sinceit is equal to its own reverse, the
result is automatically a vector. It is instructive to contrast our neat form of the
energy-momentumtensorwith the tensorformula)

TJ-t - 1A I-L FQ(3P + FJ-LQ Pv - 4u v 0.(3 QV') (7.63))
The geometricalgebraform of equation (7.62)doesa far better job of capturing
the geometric content of the electromagneticenergy-momentumtensor.

The energy-momentumtensor T(a)returns the flux of 4-momentumacrossthe
hypersurface perpendicularto a. This is the relativistic extensionof the stress
tensor,and it is as fundamental to field theory as momentum is to the mechanics
of point particles.All relativistic fields,classicalor quantum, have an associated
energy-momentum tensor that contains information about the distribution of
energy in the fields, and acts as a sourceof gravitation. The electromagnetic
energy-momentumtensor demonstratesa number of propertiesthat turn out
to be quite general.The first is that the energy-momentumtensor is (usually)
symmetric. For example,we have)

a.T(b)== -!(aFbF)== -!(FaFb)== T(a).b.) (7.64))
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The reasonfor qualifying the above statement is that quantum spingivesriseto
an antisymmetric contribution to the (matter) energy-momentumtensor.This
will be discussedin more detailswhen we look at Dirac theory.

A secondproperty of the electromagneticenergy-momentumtensoris that the

energy density v. T(v) is positive for any timelike vector v. This is clear from

the definition of E in equation (7.58).The expressionfor E is appropriatethe ,0
frame, but the sign of E cannot be alteredby transforming to a different frame.
The reasonis that)

(vFvF) == (RroRFR,oRF)== (,oF'roF'),) (7.65))

where F' == RFR. Transforming to a different velocity is equivalent to back-
transforming the fields in the rO frame, so keepsthe energy density positive.
Matter which doesnot satisfy the inequality v. T(v) > 0 is said to be 'exotic',
and has curious propertieswhen acting as a sourceof gravitational fields.

The third main propertyof energy-momentumtensorsis that, in the absence
of external sources,they give rise to a set of conservedvectors.This is because
we have)

\\7. T(a) == 0 V constant a.

Equivalently, we can use the symlnetry of T(a) to write

T(V).a== 0, Va,)

(7.66))

(7.67))

which implies that)

T(V) == o.) (7.68
))

For the caseof electromagnetism, this result is straightforward to prove:

T(V) == -![FVF + F\\7 F] == 0,) (7.69))

which follows since\\7F == F\\7 == 0 in the absenceof sources.
Conservation of the energy-momentum tensor implies that the total flux of

energy-momentum over a closedhypersurface is zero:)

r
IdA I T(n)= 0,

Jav)
(7.70

))

where av is a closed3-surfacewith directedmeasuredA == nIldAI.That the flux

vanishes is a simple application of the fundamental theorem of integral calculus

(in flat spacetime),

r T(nIdAI) = r T(dAr1) = r T(V) dXr1 = O. (7.71)
Jav Jav Jv

Given that T('0) is the energy-momentumdensity in the rO frame, the total
4-momentum is)

Ptot =J IdXI TC'Yo).) (7.72
))
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t)

Figure 7.1 Hypersurface integration. The integral over a hypersurface of
a (spacetime)conservedcurrent is independent of the chosenhypersurface.
The two surfaces81 and 82 can be joinedat spatial infinity (provided the
fields vanish there). The difference is thereforethe integral over a closed
3-surface,which vanishes by the divergencetheorem.)

The conservationequation (7.68)guarantees that, in the absenceof charges,the
total energy-momentumis conserved.We seethat)

() d

J J
. .

dt Ptot == IdXIOtT(fo)== IdXIT(V,o),) (7.73))

where we have usedthe fact that V == ,OOt-V,o.The final integral here is a
total derivative and so gives rise to a boundary term, which vanishes provided
the fields fall off sufficiently fast at large distances.Similarly, we can also see
that Ptot is independentof the chosentimelike axis.It is a covariant (non-local)
property of the field configuration. The proofcomesfrom consideringthe integral
over two distinctspacelikehypersurfaces (figure 7.1).If the integrals are joined
at infinity (which introduceszerocontribution) we form a closedintegral of T(n).
This vanishes from the conservationequation, so the total energy-momentumis
independentof the choiceof hypersurface.

In the presenceof additional sourcesthe electromagnetic energy-momentum
tensor is no longer conserved.The total energy-momentum tensor, including
both the matter and electromagneticcontent will be conserved,however.This is
a general feature of field theory in a flat spacetime,though the picture is altered
somewhat if gravitational fields are present. The extent to which the separate
tensorsfor each field are not conserved contains useful information about the
flow of energy-momentum. For example,supposethat an external current is

present,so that) .. I
T(V) == -2(-JF+FJ)== J.F.) (7.74))

An expressionof the form J.F was derived in the Lorentz force law, discussed
in section5.5.3.In the fO frame, J.F decomposesinto)

J.F== ((p+ J),o(E+ IB))I== -(J.E+ pE+ JXB),o.) (7.75))
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Surfaceof constant T)

.x/////
// X/////

/)

Figure 7.2 Field from a moving point charge. The charge follows the

trajectoryXo (T),and X == x -Xo (T) is the retardednull vector connecting
the point x to the worldline. The time T can be viewed as a scalar field

with eachvalue of T extendedout over the forward null cone.)

The timelike component, J.E,is the work done-the rate of change of energy
density. The relative vector term is the rate of change of field momentum, and
sois closelyrelatedto the force on a point particle.)

7.3Theelectromagneticfield of a point charge
We now derive a formula for the electromagneticfieldsgeneratedby a radiating
charge. This is one of the most important results in classicalelectromagnetic
theory. Supposethat a charge q moves along a worldline XO(T), where T is
the propertime along the worldline (seefigure 7.2).An observer at spacetime
position xreceivesan electromagneticinfluencefrom the point wherethe charge's
worldline intersectsthe observer'spast light-cone. The vector)

X==X-XO(T)) (7.76))

is the separationvector down the light-cone,joining the observer to this inter-
sectionpoint. Sincethis vector must be null, we can view the equation)

X2
== 0) (7.77))

as defining a map from spacetimepositionx to a value of the particle'sproper
time T. That is, for every spacetimepositionx there is a unique value of the (re-
tarded)propertime along the charge'sworldline for which the vector connecting
x to the worldlineis null. In this sense,we can write T == T(x), and treat T as a
scalarfield.)
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The Lienard-Wiechert potential for the retarded field from a point charge
moving with an arbitrary velocity v == Xo is)

A==}L V

47r IX.vl')
(7.78))

This solution is obtainedfrom the wave equation V 2A == J using the appropriate
retardedGreen'sfunction)

1
Gret(r,t) =

I 1

6(lrl-t).47r r) (7.79
))

A similar solution existsif the advanced Green'sfunction is used.The question
of which is the correctone to useis determined experimentally by the fact that
no convincingdetectionof an advanced (acausal)field has ever beenreported.
A deeperunderstanding of theseissuesis provided by the quantum treatment of
radiation.

If the charge is at rest in the fO frame, we have)

XO(T) == T,O== (t - r),o,) (7.80))

where r is the relative 3-spacedistancefrom the observer to the charge.The
null vector X is therefore)

X == r.-{,o+ er ).) (7.81))
For this simplecasethe 4-potential A is a pure 1/r electrostaticfield:

A ==!L fO
== \037'o.47rIX',01 47rr

The sameresult isobtainedif the advancedGreen'sfunction is used.The differ-
encebetween the advanced and retardedsolutions is only seenwhen the charge
radiates.We know that radiation is not handled satisfactorily in the classical
theory becauseit predictsthat atoms are not stable and should radiate. Is-
suesconcerningthe correct Green'sfunction cannot be fully resolvedwithout a
quantum treatment.)

(7.82))

7.3.1Thefieldstrength
The aim now is to differentiate the potential of equation (7.78)to find the field

strength. First, we differentiate the equation X2 == 0 to obtain)

o ==
1\037(o\037X),X

== V x.X-VT (OrXO)'X
== X -VT (v.X).) (7.83))

It follows that)

X
VT== _X .

.v) (7.84
))
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The gradient of 7 pointsalong X, which is the direction of constant T. This is
a peculiarity of null surfaces that was first encountered in chapter 6.In finding

an expressionfor \\77 we have demonstratedhow the particleproper time can
be treated as a spacetimescalarfield. Fieldsof this type are known as adjunct
fields- they carry information, but do not exist in any physical sense.

To differentiate A we needan expressionfor \\7(X .v). We find that

\\7(X.v) == V(X).v+ \\77 X'(OrV)
== V \037 \\77 + \\77 X'v,) (7.85))

where v == OTV, Provided X is defined in termsof the retardedtime, X.v will

always be positive and there is no needfor the modulus in the denominator of
equation (7.78).We are now in a positionto evaluate \\7A. We find that)

\\7A =
4\037 ( ;\037v

-
(X\\)2\\7(X.v)v)

q

(
Xv 1 (XX'V\037X)v

)
==

47r .(X .v)2
\037

(X.V)
2

\037

(X.v)
3

==!L
(

Xl\\v
+

XI\\V\037X'VXI\\V

)47r (X.v)2 (X'V)3
.

The result is a pure bivector, so \\7. A == 0 and the A field of equation (7.78)is
in the Lorentz gauge.This is to be expected,sincethe solution is obtained from

the wave equation \\72 A == J.
We can gain someinsight into the expressionfor F by writing)

(7.86))

X.vX I\\v -X.vX I\\v == -X(X.(Vl\\v))
== !Xv!\\vX,) (7.87))

which usesthe fact that X2 == O. Writing flv == vl\\v for the accelerationbivector
of the particle,we arrive at the compact formula

q X!\\v + !XflvXF==-
47r (X.v)3

.) (7.88))

One can proceedto show that, away from the worldline, F satisfies the free-
field equation \\7F == O. The detailsare left as an exercise.The solution (7.88)
displaysa clean split into a velocity term proportional to 1/(distance)2and a

long-range radiation term proportional to 1/(distance).The term representing
the distanceis simply X . v. This is just the distancebetween the events x and
Xo (T) as measuredin the rest frame of the charge at its retardedposition.The
first term in equation (7.88)is the Coulombfield in the rest frame of the charge.
The second,radiation, term:)

q \037XflvXFrad=
47r (X.v)3

'
is proportional to the rest frame accelerationprojecteddown the null vector X.)

(7.89))
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The fact that this term falls ofas 1/(distance)impliesthat the energy-momentum
tensorcontains a term which falls of as the inversesquareof distance.Thisgives
a non-vanishing surface integral at infinity in equation (7.73)and describeshow

energy is carriedaway from the source.)

7.3.2Constantvelocity

A charge with constant velocity v has the trajectory

Xa (T) ==
VT,) (7.90))

where we have chosenan origin so that the particlepassesthrough this point at
T == O.The intersectionof Xo (T)with the past light-conethrough x isdetermined
by)

(x- VT)
2

== 0 *T == V. X - ((v .x)2 _ x2
)
1/2

.) (7.91))
We have chosenthe earlier root to ensurethat the intersection lieson the past
light-cone.We now form X.v to find)

X .v == (x- VT) .V == ((v .x)2 _ x2
)
1/2.

We can write this as Ix!\\vl since

jX!\\vj2 == x.(v.(x!\\v))== (x.v)2-x2
.)

(7.92))

(7.93))

The accelerationbivectorvanishessincev is constant, and X!\\v == x!\\v. It follows
that the Faraday bivector is simply

F ==!Lx!\\v

47r Ix/\\ vl3
. (7.94)

This is the Coulomb field solution with the velocity ,a replacedby v. This
solution could be obtainedby transforming the Coulomb field via)

F \037 F'
== RF(RxR)R,) (7.95))

where v == R,oR. Covariance of the field equations ensuresthat this process
generatesa new solution.

We next decomposeF into electricand magnetic fields in the ,0frame. This
requiresthe spacetimesplit)

xl\\v == (x,a,aV)2== ,((t+ r)(1-V))2 == ,(r- vt) - ,r!\\v,) (7.96
))

where v is the relative velocity and f is the Lorentz factor. We now have)

q,E ==

d3(r - vt),
47r)

q,B ==

47rd3
Ir!\\v.) (7.97))

Here,the effectivedistanced can be written)

d2 == ,2(lvlt-v.r/lvl)2+ r2- (r.v)2/v2
.) (7.98

))
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The electricfield pointstowards the actual positionof the charge at time t, and
not its retardedpositionat time T. The same is true of the advanced field, hence
the retardedand advanced solutions are equal for chargeswith constant velocity.)

7.3.3Linearacceleration)

Supposethat an acceleratingcharged particle follows the trajectory)

Xo (T) == a (sinh(gT)10+ cosh(gT)13),) (7.99
))

where a == g-1(seefigure 7.3).The velocity is given by)

v(T) == cosh(gT)10+ sinh(gT)13== e970\"3 10) (7.100))

and the accelerationbivector is simply)

vv == g0'3.) (7.101))

The charge has constant (relativistic) acceleration in the 13direction.We again
seekthe retardedsolution of X2 == O. This is more convenientlyexpressedin a
cylindrical polar coordinatesystem,with)

r == p(cos(1\302\273 0'1+ sin( 1\302\273 0'2)+ Z0'3,) (7.102))

so that r2 == p2 + Z2. We then find the following equivalent expressionsfor the
retarded propertime:)

egT ==
1

(a2 + r2 _ t2 _ ((a
2 + r2 _ t2

)2 _ 4a2
(z2 _ t2))1/2) ,2a(z- t)

e-gT ==
1

(a2 + r2 _ t2 + ((a
2 + r2 _ t 2

)2 _ 4a2
(z2 _ t 2

))1/2) .
2a(z+ t))

(7.103))

Theseequationshave a solution provided z + t > O. As the trajectory assumes
that the charge has beenacceleratingfor ever, a horizon is formedbeyond which

no effectsof the charge are felt (figure 7.3).Constant eternal accelerationof this

type is unphysical and in practicewe only considerthe acceleration taking place
for a short period.

We can now calculate the radiation from the charge.Firstwe needthe effective
distance)

((a2 + r2 _ t 2)2 _ 4a2(z2_ t 2))1/2X.v == .
2a) (7.104))

This vanishes on the path of the particle(p == 0 and z2- t 2 == a2), as required.)
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,)

Figure 7.3 Constant acceleration.The spacetimetrajectoryof a particle
with constant accelerationis a hyperbola.The asymptotes are null vectors
and define future and past horizons. Any signal sent from within the shaded
region S will never be receivedby the particle.)

The remaining factor in F is)

X 1\\ v + !XvvX= xl\\v -aU3+ \037(x
-

XO)U3(X
-xo)2a

1 a
== -XO'3X- -0'32a 2

1 2 2 2 2 zp tp==-(z -p -t -a)O'3+-O'+-IO'cjJ,2a a P
a)

(7.105))

where up and 0'
cjJ

are the unit spatial axial and azimuthal vectors respectively.
An instructive way to display the information contained in the expressionfor F
is to plot the field lines of E at a fixed time. We assumethat the charge starts
acceleratingat t == tI,and stopsagain at t == t 2. There are then discontinuitiesin

the electricfield line directionson the two appropriatelight-spheres.In figure 7.4
the accelerationtakesplacefor a short periodof time, so that a pulseof radiation
is sent outwards. In figure 7.5the charge beganaccelerating from rest at t ==

-IDa.The pattern is well developed,and shows clearly the refocusingof the
field lines onto the 'imagecharge'.The image positioncorrespondsto the place
the charge would have reachedhad it not started accelerating.Of course,the

image charge is not actually present,and the field lines divergeafter they cross
the light-spherecorrespondingto the start of the acceleration.

For many applicationswe are only interestedin the fieldsa long way from the
source.In this region the fields can usually be approximated by simpledipole
or higher ordermultipole fields. Supposethat the charge acceleratesfor a short)
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Figure 7.4 Field lines from an acceleratedcharge1.Thechargeaccelerated
for -O.2a< t < O.2a,leaving an outgoing pulse of transverseradiation field.
The field lines were computed at t = 5a.)

period and emits a pulseof radiation. In the limit r \302\273 a the pulsewill arrive
at some time which, to a goodapproximation, is centredaround the time that
minimises X.v. This time is given by)

to == vr2- a2
.) (7.106))

At t == to the properdistanceX.v evaluates to p, the distancefrom the z axis.
Thepoint on the axisp away from the observer is where the chargewould appear
to be if it werenot accelerating.For the large distanceapproximationto be valid
we therefore also require that p is large, so that the properdistancefrom the
sourceis large.(For small p and z > a a different procedurecan be used.)We
cannow obtain an approximate formula for the radiation field at a fixedlocation
r, with r, p \302\273 a, around t == to. For this we define)

5t == t - to) (7.107))

so that the properdistanceis approximatedby)

X.v \037 (p2 + r28;/a2)
1/2

.) (7.108))
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Figure 7.5 Field lines from an acceleratedchargeII.The chargebeganits
accelerationat tl == -lOaand has thereafter accelerateduniformly. The
field lines are plotted at t == 3a.)

The remaining terms in F become

X !\\ v + !XvvX \037

rp
(0'0+ IO'<jJ),

a)
(7.109))

where 0'0 and 0'
<jJ

are unit spherical-polarbasisvectors.The final formula is

q rp
(

r282

)
-3/2

F \037
-- p2 +-2

t
(0'0+ IO'<jJ),41T a a)

(7.110))

which describesa pure,outgoing radiation field a large distancefrom a linearly
acceleratingsource.The magnitude of the acceleration is controlledby 9 = a-I.)

7.3.4Circularorbitsand synchrotronradiation)

As a further application, considera charge moving in a circular orbit. The
worldline is defined by)

Xo = Tcosh(a)')'0+ a(cos(wT)')'1+ sin(wT)')'2)'

where a = W
-1sinh (a).The particlevelocity is

v = cosh(a) ')'0+ sinh( a) (
- sin(WT)')'1+ cos(WT)')'2)= R')'oR,)

(7.111))

(7.112))
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Figure 7.6 Field lines from a rotating charge 1.The chargehas Q == 0.1,
which gives rise to a smooth, wavy pattern.)

where the rotor R is given by

R == e-wTlu3/2eau2/2.) (7.113))
We must first locatethe retardednull vector X. The equation X2 == 0 reduces
to)

t == Tcosh(a)+ (r
2 + a2 - 2apcos(wt_ 4\302\273)1/2,) (7.114))

which is an implicit equation for T(x). No simple analytic solution exists,but
a numerical solution is easy to achieve. This is aidedby the observation that,
for fixedr, the mapping between t and T is monotonic and T is boundedby the
conditions)

t - (r
2 + 2ap + a2

)1/2< Tcosh(a)< t - (r
2 - 2ap + a2

)1/2.) (7.115))
Oncewe have a satisfactory procedurefor locating T on the retardedlight-cone,

we can straightforwardly employthe formula for F in numericalsimulations. The
first term requiredis the effectivedistanceX .v, which is given by

X.v == cosh(a)(r
2 + a2 - 2apcos(wT- 4\302\273)1/2

+ psinh(a)sin(wT -
rjJ). (7.116))

The remaining term to compute, X 1\\ v + XvvX/2, is more complicated,as can
be seen from the behaviour shown in figures 7.6,7.7and 7.8.They show the)
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Figure 7.7 Field lines from a rotating charge II.The chargehas an in-

termediatevelocity, with Q = 0.4.Bunching of the field lines is clearly
visible.)

field lines in the equatorial plane of a rotating charge with W == 1.For 'low'
speedswe get the gentle, wavy pattern of field lines shown in figure 7.6.The
casedisplayedin figure 7.7is for an intermediate velocity (a == 0.4),and displays
many interesting features. By a == 1(figure 7.8)the field lineshave concentrated
into synchrotron pulses,a pattern which continues thereafter.

Synchrotron radiation is important in many areas of physics,from particle
physicsthrough to radioastronomy. Synchrotron radiation from a radiogalaxy,
for example,has a \037 108 m and r \037 1025 m. A power-seriesexpansionin air
is therefore quite safe! Typical values of cosh(a) are 104 for electronsproducing
radio emission.In the limit r \302\273 a, the relation between t and T simplifies to)

t -r \037 Tcosh(a)- asin(B)COS(WT- cP).) (7.117))

The effectivedistancereducesto)

X.v \037 r cosh(a)(1+ tanh(a)sin(B) sin(wT -cP)),) (7.118))

and the null vector X given by the simple expression)

X \037
r(\"Yo + er ).) (7.119))

In the expressionfor F of equation (7.88)we can ignore the X A v (Coulomb))
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Figure 7.8 Field lines from a rotating chargeIII.The chargeis moving at
a highly relativistic velocity, with Q == 1.The field lines are concentrated
into a seriesof synchrotron pulses.)

term, which is negligiblecomparedwith the long-rangeradiation term.For the
radiation term we needthe acceleration bivector)

vv == -wsinh(a)cosh(a)(COS(WT)O'I+ sin(wT)0'2)+ wsinh 2(a)I0'3'(7.120)
The radiation term is governedby XOvX/2,which simplifiesto)

\037XvvX
\037 wr 2cosh(a)sinh(a)(cos(8)COS(WT- 4\302\273O'e(1

-O'r)
+ wr 2sinh(a)(cosh(a)sin(wT -

4\302\273
+ sinh(a)sin(8))0'<p(l-O'r). (7.121))

These formulae are sufficient to initiate studying synchrotron radiation. They
contain a wealth of physical information, but a detailedstudy is beyond the

scopeof this book.)

7.4 Electromagneticwaves

For many problemsin electromagnetic theory it is standardpracticeto adopt a

complexrepresentationof the electromagnetic field, with the implicit assump-
tion that only the real part representsthe physical field. This is particularly
convenient when discussingelectromagneticwavesand diffraction, as studiedin

this and the following section.We have seen,however, that the field strength)
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F is equippedwith a natural complexstructure through the pseudoscalarI.
We should therefore not be surprisedto find that, in certain cases,the for-
mal imaginary i plays the role of the pseudoscalar.This is indeedthe casefor
circularly-polarisedlight. But one cannot always identify i with I, as is clear
when handling plane-polarisedlight. The formal complexificationretainsits use-
fulness in such applicationsand we accordingly adopt it here. It is important
to remember that this is a formal exercise,and that real parts must be taken
before forming bilinear objectssuch as the energy-momentumtensor.The study
of electromagneticwavesis an old and well-developedsubject.Unfortunately, it
suffersfrom the lack of a single,universal set of conventions. As far as possible,
we have followedthe conventionsof Jackson(1999).

We seekvacuum solutions to the Maxwellequations which are purely oscilla-
tory. We therefore start by writing)

F == Re(Foe-ik
'x

).) (7.122))
The vacuum equation \\7F == 0 then reducesto the algebraic equation)

kFo == o.) (7.123))
Pre-multiplyingby k we immediatelyseethat k2 == 0, asexpectedof the wavevec-
tor.The constant bivector Fo must contain a factor of k, as nothing elsetotally
annihilates k. We therefore must have)

Fo == kl\\n == kn,) (7.124))
where n is somevector satisfying k.n== O.We can always add a further multiple
of k to n, since)

k(n + Ak) == kn + Ak 2
== kl\\n.) (7.125))

This freedom in n can be employed to ensure that n is perpendicularto the
velocity vector of some chosenobserver.

As an example,considera wave travelling in the 13direction with frequency
w as measuredin the \"Yo frame. This implies that \"Yo.k

== w, so the wavevectoris
given by)

k == w( \"Yo + 1'3),) (7.126))
and the phaseterm is)

-ik.x== -iw(t- z).) (7.127))
The vector n can be chosen to just contain 1'1and \"Y2 components,so we can
write)

F == -(\"Yo + 1'3)(aI\"Y1 + a21'2)cos(k.x)
== (1+ 0'3)(aIO'l+ a20'2)cos(k.x).) (7.128))
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This solution representsplane-polarisedlight, as both the E and B fieldslie in

fixed planes,90\302\260 apart, and only their magnitudes oscillatein time.
An arbitrary phase can be added to the cosineterm, so the most general

solution for a wave travelling in the +z direction is)

F == (1+ 0\"3)((Ct 10\"I + Ct20\"2)cos(k.x)+ (;310\"1+ ;320\"2)sin(k.x)),) (7.129))

where the constantsCti and ;3i, are all real.This general solution can describe
all possiblestates of polarisation. A convenient representationis to introduce
the complexcoefficients)

CI == Ctl + i{31, C2 == Ct2 + i;32.) (7.130))

These form the componentsof the complexJonesvector (CI,C2).In terms of
these components we can write)

F == Re((1+ 0\"3)(CIO\"l + c20\"2)e-
ik .x

),) (7.131))

and it is a straightforward matter to read off the separateE and B fields.
The multivector (1+ 0\"3) has a number of interesting properties.It absorbs

factorsof 0\"3, as can be seenfrom)

0\"3(1+ 0\"3) == 1+ 0\"3.

In addition, (1+ lT3) squaresto give a multiple of itself,

(1+ 0\"3)2 == 1+ 20\"3 + 0\"5
== 2(1+ 0\"3).)

(7.132))

(7.133))

Thisproperty implies that (1+ 0\"3) doesnot have an inverse,so in a multivector

expressionit acts as a projectionoperator.The combination (1+ 0\"3)/2has the

particular propertyof squaring to give itself backagain. Multivectors with this

propertyare saidto be idempotentand are important in the generalclassification
of Clifford algebrasand their spinorrepresentations.In spacetimeapplications
idempotentsinvariably originate from a null vector, in the manner that (1+ lT3)

originatesfrom a spacetimesplitof 'TO + 'T3')

7.4.1Circularly-polarisedlight)

Many problemsare more naturally studiedusing a basisof circularly-polarised
states, as opposedplane-polarisedones.Thesearisewhen C1and C2 are 1r/2 out

of phase. One form is given by Ctl == -;32::::::Eo and Ct2 == ;31 == 0, where Eo
denotesthe magnitude of the electricfield. For this solution we can write)

F == Eo(1+ 0\" 3)(0\" 1cos(k .x)- 0\" 2sin (k .x))
== Eo(1+ 0\"3)0\"1 e-10'3w (t -z).) (7.134))

In a plane of constant z (a wavefront) the E field rotatesin a clockwise(negative)
sense,when viewed looking backtowards the source(figure 7.9).In the optics)
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y)

E = EOlTle-Iu3W(t
-z))

x)

Figure 7.9 Right-circularly-polarised light. In the z = 0 plane the E vector
rotates clockwise,when viewed from above.The wave vector points out of
the page. In space,at constant time, the E field sweepsout a right-handed
helix.)

literature this is known as right-circularly-polarisedlight. The reasonfor this is
that, at constant time, the E field sweepsout a helix in spacewhich definesa
right-handed screw.If you grip the helix in your right hand, your thumb points
in the direction in which the helix advances if trackedalong in the sensedefined
by your grip. This definition of handednessfor a helix is independentof which

way round you choseto grip it.
Left-circularly-polarisedlight has the E field rotating with the oppositesense.

The general form of this solution is)

F == (1+ (73)(al171+ a2(72)elu3k.x.) (7.135))

Particle physicistsprefer an alternative labellingschemefor circularly-polarised
light. The schemeis based, in part, on the quantum definition of angular mo-
mentum. In the quantum theory, the total angular momentum consistsof a
spatialpart and a spincomponent. Photons, the quanta of electromagneticra-
diation, have spin-I.The spinvector for thesecan either point in the direction
of propagation, or against it, dependingon the orientation of rotation of the E
field. It turns out that for righi-circularly-polarisedlight the spinvector points
against the direction of propagation, which is referred to as a state of negative
helicity. Conversely,left-circularly-polarisedlight has positive helicity.

Equation (7.132)enablesus to convert phaserotations with the bivector 10'3)
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into duality rotations governedby the pseudoscalarI.This relieson the relation)

(1+ 0'3)eIU3 <P == (1+ lT3)(cos(<p) + 10'3sin(<p))

== (1+ lT3)(cos(<p) + [sin(<p)) == (1+ 0'3)eI<p.) (7.136))

The general solution for right-circularly-polarisedlight can now be written

F == (1+ 0'3)elu3k,x(QIO'I+ Q2lT2)
== (1+ 0'3)(QIO'I+ Q20'2)e1k'x

.) (7.137))

In this casethe complexstructure is now entirely geometric, generatedby the

pseudQscalar.This means that there is no longer any needto take the real part
of the solution, as the bivector is already entirely real.A similar trick can be
appliedto write the constant terms as)

(1+ lT3)(QIO'I+ Q20'2)== (1+ 0'3)0'1(QI- [0;2),) (7.138))

so that the coefficientalso becomes'complex'on the pseudoscalar.The general
form for right-hand circularly-polarisedlight solution can now be written)

F == (1+ 0'3)0'1(XRe
1k.x

,) (7.139))

where QR is a scalar+ pseudoscalarcombination. Left-hand circularly-polarised
light is describedby reversing the sign of the exponent to -[k .x. General

polarisation states can be built up as linear combinations of these circularly
polarisedmodes,so we can write)

F == (1+ 0'3)0'1(QRe
1k.x + QLe-1k.x

).) (7.140))

Hereboth the coefficientsQL and QR are scalar+ pseudoscalarcombinations.
The complexificationis now basedon the pseudoscalar,and we can useQR and

QLas alternative, geometricallymeaningful, complexcoefficientsfor describing
generalpolarisation states.For completeness,the QL and QR parametersare
related to the earHer plane-polarisedcoefficientsQi and {3i by)

QR ==
\037 (QI- (32) +

\037(Q2
+ (31)I,

QL == !(QI + (32) +
\037 (Q2- (3I)I.)

(7.141))

The precedingsolutions all assumethat the wave vector is entirely in the 0'3
direction. More generally, we can introduce a right-handed coordinateframe

{ei},with/e3 pointing along the direction of propagation.The solutions then all
I

generalise/straightforwardly. In more covariant notation the circularly-polarised
modescan alsobe written)

F == kn(QRe
1k'x + QLe-1k.x

),) (7.142))

where k.n== O.)
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7.4.2Stokesparameters
A useful way of describingthe state of polarisation in light emitted from some
sourceis through the Stokesparameters.The general definition of theseinvolves
time averagesof the fields,which we denotehere with an overbar. To start with

we assumethat the light is coherent, so that all modesare in the same state.
We first definethe Stokesparametersin terms of the plane-polarisedcoefficients.
The electricfield is given by)

E == Re((CIUl+ c2u2)e-ik.x)==
Re(\302\243),) (7.143))

where \302\243 denotesthe complexamplitude. The first Stokesparameter gives the
magnitude of the electricfield,)

So == 2E2
==

(\302\243\302\243*),) (7.144))
where the star denotescomplexconjugation. This evaluates straightforwardly
to)

80 == IC112+ IC212.) (7.145))

The remaining three Stokesparametersdescribethe relativeamounts ofradiation
presentin various polarisation states.If we denotethe real componentsof E by

Ex and Ey the parametersare definedby

81 == 2(Ff- E\037 ) == IC112- IC212

82 == 4ExEy== 2Re(CIC;)
83 == 4Ex(t)Ey(t+ 7r /(2w))== -2Im(CIC;)')

(7.146))

The Stokesparameterscan equally well be written in terms of the aL and aR
coefficientsof circularly-polarisedmodes:)

So == 2(IaLI
2 + laRI2),

81 == 4(aLaR),
82 == -4(1aLaR),
83 == 2(lail-laRI2).)

(7.147))

For coherent light the Stokesparametersare relatedby)

2 2 2 2
80 == 81+ 82 + 83') (7.148))

The 8
J-L

can therefore be viewedalgebraicallyas the componentsof a null vector,
though its direction in spacehasno physicalsignificance.This representationfor
'observables'in terms of a null vector is typical of a two-state quantum system.
We can bring this out neatly in the spacetimealgebraby introducing the three-
dimensional rotor)

\037
== (aL)+ (IaL)Iu3- (aR)Iu2 - (IaR)Iul') (7.149))
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The (quantum) origin of this objectis explainedin section8.1.The rotor K,

satisfies)

K,K,t ==
\037SO,)

K,U3K,t ==
\037

SiUi.) (7.150))

It follows that in spacetime

2K,('TO+ 'T3)K; == 2K,(1+ U3)K,t,O==
SO'TO + Si'Ti,) (7.151))

and sincewe have rotated a null vector we automatically obtain a null vector.
The unit spatialvector)

A 8
S==-,

So)
8 == SiUi) (7.152))

can be representedby a point on a sphere.For light polarisation states this

is calledthe Poincaresphere.For spin-l/2systemsthe equivalent construction
is known as the Bloch sphere. The construction is also useful for describing
partially coherent light. In this casethe light can be viewedas originating from

a set of discrete(incoherent) sources.The single null vector is replacedby an

averageover the sources,)
n

S == LSk
k=I)

(7.153))

and the unit vector s is replacedby)

n

S= 81\\\"'(0 = LWk
Sk,

S''TO W
k=l)

n

W == LWk.
k=l)

(7.154))

The resulting polarisation vector 8 has 82 <1,sonow definesa vector insidethe
Poincaresphere.The length of this vector directly encodesthe relative amounts
of coherent and incoherent light present.

The precedingdiscussionalsomakes it a simplematter to compute how the
Stokesparametersappear to observersmoving at different velocities.Suppose
that a secondobserverwith velocityv == eo setsup a frame {eJL}'Thisis done in

such a way that the wave vector still travels in the e3 direction, which requires
that)

k - k.vv

k.v

If the old and new frames are related by a rotor, eJ-l-

tion (7.155)restrictsR to satisfy)

e3 ==) (7.155))

R'TJLR, then equa-)

RkR == )\"'k.) (7.156))

Rather than work in the new frame, it is simplerto back-transform the field F
an? work in the original {'TJ-l-}

frame . We define

F'= RF(RxR)R=
\037

kn'
((J;Re

1k.xj>.+ (J;Le-1k.xj
>.), (7.157))
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wheren' == RnR and k ==
W('\"YO+'\"Y3). We can again choosen' to be perpendicular

to
'\"Yo by adding an appropriatemultiple of k. It follows that the only change to

the final vector n can be a rotation in the IU3 plane. Performing a spacetime
split on '\"Yo, and assuming that the original n was -!'1,we obtain

F'=
\037

(1+ (3)ule-<P!u3
(G.RelkoX/)..

+ G.Le-IkoX/)..),) (7.158))

where cP is the angle of rotation in the 10'3plane. The rotation can again be
converted to a phasefactor on I, so the overall change is that CtR and CtL are
multiplied by A-1exp(IcP). The rescalinghas no effect on the unit vector on
the Poincare sphere,so the only change is a rotation through 2cP in the 10'3
plane. This impliesthat the 0'3 component of the vector on the Poincare sphere
is constant, which is sensible.This component determinesthe relative amounts
of left and right-circularly-polarisedlight present,and this ratio is independent
of which observer measuresit.Similar arguments apply to the caseof partially
coherent light.)

7.5 Scatteringand diffraction

We turn now to the relatedsubjectsof the scatteringand diffraction of electro-
magnetic waves. This is an enormous subject and our aim here is to provide
little more than an introduction, highlighting in particular a unified approach
basedon the free-spacemultivector Green'sfunction. This providesa first-order
formulation of the scatteringproblem,which is valuable in numerical compu-
tation. We continue to adopt a complexrepresentation for the electromagnetic
field, and will concentrate on wavesof a single frequency.The time dependence
is then expressedvia)

F(x) == F(r)e-iwt
,) (7.159))

so that the Maxwellequations reduceto)

V F - iwF == O.) (7.160))
This is the first-order equivalentof the vector Helmholtzequation. Throughout
this sectionwe work with the full, complexquantities, and suppressall factors
of exp(iwt).All quadratic quantities are assumedto be time averaged.

If sourcesare presentthe Maxwellequations become)

(V-iw)F==p-J.) (7.161))

Current conservationtellsus that the (complex)current satisfies)

iwp == V.J.) (7.162))
Provided that all the sourcesare localisedin some region in space,there can be)
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no electricmonopole term present.This follows because)

Q = J IdXlp = L f J.nIdA!,) (7.163))

where n is the outward normal. Takingthe surfaceto totally enclosethe sources,
so that J vanishes over the surface of integration, we seethat Q == O.)

7.5.1First-orderGreen'sfunction)
The main result weemployin this sectionisGreen'stheorem in three dimensions
in the general form)

f(CVF+GVF)ldXI=1 GnFdA
lv Jav)

(7.164
))

where n is the outward-pointingnormal vector overthe surfaceavo If F satisfies
the vacuum Maxwellequations,we have)

1 GnFdA = f (CV+ iwG)FIdXI.Jav lv
We therefore seeka Green'sfunction satisfying

GV + iwG == 8(r).)

(7.165))

(7.166))
It will turn out that G only contains (complex)scalarand vector terms,so (by
reversingboth sides)this equation is equivalent to)

(V + iw)G == 8(r).) (7.167))
The Green'sfunction is easily found from the Green'sfunction for the (scalar)
Helmholtz equation,)

1 .
cP(r) == __ezwr . (7.168)41Tr

This is appropriatefor outgoing radiation.Choosingthe outgoing Green'sfunc-

tion is equivalent to imposing causality by working with retarded fields. The
function cP satisfies)

(V
2 + w

2
)cP

== 8(r) == (V + iw)(V-
iw)cP.) (7.169))

We therefore seethat the requiredfirst-order Green'sfunction is)

G(r) == (V-
iw)cP

==
ezwr

(
iW

(1_ U,.)+ \037

)
,

41T r r3) (7.170))

where Ur == r/r is the unit vector in the direction of r. This Green'sfunction is

the key to much of scatteringtheory. With a general argument it satisfies)

(V + iw)G(r- r') == 8(r-r')) (7.171))
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or, equivalently,)

(V
I - iw) G(r - r') == -6(r - r ') ,) (7.172))

where V' denotesthe vector derivative with respectto r '.)

7.5.2Radiationand multipolefields)

As a first application, supposethat a localisedsystemof chargesin free space,
with sinusoidaltime dependence,generatesoutgoing radiation fields. We could
find theseby generalisingour point sourcesolutions of section7.3,but here we
wish to exploit our new Green'sfunction. We can now immediately write down
the solution)

F(r)= -
IvG(r'-r)(p(r')-J(r'))IdX'I,) (7.173))

where the integral is overa volume enclosingall of the sources.Equation (7.172)
guarantees that this equation solves the Maxwellequations (7.161),subject to
the boundary condition that only outgoing wavesare presentat large distances.
It is worth stressingthat the geometricalgebra formulation is crucial to the way
we have a single integral yielding both the electricand magnetic fields.

Often, one is mainly interestedin the radiation fieldspresentat large distances
from the source.Theseare the contributions to Fwhich fall off as l/r.To isolate
theseterms we use the expansion)

eiw1r -r'l == eiwr e-iwur.r'+ O(r-I),) (7.174))

so that the Green'sfunction satisfies)

'lW . .,
lim G(r'- r) == _eZWr (1+ ur)e-Zwur.r.

TI---+ 00 41fr) (7.175))

We therefore find that the limiting form of F can be written

F(r)= - iw
eiwr(l+ lTr )j e-iWUr.r'(p(r')-J(r')) IdX/I.47rr

As expected,the multivector is controlled by the idempotent term (1+ u\037)
==

(\"Yo + er )\"Yo, appropriatefor outgoing radiation.
A multipole expansionof the radiation field is achievedby expanding(7.176)

in a seriesin wd, where d is the dimensionof the source.To leading order,and
recalling that no monopole term is present,we find that)

(7.176))

je-iWlTro.Tf (p(r')-J(r'))IdX'1\037 j(-J-iwplTror')ldX'1

=
j(-J+lTroJ)ldX'I,) (7.177))
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\037)

Figure 7.10Scattering by a localisedobject.The incident field Fi setsup

oscillatingcurrents in the object,which generatean outgoing radiation field

Fs.)

where we have integrated by parts to obtain the final expression.This result is

more commonlyexpressedin terms of the electric dipolemoment p,via)

JJldXI= -JrV.JldXI= -iwJrp(r) IdXI = -iwp.

The result is that the F field is given by

2
F(r) == \037eiwr(1+ O'r)(P-O'r'P)'

47rr)

(7.178))

(7.179))

An immediate checkis that the scalar term in F vanishes, as it must. The
electricand magnetic dipolefieldscan be read off easily now as)

w 2 .
E == _e'lWru 0'Ap4 r r ,

1fT)

w 2 .IB == _e'lWrO'rAp.
47Tr)

(7.180))

Theseformulae are quite general for any (classical)radiating object.)

7.6Scattering
The geometry of a basic scatteringproblem is illustrated in figure 7.10.A
(known) field Fi is incident on a localisedobject.Usually the incident radia-
tion is taken to be a plane wave. This radiation sets up oscillating currents in

the scatterer,which in turn generatea scatteredfield Fs.The total field F is

given by)

F == Fi + Fs,) (7.181))

and both Fi and Fs satisfy the vacuum Maxwellequations away from the scat-
terers.

The essentialdifficulty is how to solve for the currents set up by the incident)
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radiation. This is extremely complexand a number of distinct approachesare
describedin the literature. One straightforward result is for scatteringfrom a
small uniform dielectricsphere.For this situation we have)

3Er
-1p == 41Ta Ei ,

Er + 2

where a is the radiusof the sphere.From equation (7.180)we seethat the ratio
of incident to scatteredradiation is controlled by w

2. This ratio determinesthe
differentialcrosssectionvia)

(7.182))

dCJ 2 1
e*.Es 1

2-==r
dD le*.Ei 1

2 ') (7.183))

where the complexvectoredeterminesthe polarisation.The crosssectionclearly
dependsof the polarisation of the incident wave. Summing over polarisations
the differential crosssectionis)

dCJ
== w

4a6
(

Er - 1
)

2 1+ cos2(O).
dD Er + 2 2)

(7.184
))

The factor ofw
4 == .A

-4is typical of Rayleighscattering.Theseresultsare central
to Rayleigh's explanation of blue skiesand red sunsets.

Supposenow that we know the fieldsover a closedsurface enclosinga volume
V. Provided that F satisfies the vacuum Maxwellequations throughout V we
can compute Fs directly from)

Fs(r')= 1G(r-r')nFs(r)IdSI.Jav

We take the volume V to be boundedby two surfaces, 81 and 82, as shown in

figure 7.11.The surface SI is assumedto lie just outsidethe scatterers,so that
J == 0 over SI.The surface S2is assumedto be spherical,and is taken out to
infinity. In this limit only the l/r terms in G and F can contribute to the surface
integral over 82, But from equation (7.175)we know that)

(7.185))

'lW . . I
lim G(r- r') == _eZWr (l- ur)e-ZWCTr.r ,n-+oo 41Tr) (7.186))

whereasFs contains a factor of (1+ Ur)' It follows that the integrand GnFs
contains the term)

(1-ur)ur (l + ur ) == o.) (7.187))
This is identically zero, so there is no contribution from the surface at infinity.

The result is that the scatteredfield is given by)

Fs(r)=
4\037 t1eiwd

(i;+
iw(rd\037

r')- r
\0373r' )n'Fs(r')IdS(r')I,(7.188))
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Figure 7.11Surfacesfor Green'stheorem. The surface82 can be taken
out to infinity, and 81 liesjust outsidethe scattering surface.)

where)

d ==
I
r - r'l.) (7.189))

Sincen is the outward pointing normal to the volume, this points into the scat-
terers.This result contains all the necessarypolarisation and obliquity factors,
often derived at great length in standardopticstexts.

A significant advantage of this first-order approach is that it clearlyembodies
Huygen'sprinciple.The scatteredfield Fs is propagatedinto the interior simply

by multiplying it by a Green'sfunction. This accordswith Huygen'soriginal idea
of reradiation of wavelets from any given wavefront. Two significant problems
remain, however. The first is how to specify Fs over the surface of integration.
This requiresdetailedmodelling of the polarisation currents set up by the in-

cident radiation. A subtlety here is that we do not have complete freedom to

specify F over the surface. The equation V F == iwF implies that the compo-
nents of E and Bperpendicularto the boundary surface are determined by the
derivatives of the components in the surface. This reducesthe number of degrees
of freedom in the problemfrom six to four, as is requiredfor electromagnetism.

A further problem is that, even if Fs has been found, the integrals in equa-
tion (7.188)cannot be performed analytically. One can approximate to the

large r regime and, after various approximations, recover Fraunhofer and Fres-
nel optics.Alternatively, equation (7.188)can be usedas the basisfor numerical
simulations of scatteredfields. Figure 7.12shows the type of detailedpatterns
that can emerge.The plot was calculated using the two-dimensionalequivalent
of equation (7.188).The total energy density is shown, where the scattering)
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Figure 7.12Scattering in two dimensions. The plots show the intensity
of the electricfield, with higher intensity colouredlighter. The incident
radiation enters from the bottom right of the diagram and scatters off a
conductorwith complicatedsurfacefeatures. The conductoris closedin

the shadow region. Various difraction effectsare clearly visible. The right-
hand plot is a close-upnear the surfaceand shows the complicatedpattern
of hot and coldregions that can develop.)

is performed by a seriesof perfect conductors.A goodcheck that the calcula-
tions have been performed correctly is that all the expectedshadowingeffects
are present.)

7.7 Notes)

There is a vast literature on electromagnetism and electrodynamics.For this

chapter we particularly made use of the classictexts by Jackson(1999)and

Schwingeret al. (1998),both entitled ClassicalElectrodynamics. The former
of these alsocontains an exhaustive list of further references.Applications of
geometric algebrato electromagnetism are discussedin the book Multivectors
and Clifford Algebra in Electrodynamicsby Jancewicz (1989).This is largely an

introductory text and stopsshort of tackling the more advanced applications.
We are grateful to StephenGull for producing the figures in section7.3and for

stimulating much of the work describedin this chapter.Further material can be
found in the Banff seriesof lecturesby Doran et al (1996a).Readersinterested
in the action at a distanceformalism of Wheeler and Feynman can do no better
than return to their original 1949paper.It is a goodexerciseto convert their

arguments into a more streamlined geometric algebra notation!)
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7.8Exercises)

7.1 A circular current loop has radiusa and lies in the z == 0 plane with

its centre at the origin. The loop carriesa current J. Write down an

integral expressionfor the B field, and show that on the z axis,)

MoJa2
B=

(2 2)3/2
0\"3'2 a + z)

7.2 An extensionto the Maxwellequations which is regularly discussedis
how they are modifiedin the presenceof magneticmonopoles.If Pm and
Jm denotemagnetic chargesand currents, the relevant equations are)

v .D == Pe,
a-VxE==

at
B+ Jm ,)

v .B == Pm,

av xH ==

at
D + Je')

Prove that in free spacethesecan be written)

\"\\1 F == Je + JmI,)

where Jm == (Pm + Jm),O. A duality transformation of the E and B
fields is defined by)

E' == E cos(a)+ Bsin(a),) B'== Bcos(a)-Bsin(a).)

Prove that this can be written compactly as F' == Fe-IQ. Hencefind

the equivalent transformation law for the sourceterms such that the

equations remain invariant, and prove that the electromagneticenergy-
momentum tensor is also invariant under a duality transformation.

7.3 A particlefollows the trajectory XO(T),with velocityv == x and acceler-
ation v. If X is the retardednull vector connecting the point x to the

worldline,show that the electromagneticfield at x is given by)

q X I\\v + !XOvXF==-
41r (X.v)3

')

where Ov == v 1\\ v. Prove directly that F satisfies \"\\1 F == 0 off the particle
worldline.

7.4 Prove the following formulae relating the retardedA and F fields for a

point charge to the null vector X:)

A == _\037\"\\12 X
81rEo

')
F == -\037

\"\\13 X.
81rEo)

Theseexpressionsare of interest in the 'actionat a distance'formulation

of electrodynamics,as discussedby Wheeler and Feynman (1949).)
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7.5 Confirm that, at large distancesfor the source,the radiation fieldsdue
to both linearly and circularly accelerating chargesgo as

1
Frad \037 -(1+ ur)a,

r)

where ur.a== O.
7.6 From the solution for the fieldsdue to a point charge in a circular orbit

(section7.3.4),explain why synchrotron radiation arrives in pulses.
7.7 For the K, defined in equation (7.149),verify that K,U3K,t == SiUi,where

Si are Stokesparameters.
7.8 A rotor R relatestwo frames by

e\037

==
ReJ.lR\037

In both frames the vector
e3 vector is defined by)

k -k.eoeo
k.eo

where k is a fixed null vector. Prove that for this relation to be valid for
both frames we must have)

,e3 == e3 ==)

RkR == Ak.)

How many degreesof freedom are left in the rotor R if this equation
holds?

7.9 In optical problemswe are regularly interestedin the effectsof a planar
apertureon incident plane waves. Supposethat the aperture liesin the
z == 0 plane,and we are interestedin the fields in the region z >O. By
introducing the Green'sfunction)

G'(r;r') == G(r- r')-G(r- r'),)
where r == -U3rU3,prove that the field in the region z > 0 is given by

J z'elwd
Fs(r')== dxdy

27rd 3 (1- iwd)Fs(x,y, 0),) (E7.1))

where d == Ir - r'l. In the Kirchoff approximation we assumethat Fs
over the aperturecan be taken as the incident plane wave. By working
in the large r and small angle limit, prove the Fraunhofer result that
the transmitted amplitude is controlled by the Fourier transform of the
aperturefunction.

7.10 Repeat the analysis of the previous question for a two-dimensionalar-
rangement. You will needto understandsomeofthe propertiesofHankel
functions.)
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Quantum theory and spinors)

In this chapter we study the application of geometric algebra to both non-
relativistic and relativistic quantum mechanics.We concentrate on the quan-
tum theory of spin-1/2particles,whose dynamics is describedby the Pauli and

Dirac equations. For interactions where spin and relativity are not important
the dynamics reducesto that of the Schrodingerequation.There are many good
textbooksdescribingthis topicand we will make no attempt to coverit here.We

assume,furthermore, that most readershave a basicunderstanding of quantum

mechanics,and are familiar with the conceptsof states and operators.
Both the Pauli and Diracmatrices arisenaturally as representationsof the

geometricalgebrasof spaceand spacetime.It is no surprise,then, that much of

quantum theory finds a natural expressionwithin geometricalgebra.To achieve

this, however,one must reconsiderthe standard interpretation of the quantum

spin operators.Like much discussionof the interpretation of quantum theory,
certain issuesraisedhere are controversial. There is no question about the va-

lidity of our algebraicapproach,however,and little doubt about its advantages.
Whether the algebraicsimplificationsobtained here are indicative of a deeper
structure embeddedin quantum mechanics is an openquestion.

In this chapter we only considerthe quantum theory of single particlesin

backgroundfields. Multiparticle systemsare consideredin the following chapter.
Amongst the resultsdiscussedin this sectionare the angular separationof the
Diracequation, and a method of calculating crosssectionsthat avoids the need
for spin sums. Both of these results are used in chapter 14 for studying the

behaviourof fermions in gravitational backgrounds.)

8.1Non-relativisticquantum spin

The Stern-Gerlachexperiment was the first to demonstratethe quantum nature
of the magnetic moment. In this experiment a beamof particlespassesthrough)
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Spin up)

S)

Spin down)
N)

Figure 8.1 The Stern-Gerlach experiment. A particle beam is sent
through a highly non-uniform B field. What emergesis a set of discrete,
evenly-spacedbeams.)

a non-uniform magnetic field B.Classically,one would expectthe forceon each
particleto be governedby the equation)

f==JL.VB,) (8.1))
where J-t is the magnetic moment. This would give rise to a continuous distri-
bution after passingthrough the field. Instead,what is observed is a number of
evenly-spaceddiscretebands (figure 8.1).The magnetic moment is quantisedin

the samemanner as angular momentum.
When silver atoms are usedto make up the beam there is a further surprise:

only two beamsemerge on the far side.Silver atoms contain a single electron
in their outermost shell, so it looksas if electronshave an intrinsic angular
momentum which can take only two values. This is known as its spin,though no
classicalpicture should be inferred from this name. The double-valuednature
of the spinsuggeststhat the electron'swavefunction should contain two terms,
representinga superpositionof the possiblespinstates,)

11/J)
== 0:1i) +;3]1),) (8.2))

where a and ;3 are complexnumbers.Such a state can be representedin matrix
form as the spinor)

11P)
=

(\037)
.) (8.3))

If we align the z axiswith the spin-updirection, then the operatorreturning the
spinalong the z axismust be)

83 = A
G \0371)')

(8.4))

where .A is to bedetermined.The spinis addedto the orbital angular momentum)
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---

to give a conserved total angular momentum operatorj == 1 + s. For this to

make sensethe spinoperatorsshould have the same commutation relations as
---

the angular momentum operatorsli,)

A A A A

li == -inEijkXjOk, [li, lj] == inEijklk.) (8.5))

This is sufficient to specify the remaining operators,up to an arbitrary phase
(seeexercise8.1).The result is that the spinoperatorsare given by)

--- 1*---
Sk == 2nak ,) (8.6))

where the Crk are the familiar Pauli matrices)

___

(
0 1

)al == 1 0 ') (
0 -i

)
a2 - i 0 ') a3 =

G \0371).)
(8.7))

The 'hat'notation is used to recordthe fact that theseare viewedexplicitly as
matrix operators,rather than as elements of a geometric algebra.The Pauli
matricessatisfy the commutation relations,)

[Cri,Crj] == 2iEijkCrk.

Theyalso have the property that two different matrices anticommute,)

(8.8))

Cr1 &2 + Cr20-I == 0, etc.) (8.9))

and all of the matricessquareto the identity matrix,
---2 ---2 ---2

Ial ==a2==a3 ==
.) (8.10))

Theseare preciselythe relations obeyedby a setof orthonormal vectors in space.
We denote such a set by {Uk}'The crucial distinction is that the Pauli matrices

are operatorsin quantum isospace,whereas the {Uk}are vectors in real space.
The o-k operatorsact on two-componentcomplexspinorsas describedin equa-

tion (8.3).Spinorsbelongto two-dimensionalcomplexvector space,sohave four

real degreesof freedom. A natural question to ask is whether an equivalent

representationcan be found in terms of real multivectors, such that the matrix

action is replacedby multiplication by the {Uk}vectors.To find a natural way

to do this we considerthe observablesof a spinor.Theseare the eigenvaluesof

Hermitian operatorsand, for two-state systems,the relevant operatorsare the

Pauli matrices.We therefore form the three observables)

Sk ==
\037nnk

==
(1/Jl skl1/J).) (8.11))

The nk are the components of a single vector in the quantum theory of spin.
Focusing attention on the componentsof this vector, we have)

n1 ==
(1/Jla-1]1/J)

== a/3* + a*/3,

n2 ==
(1/Jla-211/J)

== i(aj3*- a*j3),

n3 == (1/J!a-311/J)== aa*- /3j3*.)

(8.12))
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The magnitude of the vector with components nk is)

Inl
2

== (o:f3*+ 0:*f3)2 - (o:f3*-0:*f3)2 + (0:0:*- f3f3*)2
== (10:1

2 + 1f312)2 ==
(\0371\037)2.) (8.13))

So,provided the state is normalised to 1,the vector n must have unit length.
We can therefore introduce polar coordinatesand write)

nl == sin(8)cos(q)),

n2 == sin(8)sin(q)),

n3 == cos(8).

Comparing equation (8.14)with equation (8.12)we seethat we must have)

(8.14))

0: == cos(8/2)e'l'\"Y,) f3 == sin(8/2)ei6) (8.15))
where \302\2435

-r == q). It follows that the spinorcan be written in terms of the polar
coordinatesof the vector observableas

I\037)
==

(
COS(8/2)e\037irj>/2

)
ei('\"Y

+ 6)/2.
sin(8/2)eUP/2) (8.16))

The overall phase factor can be ignored, and what remains is a descriptionin

terms of half-angles. This suggestsa strong analogy with rotors.To investigate
this analogy,we use the idea that polar coordinatescan be viewedas part of an
instruction to rotate the 3 axisonto the chosenvector. To exposethis we write
the vector n as)

n == sin(8)(cos(q))UI+ sin(q))U2)+ cos(8)U3.) (8.17))
This can be written)

n == RU3Rt,) (8.18))
where)

R == e-4;Iu3/2e-(}I0'2/2
.) (8.19))

This suggeststhat there should be a natural map between the normalisedspinor
of equation (8.16)and the rotor R. Both belongto linear spacesof real dimension
four and both are normalised.Expandingout the rotor R the following one-to-
one map is found:)

(
aD + ia3

)
0 k

I\037)
== 2' 1 +-7

\037

== a + a IUk.-a + 'la)
(8.20))

This map will enable us to perform all operationsinvolving spinorswithout

leaving the geometricalgebraof space.Throughout this chapter we use the +-7

symbol to denotea one-to-one map between conventionalquantum mechanics
and the multivector equivalent. We will continue to refer to the multivector

\037)
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as a spinor.On this schemethe spin-upand spin-downbasisstates
I i) and 11)

become)

I i) \037 1) 11)\037 -10\"2') (8.21))

Onecan immediately seefor these that the vectors of observableshave compo-
nents (O,O,:f:l),as required.)

8.1.1Pauli operators)
Now that a suitableone-to-onemap has beenfound, we needto find a represen-
tation for Pauli operatorsacting on the multivector versionof a spinor.It turns

out that the action of the quantum ak operatorson a state I\037)
is equivalent to

the following operation on
\037:)

akl\037)
\037 Uk\037U3 (k == 1,2,3).) (8.22))

The 0\"3 on the right-hand sideensuresthat the multivector remains in the even

subalgebra.The choice of vector doesnot break rotational covariance, in the
sameway that choosing the a3 matrix to be diagonal doesnot alter the rota-
tional covarianceof the Pauli theory. One can explicitly verify that the trans-
lation procedureof equation (8.20)and equation (8.22)is consistent by routine

computation;for example)

(
2 . I

)
A -a + 'ta 2 1 0 3
all\037)== 0 . 3 \037 -a +aI0\"3-aI0\"2+aIO\"I==0\"1\037U3'a + 'ta)

(8.23))

The remaining cases,for a2 and a3 can be checkedequally easily.
Now that we have a translation for the action of the Pauli matrices,we can

find the equivalent of multiplying by the unit imaginary i.To find this we note
that)

A A A

(
i 0

)aIa2a3 ==

0 i ') (8.24))

so multiplication of both components of
I\037) by i can be achieved by multiply-

ing by the product of the three matrix operators.We therefore arrive at the
translation)

il\037)
\037 UIU20\"3\037(0\"3)3==

\037I0\"3') (8.25))

So,on this scheme,the unit imaginary of quantum theory is replacedby right

multiplication by the bivectorIU3.This iscertainly suggestive,though it should
be borne in mind that this conclusionis a feature of our chosenrepresentation.
The appearanceof the bivector 10\"3 is to be expected,sincethe vector of ob-
servabless was formed by rotating the 0\"3 vector. This vector is unchanged by
rotations in the IU3 plane,which provides a geometric picture of phase invari-

ance.)
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8.1.2Observablesin the Paulitheory)

We next needto establishthe quantum inner product for our multivector form

of a spinor.We first note that the Hermitian adjoint operation has at == ak, and
reversesthe order of all products. This is preciselythe sameas the reversion
operation for multivectors in three dimensions,so the daggersymbolcan be used
consistently for both operations.The quantum inner product is)

(7/J ItP)
=

(7/J\037, 7/J;)
(:\037)

=
1j;\037 tPl + 7/J;tP2') (8.26))

where we ignore spatialintegrals.For a wide range of problemsthe spatialand
spin components of the wave function can be separated.If this is not the case
then the quantum inner productshould also contain an integral over all space.
The result of the real part of the inner product is reproducedby)

Re(\037 I <p)
+-7 (\037

t
<p) ,) (8.27))

so that, for example,)

3

(\037I\037)
+-7

(\037t\037)
== ((aO- ajIUj)(aO+ akIUk))== LaQaQ.

Q=O)

(8.28))

Since)

(\037 I <p)
== Re(\037 I <p)

- iRe(\037 I
i<p) ,) (8.29

))

the full inner productcan bewritten)

(\037I<p)
+-7

(\037t<p)
-

(\037t<pIu3)Iu3') (8.30))

The right-hand sideprojectsout the 1and IU3 components from the geometric
product \037t <p. The result of this projectionon a multivector A is written (A)q.
For even-grade multivectors in three dimensionsthis projectionhas the simple
form)

(A)q ==
\037(A + U3Au3).) (8.31))

If the result of an inner product is used to multiply a secondmultivector, one
has to remember to keepthe terms in IU3 to the right of the multivector. This
might appeara slightly clumsy procedureat first, but it is easyto establishcon-
ventions so that manipulations are just as efficient as in the standardtreatment.
Furthermore, the fact that all manipulations are now performed within the ge-
ometric algebraframework offersa number of new ways to simplify the analysis
of a range problems.)
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8.1.3The spinvector)

As a checkon the consistencyof our scheme,we return to the expectationvalue

of the spin in the k-direction,('0lskl'0).For this we require)

('0lakl'0)+-7 ('0t Uk'0u3)- ('0tuk'0I)Iu3') (8.32))

Since'0t ICTk '0 reversesto give minus itself it has zero scalarpart, so the final

term on the right-hand side vanishes. This is to be expected,as the ak are
Hermitian operators.For the remaining term we note that in three dimensions
7jJ u 3'l/J

t is both odd-gradeand reversesto itself, sois a pure vector. We therefore
define the spinvector)

s == !n'0u3'0t.) (8.33))

The quantum expectationnow reducesto)

('0lsk1'0)==
\037n(uk'0u3'0 t) == Uk's.) (8.34

))

This new expressionhas a rather different interpretation to that usually en-
counteredin quantum theory. Rather than forming the expectationvalue of a

quantum operator,we are simply projectingout the kth component of the vec-
tor s.Working with the vector s may appearto raisequestionsabout whether
we are free to talk about all three components of the spinvector. This is in fact
consistentwith the resultsof spin measurements, if we view the spin measure-
ment apparatusas acting more as a spinpolariser.This is discussedin Doran
et at. (1996b).

The rotor descriptionintroduced at the start of this sectionis recoveredby
first defining the scalar)

p == '0'0t .) (8.35))

Thespinor '0 then decomposesinto

'0 == pi/2R,) (8.36))

where R == p-l/2'0.The multivector R satisfies RRt == 1,so is a rotor.In this

approach,Pauli spinorsare nothing but unnormalised rotors.The spinvector s
can now be written as)

s == !npRu3Rt,) (8.37))

which recoversthe form of equation (8.18).
The double-sidedconstruction of the expectationvalueof equation (8.32)con-

tains an instruction to rotate the fixed0'3 axisinto the spindirection and dilate
it. It might appear here that we are singling out some preferred direction in

space.But in fact all we are doing is utilising an ideafrom rigid-bodydynamics,
as discussedin section3.4.3.The 0'3 on the right of '0 representsa vector in a
'reference'frame. All physicalvectors, like s,are obtainedby rotating this frame)
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1/1)

CF2)

s)

Figure 8.2 Thespin vector. The normalised spinor 1/1 transforms the ini-

tial referenceframe onto the frame {ek}'The vector e3 is the spin vector.
A phase transformation of 1/1 generatesa rotation in the ele2plane. Such
a transformation is unobservable, so the el and e2 vectorsare alsounob-
servable.)

onto the physical values (seefigure 8.2).There is nothing specialabout 0\"3
-

one can chooseany (constant) referenceframe and use the appropriaterotation
onto s, in the same way that there is nothing specialabout the orientation of
the referenceconfigurationof a rigid body.In rigid-bodymechanicsthis freedom
is usually employedto align the referenceconfigurationwith the initial state of
the body. In quantum theory the convention is to work with the z axisas the
referencevector.)

8.1.4Rotating spinors
Supposethat the vector s is to be rotated to a new vector RosR6. To achieve
this the spinor1);must transform according to)

1);\037 Ro'ljJ.) (8.38))

Now supposethat for Ro we use the rotor Re,)

Re == exp(-Be/2),) (8.39))

where 132 == -1is a constant bivector. The resulting spinor is)

'ljJ'
== Re'ljJ == e-B()/2

'ljJ
.) (8.40

))

We now start to increasee from 0 through to 21T, so that e == 21Tcorrespondsto
a 21T rotation, bringing all observablesbackto their original values. But under
this we seethat

'ljJ
transforms to)

'ljJ'
== e-B1r'ljJ

== (cos(1T)
- 13sin(1T)) 'ljJ

== -
'ljJ.) (8.41))

The spinorchangessign!If a spinvector is rotated through 21T, the wavefunction
doesnot comebackto itself, but insteadtransforms to minus its original value.)
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This change of sign of a state vector under 27r rotations is the distinguish-
ing property of spin-1/2fermions in quantum theory. Onceone seesthe rotor
derivation of this result,however, it is rather lessmysterious.Indeed,there are
classicalphenomena involving systemsof linked rotations that show precisely
the same property.Oneexampleis the 41fsymmetry observedwhen rotating an
arm holding a tray. For a more detaileddiscussionif this point, seechapter 41
of Gravitation by Misner,Thorne & Wheeler (1973).A linear spacewhich is
acted on in a single-sidedmanner by rotors forms a carrier spacefor a spinrep-
resentation of the rotation group.Elementsof such a spaceare generally called
spinors, which is why that name is adoptedfor our representationin terms of
even multivectors.)

8.1.5Quantumparticlesin a magneticfield)

Particleswith non-zerospinalsohave a magnetic moment which is proportional
to the spin. This is expressedas the operatorrelation)

\"- \"-

ILk
== 1Sk,) (8.42))

where {Lk is the magnetic moment operator,ry is the gyromagnetic ratio and Sk
is the spinoperator.The gyromagnetic ratio is usually written in the form)

q
ry

== 92m ') (8.43))

where m is the particlemass,q is the charge and 9 is the reducedgyromagnetic
ratio. The reducedgyromagnetic ratios are determinedexperimentally to be)

electron
proton
neutron)

ge == 2 (actually 2(1+ o:/21f+ ... )),
gp == 5.587,
gn == -3.826(using proton charge).)

The value for the neutron is negative becauseits spin and magnetic moment
are antiparallel. All of the above are spin-1/2particlesfor which we have Sk ==

(hj2)ak'
Now supposethat the particleis placedin a magnetic field, and that all of

the spatial dynamics has been separatedout. We introduce the Hamiltonian

operator)

if ==
-\037rytiBkak

== -flkBk.) (8.44
))

The spinstate at time t is then written as)

I\037(t))
== o:(t)1i) + ;3(t)I 1),) (8.45))
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with (t and (3 general complexcoefficients. The dynamical equation for these
coefficientsis given by the time-dependentSchrodingerequation)

ifI'l/J)
= in dl'l/J) .

dt)
(8.46

))

This equation can be hard to analyse, conventionally,becauseit involves a pair
of coupleddifferential equations for (t and (3. Instead, let us seewhat the

Schrodingerequation lookslike in the geometric algebra formulation. We first

write the equation in the form)

dl\037) 1.A

I )& ==
2ryzB kak \037

.) (8.47))

Now replacingI\037) by the multivector \037
we seethat the left-hand sideis simply

\037, where the dot denotes the time derivative. The right-hand side involves

multiplication of the spinor J\037) by iak, which we replaceby)

iakl\037) +--+ O'k\0370'3(I0'3)==
IO'k\037.) (8.48))

The Schrodingerequation (8.46)is therefore simply)
. I 1

\037

==
2ryBkIO'k\037

==
2ryIB\037,

where B == BkO'k.If we now decompose\037
into pl/2R we seethat)

(8.49))

\037\037t
==

\037p
+ pRRt ==

\037pryIB.) (8.50
))

The right-hand sideis a bivector, sop must be constant.This is to be expected,
as the evolution should be unitary. The dynamics now reducesto)

. 1R ==
2ryI BR,) (8.51))

so the quantum theory of a spin-1/2particle in a magnetic field reducesto a

simplerotor equation.This is very natural, if one thinks about the behaviour of

particlesin magnetic fields,and is an important justification for our approach.
Recoveringa rotor equation explainsthe difficulty of the traditional analysis

basedon a pair of coupledequations for the components of
I\037).

This approach
fails to capture the fact that there is a rotor underlying the dynamics, and so
carriesalonga redundant degreeof freedomin the normalisation. In addition, the

separationof a rotor into a pair of components is far from natural. For example,
supposethat B is a constant field. The rotor equation integrates immediately
to give)

\037(t)
== e71

Bt/2\037o.) (8.52))

The spinvector s therefore just precessesin the IB plane at a rate Wo == ryIBJ.
Even this simpleresult is rather more difficult to establishwhen working with

the components of
I\037).)
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8.1.6NMR and magneticresonanceimaging
A moreinteresting exampleof a particlein a magneticfield is providedby nuclear

magnetic resonance,or NMR. Supposethat the B field includesan oscillatory
field (BI cos(wt),BI sin(wt),0) together with a constant field along the z axis.
This oscillatory field inducestransitions (spin-flips)between the up and down

states,which differ in energy becauseof the constant component of the field.
This is a very interesting systemof great practical importance.It is the basisof

magnetic resonanceimaging and Rabi molecularbeam spectroscopy.
To study this systemwe first write the B field as)

B1(coS(wt)O\"I + sin(wt)0\"2) + B00\"3 == S(BI0\"1 + B00\"3)St,) (8.53))

where)

S == e-wtIU3/2.) (8.54))
We now define)

Be== B10\"1 + B00\"3

so that we can write B == SBeSt.The rotor equation now simplifies to

st
\037

==
\037'\"'(I

BeSt7jJ,)

(8.55))

(8.56))

where we have pre-multipliedby st,and wecontinue to use7jJ for the normalised
rotor. Now noting that)

st ==
\037wI0\"3St) (8.57))

we seethat)
d
dt (st'l/J)

=!(,1Be+ wI(3)st'lj;.) (8.58))

It is now st7jJ that satisfies a rotor equation with a constant field. The solution
is straightforward:)

st'lj;(t)= exp(htIBe+ !wtI(3) 'lj;o,) (8.59))

and we arrive at

'l/J(t) = exp(-!wtI(3) exp(Hwo+ W)tIu3 + !WltIUl)'l/Jo,) (8.60))

where WI ==
'\"'(
B1. There are three separatefrequencies in this solution, which

containsa wealth of interesting physics.
To completeour analysis we must relate our solution to the resultsof ex-

periments. Supposethat at time t == 0 we switch on the oscillating field. The

particleis initially in a spin-upstate, so7jJo
== 1,which alsoensuresthat the state

is normalised.The probability that at time t the particle is in the spin-down
state is)

PI ==
1 (117jJ (t) ) 1

2
.) (8.61))
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We therefore needto form the inner product)

(ll\037(t)) +-+ (Iu2\037)q == (Iu2\037)
-

IU3(Iul\037)') (8.62))

To find this inner product we write)

\037(t)
== e-wtlu3/2(cos(at/2)+ IBsin(at/2)),) (8.63))

where)

iJ= (wo +
W):3

+ WIO\"I and a = J(w + wo)2+ wI.) (8.64
))

The only term giving a contribution in the IUland IU2planesis that in w1IuI/a.
We therefore have)

(
T 1)/1 )

_ wIsin(at/2) -wtlu3/2L1U2lf/ q - e U3
a) (8.65))

and the probability is immediately)

p!= (
WI

Sin\037at/2) )
2

.) (8.66))

The maximum value is at at == 'iT, and the probability at this time is maximised
by choosinga as small aspossible.This is achievedby setting w == -Wo == -ryBo.
This is the spinresonancecondition which is the basisof NMR spectroscopy.)

8.2Relativisticquantum states
The relativistic quantum dynamics of a spin-l/2particle is describedby the
Diractheory. The Dirac matrix operatorsare)

A

(
I

ryo
==

0) \037I)
,)

A

(
0

ryk
==

A

ak)

-ak
)o ')

A

(
0 I

)(5 ==

1 0 ') (8.67))

where 15== -i10111213and 1 is the 2 x 2 identity matrix. Thesematrices act
on Diracspinors,which have four complexcomponents (eight real degreesof
freedom). We follow an analogous procedureto the Pauli caseand map these
spinorsonto elementsof the eight-dimensionaleven subalgebraof the spacetime
algebra.Diracspinorscan be visualisedas decomposinginto 'upper'and 'lower'
components,)

I\037)
=

(\\\037D
') (8.68))

where I</J) and 17]) are a pair of two-componentspinors.We already know how

to representtheseas multivectors
</J

and 7], which lie in the spaceof scalars+)
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relative bivectors.Our map from the Dirac spinor onto an element of the full

eight-dimensionalsubalgebrais simply)

17jJ)
=

C\037D
f->

7jJ
=

cP + 17(73.) (8.69))

The action of the Diracmatrix operatorsnow becomes,)

ill11/;) \037 TIL1/;ro (fL
== 0,...,3),

il1/;) \037 1/; 10'3,
is1 1/;) \037 1/;0'3.)

(8.70))

Again, verifying the detailsof this map is a matter of routine computation. One
feature is that we now have two 'reference'vectors that can appearon the right-
hand sideof 1/;: TO and r3. That is, the relative vector 0'3 used in the Pauli
theory has beendecomposedinto a spacelikeand a timelike direction.As in the
Pauli theory, thesereferencevectors multiplying 1/; from the right do not break
Lorentz covariance, as all observablesare formed by rotating these reference
vectorsonto the frame of observables.Since10'3and TO commute, our use of
right-multiplication by 10'3for the complexstructure remains consistent.

The goal of our approach is to perform all calculations without ever having to
introducean explicit matrix representation.The explicit map of equation (8.69)
is for column spinorswritten in the Dirac-Paulirepresentation,but it is a simple
matter to establishsimilar maps for other representations.All one needsto do
is find the unitary matrix which transforms the secondrepresentationinto the
Dirac-Pauli one, and then apply the map of equation (8.69).All of the matrix

operatorsare then guaranteed to have the equivalencedefinedin equation (8.70).
Certainother operations,such as complexconjugation, dependon the particular
representation. But rather than think of theseas the same operation in different

representations, it is simplerto view them as different operationswhich can be
appliedto the multivector 1/;.

In orderto discussthe 0bservablesof the Diractheory, we must first distinguish
betweenthe Hermitian and Diracadjoints.The Hermitian adjoint is written as
usual as (1/;I. The Diracadjoint is written as ({;1 and is defined by)

({;I== ((1/;ul, -(1/;ll),) (8.71))
where the subscriptsu and l refer to the upper and lower components.It is
the Diracadjoint which gives Lorentz-covariantobservables.The Dirac inner

product decomposesinto)

({;!cP)
== (1/;u 1 cPu)

-
(1/;lJ cPl) .) (8.72))

Thishas the equivalent form)

(1/;!cPu)q- (1/;1cPl)q
== ((1/;!- u31/;1)(cPu+ cPl O'3))q == (J;cP)q.) (8.73))
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So the Diracadjoint is replacedby the manifestly covariant operation of space-
time reversionin the spacetimealgebraformulation. The Hermitian adjoint now

becomes)

(1/71
f-*

1/7
t == ,o\037ro,) (8.74))

which defines the meaning of the daggersymbol in the full spacetimealgebra.
Clearly, this operation requiressingling out a preferred timelike vector, so is not

covariant. In the relative spacedefined by rO, the Hermitian adjoint reducesto
the non-relativistic reverse operation,so our notation is consistentwith the use
of the daggerfor the reverse in three-dimensionalspace.

We can now look at the main observablesformed from a Diracspinor. The
first is the current)

J
11>

==
(1/J 1i11> 11/7) f-* (-0,11>1/7(0)- (;j;r11> 1/7 1(3)Iu3.) (8.75))

- -
The final term contains ('11>1/71,31/7).This vanishesbecause1/71,31/7 is_odd-grade
and reversesto minus itself, so is a pure trivector. Similarly, 1/7,01/7 is a pure
vector, and we are left with)

J
11>

==
(\037I i11> 11/7 ) f-* ,11>

.(1/7ro;j;) .) (8.76))

As with the Pauli theory, the operation of taking the expectationvalue of a
matrix operatoris replacedby that of picking out a component of a vector. We

can therefore reconstitute the full vector J and write)

-J ==
1/7,01/7) (8.77))

for the first of our observables.
To gain somefurther insight into the form of J, and its formation from 1/7, we

introduce the scalar+ pseudoscalarquantity 1/71/7 as)

1/7\037
== pel(3.) (8.78))

Factoring this out from 1/7, we define the spacetimerotor R:)

R == 1);p-l/2e-I(3/2,) RR == 1.) (8.79))

(If p == 0 a slightly different procedurecan be used.)We have now decomposed
the spinor1/7 into)

1); == pI/2el(3/2R,) (8.80))

which separatesout a density p and the rotor R. The remaining factor of {3

is curious. It turns out that plane-waveparticlestates have {3 == 0, whereas

antiparticle states have {3 == 7r. The picture for bound state wavefunctions is

more complicated,however,and {3 appearsto act as a remnant of multiparticle)
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Bilinear Standard STA Frame-free
covariant form equivalent form

Scalar (i/JI\037) (\037;(; ) pcos((3)
Vector (\037Iif-ll\037) ff-l' (\037fO;(;) \037fO\037

== J
Bivector (\037liittV 11/1) (f tt 1\\ fV ) .(1/1I(j3;(;) 1/1I(j3\037 == S

(\037!itti51\037) ftt' (\037f3;(;)

-
Pseudovector \037f3\037

== s
Pseudoscalar (i/Jlii5 )\037) (\037;fI) -psin((3))

Table8.1 Observablesin the Dirac theory. The standard expressionsfor
the bilinear covariants are shown, together with their spacetimealgebra
(STA) equivalents.)

effectsfrom the full quantum field theory. With this decompositionof 'l/J, the
current becomes)

J == 'l/Jro{; == pel(3/2RroRel(3/2 == pR,oR.) (8.81))

Sothe rotor is now an instruction to rotate 1'0onto the direction of the current.
This is preciselythe picture we adoptedin section5.5for studying the dynamics
of a relativistic point particle.

A similar pictureemergesfor the spin. In relativistic mechanicsangular mo-
mentum is a bivector quantity. Accordingly, the spinobservablesform a rank-2
antisymmetric tensor,with componentsgiven by)

(1/Jli\037(it-tiv
-

ivit-t)I'l/J) r+ ({;1't-t!\\1'v'l/JI0'3)q== (rt-t!\\1'v'l/JI0'3{;),) (8.82))

where again there is no imaginary component.This time we are picking out the
componentsof the spinbivector S,given by)

S ==
'l/J I0'3'l/J.) (8.83))

Thisis the natural spacetimegeneralisationof the Pauli result of equation (8.18).
(Factors of n/2 can always be insertedwhen required.) There are five such
observablesin all, which are summarised in Table 8.1.Of particular interest is
the spinvector s == pR1'3R.This justifies the classicalmodel of spin introduced
in section5.5.6,where it was shown that the rotor form of the Lorentz force law

naturally gives riseto a reducedgyromagnetic ratio of 9 == 2.)

8.3TheDiracequation
While much of the precedingdiscussionis both suggestive about the role of
spinors in quantum theory, and algebraically very useful, one has to remem-
ber that quantum mechanics dealswith wave equations. We therefore need to)
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construct a relativistic wave equation for our Diracspinor'ljJ, where
'ljJ

is an el-
ement of the eight-dimensionaleven subalgebraof the spacetimealgebra.The
relativistic wave equation for a spin-1/2particleis the Dirac equation. This is

a first-order wave equation, which is both Lorentz-invariant and has a future-

pointing conservedcurrent.
LikePauli spinors,'ljJ isalsosubjectto a single-sidedrotor transformation law,

'ljJ
I---t R'ljJ, where R is a Lorentz rotor.To write down a covariant equation, we

can therefore only placeother covariant objectson the left of'ljJ. The available

objectsare any scalaror pseudoscalar,the vector derivative V and any gauge
fields describinginteractions.On the right of

'ljJ
we can placecombinations of

,0,13and 10'3.The first equation we could write down is simply)

V'ljJ == o.) (8.84))

This is the spacetimegeneralisation of the Cauchy-Riemann equations,as de-
scribedin section6.3.Remarkably,this equation doesdescribethe behaviour of
fermions-it is the wave equation for a (massless)neutrino. Any solution to
this decomposesinto two separatesolutions by writing)

'ljJ
== 'ljJ!(1+ 0'3)+ 'ljJ!(1-0'3)==

'ljJ+ + 'ljJ-.) (8.85))

The separatesolutions 'ljJ+ and 'ljJ_ are the right-handed and left-handed helicity

eigenstates.For neutrinos, nature only appearsto make useof the left-handed
solutions. A more completetreatment of this subject involves the electroweak

theory. (In fact, recent experimentspoint towards neutrinos carrying a small

mass,whoseorigin can be explainedby an interaction with the Higgsfield.)
The formal operatoridentificationof i8J-l with PJ-l tellsus that any wavefunction

for a free massive particle should satisfy the Klein-Gordonequation V 2
'ljJ

==

-m2
'ljJ. We thereforeneedto add to the right-hand sideof equation (8.84)a term

that is linear in the particle massm and that generates-m2
'ljJ

on squaring the

operator.The natural covariant vector to form on the left of'ljJ is the momentum

,J-lPJ-l'
In terms of this operatorwe are led to an equation of the form)

p'ljJ
== m'ljJ ao,) (8.86))

where ao is somemultivector to be determined.It is immediately clear that ao
must have odd grade,and must squareto +1.The obviouscandidateis ,0,so
that

'ljJ
contains a rotor to transform 10to the velocityP/m.We therefore arrive

at the equation)

V'ljJ 1O'3 == m'ljJ,o.) (8.87))

This is the Diracequation in its spacetimealgebra form. This is easily seento
be equivalent to the matrix form of the equation)

iU
M(8J-l

-
ieAJ-l)I'ljJ) == ml'ljJ),) (8.88))
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where the electromagnetic vector potential has been included. The full Dirac
equation is now)

V'ljJ Icr3 - eA'ljJ == m'ljJrO') (8.89))

A remarkable feature of this formulation is that the equation and all of its ob-
servableshave beencaptured in the real algebra of spacetime,with no needfor

a unit imagina\037y. This suggeststhat interpretations of quantum mechanicsthat

placegreat significancein the needfor complexnumbers are wide of the mark.)

8.3.1Symmetriesand currents

The subjectof the symmetries of the Diracequation, and their conjugate cur-

rents, is discussedmore fully in chapter 12.Herewe highlight the main results.
There are three important discretesymmetry operations:charge conjugation,
parity and time reversal, denotedC,P and T respectively. Following the con-
ventions of Bjorken& Drell (1964)we find that

FI'ljJ) \037 ro'ljJ(x),o,
61'ljJ)

r+ 'ljJcr 1,
TI'ljJ) \037 I,o'ljJ(-X)rI,)

(8.90
))

where x == ,ox,ois (minus) the reflection of x in the timelike rO aXIS. The
combinedCPTsymmetry correspondsto)

'ljJ
\037 -I'ljJ( -x)) (8.91))

sothat CPTsymmetry doesnot require singling out a preferred timelike vector.

Amongst the continuoussymmetriesof the Diracequation, the most significant
is localelectromagneticgauge invariance. The equation is unchanged in physical
content if we make the simultaneous replacements)

'ljJ
\037 'ljJeO:

1u3
,)

eA \037 eA -Va.) (8.92))-
Theconservedcurrent conjugate to this symmetry is the Diraccurrent J == 'ljJ,o'ljJ.

This satisfies)

V.J== (V'ljJro-J;) + ('ljJro-J;V)

== -2((eA'ljJ,o + m'ljJ )Icr3;J;)

==0) (8.93))

and so is conservedeven in the presenceof a backgroundfield. This is important.
It means that singlefermionscannot be createdor destroyed.This feature was

initially viewed as a great strength of the Diracequation, though ultimately it

is its biggestweakness.Fermion pairs,such as an electron and a positron,can
be createdand destroyed-a processwhich cannot be explainedby the Dirac)
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equation alone.Theseare many-body problemsand are describedby quantum

field theory.
The timelike component of J in the fO frame, say, is)

Jo \037 fO.J\037 (,o{;,o1/;)\037 (1/;t1/;)> 0,) (8.94))
which is positive definite. This is interpretedas a probability density, and 10-

ca!isedwave functions are usually normalised such that

Jd3xJo = 1. (8.95)

Arriving at a relativistic theory with a consistentprobabilisticinterpretation was
Dirac'soriginal goal.)

8.3.2Plane-wavestates)

A positive energy plane-wavestate is defined by

r)f, - r)f,
-ICT 3P'x

'f/
-

'f/O e
,) (8.96))

where 1/;0 isa constant spinor.The Diracequation (8.87)tellsus that 1/;0 satisfies)

p1/;o \037 m1/;o,o,

and post-multiplying by 1/;0 we seethat)

(8.97))

-
p1/;o1/;o \037 mJ.) (8.98))

Recalling that we have 1/;{;\037 pei
(3, and noting that both p and J are vectors,

we seethat we must have exp(i;3) \037 :f:::l.For positive energy states the time-
like component of p is positive, as is the timelike component of J, so we take
the positive solution ;3 == O. It follows that 1);0 is then simply a rotor with a
normalisation constant. The properboost L taking m,oonto the momentum

has) - 2
P == mL,oL== mL fO,

and from section5.4.4the solution is)

(8.99))

L ==
m + p,o

[2m(m+ p'rO)]1/2)
E+m+p

[2m(E+ m)]1/2') (8.100))

where Pro == E + p.The full spinor'l/Jo is LU,where U is a spatialrotor in the
fO frame, so is a Pauli spinor.

Negative-energysolutions have a phase factor of exp(+I173P'x),with E ==

ro'p>O. For thesewe have -p1/;'l/J == mJ so it is clear that we now need;3 == 7r.

Positive and negative energy plane wave states can therefore be summarised by

positive energy: 1);(+)(x)== L(p)Ure-ICT3p'x,

negative energy: 1/;(-)(x)== L(p)UrIeICT3P'x,)
(8.101))
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with L(p)given by equation (8.100).The subscriptr on the spatialrotorslabels
the spin state, with Uo == 1,UI == -10\"2'Theseplane wave solutions are the
fundamental componentsof scattering theory.)

8.3.3Hamiltonianform and the Pauliequation
The problemof how to best formulate operator techniques within spacetime
algebra is little more than a question of finding a goodnotation. We could of
courseborrow the traditional Dirac'bra-ket'notation, but we have already seen
that the bilinear covariants are better handled without it.It is easierinsteadto

just juxtaposethe operatorand the wavefunction on which it acts.But we saw
in section8.2that the operatorsoften act double-sidedlyon the spinor'l/J. This
is not a problem,as the only permittedright-sidedoperationsare multiplication

by 1\"0 or 10\"3, and theseoperationscommute. Our notation can therefore safely
suppressthese right-sidedmultiplications and gather all operationson the left.
The overhat notation is useful to achieve this and we define)

iJ-l 'l/J
==

I\"J.L 'l/J 1\"0 .) (8.102))

It should be borne in mind that all operationsare now defined in the space-
time algebra,so the l'J-l

are not to be read as matrix operators,as they were in

section8.2.Of course,the action of the operatorsin either systemis identical.
It isalsouseful to have a symbol for the operation of right-sidedmultiplication

by 10\"3' The symbol j carries the correct connotations of an operator that

commuteswith all othersand squaresto -1,and we define)

j'l/J == 'l/JI0\"3') (8.103))

The Diracequation can now be written in the 'operator'form)

jV'l/J
-

eA'l/J == m'l/J,) (8.104
))

where)

V'l/J == V' 'l/J1\"0 and A'l/J == A 'l/J1\"0.) (8.105))

Writing the Diracequation in the form (8.104)doesnot add anything new, but

doesconfirm that we have an efficient notation for handling operators.One

might ask why we have preferred the j symbol over the more obvious i. One
reason is historical. In much of the spacetimealgebraliterature it has been
commonpracticeto denotethe spacetimepseudoscalarwith a small i.We now

feelthat this is a misleadingnotation, but it is commonplace.In addition, there
are occasionswhen we may wish to formally complexifythe spacetimealgebra,
as was the casefor electromagnetic scattering,covered in section7.5.To avoid
confusionwith either of thesecaseswehave chosento denoteright-multiplication
of

'l/J by 10\"3 as j'l/J in both this and the following chapter.)
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To expressthe Dirac equation in Hamiltonian form we simply multiply from
the left by ,0.The resulting equation, with the dimensionalconstantstemporar-
ily put back in, is)

jnOt 'ljJ
==

cjJ'ljJ + eV
'ljJ
- ceA'ljJ + mc2

7jJ,) (8.106))
where)

-))
p'ljJ

== -jn V'ljJ ,

'ljJ
== ,o'ljJ,o,

loA == V - cA.)

(8.107))

Choosinga Hamiltonian is a non-covariant operation, sinceit picksout a pre-
ferred timelike direction. The Hamiltonian relative to the 10direction is the
operatoron the right-hand sideof equation (8.106).

As an application of the Hamiltonian formulation, considerthe non-relativistic
reduction of the Dirac equation. This can be achieved formally via the Foldy-
Wouthuysen transformation. For detailswe refer the readerto Itzykson & Zuber
(1980).While the theoretical motivation for this transformation isclear,it can be
hard to compute in all but the simplestcases.A simplerapproach,dating back
to Feynman, is to separateout the fast-oscillatingcomponent of the wavesand
then split into separateequations for the Pauli-evenand Pauli-oddcomponents
of 'ljJ. We write (with n == 1and the factors of ckept in)

'ljJ
==

(cjJ + ry)e-ICT3mc2t, (8.108)
where

\037

==
cjJ (Pauli-even) and iJ == -ry (Pauli-odd).The Diracequation (8.106)

now splits into the two equations)

EcjJ
- cOry== 0,

(\302\243
+ 2mc2

)ry
-

cO</> == 0,)
(8.109))

where)

EcjJ
== (jOt- eV)cjJ,

OcjJ== (jJ - eA)cjJ.)
(8.110))

The formal solution to the secondof equations (8.109)is)

1
(

\302\243

)
-I

1]==

2mc
1+

2mc2 OcjJ,) (8.111))

where the inverse on the right-hand sidedenotesa power series.Provided the
expectationvalue of \302\243 is smaller than 2mc2

(which it is in the non-relativistic
limit) the seriesshould converge.The remaining equation for

cjJ is)

\302\243cp

- \037

(1- \302\243 +.. .
) OcjJ== 0,2m 2mc2) (8.112))
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which can be expandedout to the desiredorderof magnitude. There is little

point in going beyond the first relativistic correction, so we approximate equa-
tion (8.112)by)

O\302\243O 02
EcjJ + 4 2 2 cjJ

== _
2 cjJ.me m)

(8.113))

We seekan equation of the form \302\243 cjJ
== HcjJ, where H is the non-relativistic

Hamiltonian. We therefore need to replacethe OEO term in equation (8.113)
by a term that doesnot involve \302\243. To achieve this we write)

20\302\2430 == [0,[\302\243,0]] + \302\2430

2 + 02
\302\243) (8.114))

so that equation (8.113)becomes

EcjJ
= 02

cjJ
- E02 + 02E

cjJ
_ 1 [0,[E,O]]cjJ.2m 8m2e2 8m2c2

We can now make the approximation)

(8.115))

02
\302\243cjJ

\037

2m cjJ,

so that equation (8.113)can be approximatedby

02 1 04
EcjJ

==

2m cjJ
-

8m2c2[0,[\302\243, O]]cjJ- 8m3c2cjJ,

which is valid to orderc-2.
To evaluate the commutators we first need)

(8.116))

(8.117))

[\302\243,0]
== -je(8t A + VV) == jeE.) (8.118))

Thereare no time derivativesleft in this commutator, sowe do achievea sensible
non-relativisticHamiltonian. The full commutator requiredin equation (8.117)
IS)

[0,[E,0]]== [-jV- eA,jeE]
== (eVE)-2eE/\\ V -2je2A/\\E.) (8.119))

The various operators(8.110)and (8.119)can now be substituted into equa-
tion (8.117)to yield the Pauli equation

8cjJ 1
\037 2 p4

8t 10'3==

2m (p- eA) cjJ + eV cjJ
-

8m3c2 cjJ

1-
2 2 (e(VE- 2E/\\ V)cjJ - 2e2

A/\\EcjJI0'3)'8m c)
(8.120))

which is written entirely in the geometric algebra of three-dimensional space.
In the standard approach,the geometric product in the V E term of equa-
tion (8.120)is split into a 'spin-orbit'term V /\\ E and the 'Darwin'term V.E.)
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The spacetimealgebraapproach reveals that these terms arIse from a single
source.

A similar approximation schemecan be adopted for the observablesof the
Dirac theory. For examplethe current, 'ljJro'ljJ, has a three-vector part:)

J == ('ljJro-0)/\\ rO ==
CPT}

t + TJCP
t

.) (8.121))
This is approximatedto leading orderby

J \037 -\037((VcjJlu3cjJth -
AcjJcjJt),m) (8.122))

where the ()1 projectsonto the grade-1components of the Pauli algebra.Not
all applicationsof the Pauli theory correctly identify (8.122)as the conserved
current in the Pauli theory-an inconsistencyfirst pointedout by Hestenes&
Gurtler (1971).)

8.4Centralpotentials)

Supposenow that we restrictour discussionto problemsdescribedby a central
potential V == V(r), A == 0, where r == Ix].The full Hamiltonian, denotedH,
reducesto)

jn8t'ljJ == H'ljJ == -jV 'ljJ + eV (r)'ljJ + m'ljJ.) (8.123))

Quantum states are classifiedin terms of eigenstatesof operatorsthat commute
with the Hamiltonian H,becausethe accompanyingquantum numbers are con-
served in time. Of particular importance are the angular-momentum operators

'\"

Li , defined by)
A

Li == -iEijkXj8k.) (8.124))

Theseare the components of the bivector operatorix/\\ V. We therefore define
the operators)

LB == jB.(x/\\V),) (8.125))
where B is a relative bivector. Throughout this sectioninterior and exterior
productsrefer to the (Pauli) algebraof space.Writing B == I(Ti recovers the
component form. The LB operatorssatisfy the commutation relations)

[LBI'LB2] == -jLBIXB2') (8.126))
where Blx B2 denotesthe commutator product. The angular-momentum com-
mutation relations directly encodethe bivector commutation relations, which are
thoseof the Lie algebraof the rotation group (seechapter 11).One naturally
expectsthis group to ariseas it representsa symmetry of the potential.

If we now form the commutator of LB with the Hamiltonian H we obtain a)
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result that is, initially, disconcerting.The scalaroperatorLB commutes with

the bar operator 'ljJ
1---+ 'ljJ, but for the momentum term we find that)

[B.(x/\\V),V] == -VB.(x/\\V) == BxV.) (8.127))
The commutator doesnot vanish, soorbital angular momentum doesnot yield a
conservedquantum number in relativistic physics.But, sinceBx V ==

\037 (BV-
VB),we can write equation (8.127)as)

[B.(x/\\ V) -
\037
B,1t] == O.) (8.128))

We therefore recovera conservedangular momentum operatorby defining)

JB == LB - !jB.) (8.129))
In conventionalnotation this is)

A A 1 AJi == Li + :2E i ,) (8.130))
where E i ==

(i/2)E1,jk\037j:Yk' The extraterm of B/2accounts for the spin-l/2
nature of Diracparticles.If we look for eigenstatesof the J3 operator,we see
that the spincontribution to this is)

-\037jIcr3'ljJ
==

\037cr3'ljJcr3') (8.131))
In the non-relativistic Pauli theory the eigenstatesof this operatorare simply 1
and -Icr2, with eigenvalues::!:1/2.In the relativistic theory the separatespin
and orbital operatorsare not conserved,and it is only the combinedJB operators
that commute with the Hamiltonian.

The geometric algebraderivation employed here highlights some interesting
features. Strippingaway all of the extraneousterms, the result rests solely on
the commutation propertiesof the B.(x/\\V) and V operators.The factor of 1/2
would thereforebe presentin any dimension,and sohas no specialrelation to the
three-dimensionalrotation group. Furthermore, in writing JB == LB- !jBwe

are forming an explicitsum of a scalarand a bivector. The standardnotation of

equation(8.130)encouragesus to view theseas the sum of two vector operators!)

8.4.1Sphericalmonogenics
The sphericalmonogenicsplay a key role in the solution of the Dirac equation
for problemswith radial symmetry. Theseare Pauli spinors(even elements of
the Pauli algebra)that satisfy the eigenvalueequation)

-x/\\V'ljJ ==
l'ljJ.) (8.132))

Thesefunctions arisenaturally as solutions of the three-dimensionalgeneralisa-
tion of the Cauchy-Riemann equations)

Vw == o.) (8.133))
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Solutionsof this equation are known in the Clifford analysis literature as mono-
genics.Looking for solutions which separate into W == rl'lj;(8, cp) yieldsequa-
tion (8.132),where (r, 8, cp) is a standardset of polar coordinates.The solutions
of equation (8.132)are calledsphericalmonogenics,or spin-weightedspherical
harmonics (with weight 1/2).

To analyse the propertiesof equation (8.132)we first note that)

[JB, xA V] == 0,) (8.134))

which is proved in the same manner as equation (8.128).It follows that 'lj;

can simultaneously be an eigenstateof the x A V operatorand one of the JB
operators.To simplify the notation we now define)

Jk'lj; == JIO:k'lj; == ((Iak)'(xAV)- \037Iak)'lj;Iu3') (8.135))

We choose'lj; to be an eigenstateof J3. We labelthis state as 'lj;(l, Il),so)

-xAV'lj;(l, Il) == l'lj;(l, Il),) J3'lj;(l, Il) == Il'lj;(l, Il)') (8.136))

The Ji operatorssatisfy)

JiJi'lj;(l,Il) == 3/4'lj;-2xA V'lj; + xA V(xAV'lj;)
== (l + 1/2)(l+ 3/2)'lj;(l,Il),) (8.137))

so the 'lj; (l,Il) are also eigenstatesof Ji Ji .
We next introduce the ladderoperatorsJ+ and J-,defined by)

J+ == J1+ jJ2,

J_ == J1-jJ2.)

(8.138))

It is a simplematter to prove the following results:)

[J+,J_] == 2J3,

[J:!:,J3] ==
=t=J:i:,)

JiJi == J_J++ J3 + J3
2
,

JiJi == J+J-- J3 + J3
2

.)

(8.139))

The raising operatorJ+ increasesthe eigenvalueof J3 by an integer.But, for
fixed l, Il must ultimately attain somemaximum value. Denoting this value as
Il+, we must reach a state for which)

J+'lj;(l, Il+) == O.) (8.140
))

Acting on this state with JiJi and using one of the results in equation (8.139)
we find that)

(l + 1/2)(l+ 3/2)== 1l+(Il++ 1).) (8.141))

Sincel is positive and Il+ representsan upperbound,it follows that)

Il+ == l + 1/2.) (8.142))
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There must similarly be a lowest eigenvalueof J3 and a correspondingstate
with)

J_'l/J(l,tL-)== o.) (8.143))

In this casewe find that)

(l + 1/2)(l+ 3/2) == tL-(tL--1),) (8.144
))

henceJL- == -(l+ 1/2).The spectrumof eigenvaluesof J3 therefore rangesfrom

(l + 1/2)to -(l+ 1/2),a total of 2(l + 1)states.Sincethe J3 eigenvaluesare

always of the form (integer +1/2),it is simpler to labelthe sphericalmonogenics
with a pair of integers.We therefore write the sphericalmonogenicsas 'l/Jr,
where)

-x!\\V'l/Jr== l'l/Ji l > 0 (8.145)

and

J3'l/Jr == (m +
\037 )'l/Jr

-1-l< m < l. (8.146))

To find an explicit form for the 7/Jr we first construct the highest m case.This
satisfies)

J+'l/Jf == 0) (8.147))

and it is not hard to seethat this equation is solvedby

'l/Jf
ex sin z

(8)e-l\037I0\"3
.) (8.148))

This is the angular part of the monogenicfunction (x+ yI(3)1.Introducing a
convenient factor, we write)

'l/Jf
== (2l + 1)pl(cos(8))el\037I0\"3 .) (8.149))

Our convention for the associatedLegendrepolynomials follows Gradshteyn &

Ryzhik (1994),so we have

pm (x) = (-I)'m(1_ X2 )'m/2 dl+'m
(x2 - It (8.150)I 2Z1! dxl+m

(Someuseful recursionrelations for the associatedLegendrepolynomials are
discussedin the exercises.)The lowering operatorJ_ has the following effect
on

'l/J:)

J-7/J == (-oe'l/J+ cot(8)OcjJ1/)Iu3)e-\037I0\"3
- IU2

\037('l/J
+ u3'l/J(3).) (8.151))

Thefinal term just projectsout the {I,IU3}terms and multiplies them by -IU2.
Thisis the analog of the lowering matrix in the standardformalism. The deriva-
tives acting on

'l/Jf
form

(-8e7/Jf + cot(8) ocj>7/Jf I(3)e-\037I0\"3 == (2l + 1)2lPI
I-l(cos(8))e(l

-
1)\037I0\"3, (8.152))
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and, if we use the result that)

0'
cj>

== O'2eCPlu3,) (8.153))
we find that)

1;i-1 ex (2lP/-I(cos(O))-p/(cos(O))IO'cjJ)e(I-1)cplu3
.) (8.154))

Proceedingin this manner, we are led to the following formula for the spherical
monogenlCS:)

1;i== ((l+ m + l)p[m(cos(O))- p[m+1(cos(O))IO'cjJ)emcPlu3,) (8.155))

in which l is a positive integer or zero, m rangesfrom -(l+ 1)to l and the p[m
are taken to be zero if Iml >l.The positive- and negative-m states are related
by)

-m
( ) ( )

m (l -m)! m
( )\037

x = -1 (l+m)!Fl x,
from which it can be shown that)

(8.156))

r) j,m (_L ) == (-I)m (l + m + I)!r)j,-(m+1)
0/[ 0'2

(l _ m)! 0/[ .) (8.157))

The sphericalmonogenicspresentedhere are unnormalised. Normalisation fac-
tors are not hard to compute, and we find that)

f7r f27r (l+m+l)'
10

dO
10 d4J sin(0) 'I//r'l//r

t = 41f
(l _ m)!

'
.) (8.158))

If 0'r denotesthe unit radial vector, 0'r == X /r we find that)

xA VO'r == 2O'r .) (8.159))
It follows that)

-xAV(O'r1;O'3)== -(l+ 2)O'r1;O'3,) (8.160))

which providesan equation for the negative-leigenstates.The possibleeigenval-
ues and degeneraciesare summarised in Table 8.2.One curious feature of this
table is that we appear to be missing a line for the eigenvaluel == -1.In fact
solutions for this casedo exist,but they contain singularitieswhich renderthem
unnormalisable. For example,the functions)

IucjJ

sin(0)
,)

and)
e-IU3cP

sin(0))
(8.161))

have l == -1and J3 eigenvalues+1/2and -1/2respectively.Both solutions are
singular along the z axis,however,which limits their physical relevance.)
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l Eigenvalues of J3 Degeneracy)

2 5/2,.. . ,-5/2 6
1 3/2,. . . , -3/2 4
0 1/2,...,-1/2 2

(-1) ? ?
-2 1/2,. . . ,-1/2 2)

Table8.2Eigenvalues and degeneraciesfor the 'l/Ji monogenics.)

8.4.2The radialequations)

We can use the angular monogenics to construct eigenfunctions of the Dirac
Hamiltonian of equation (8.123).Sincethe JB operatorscommute with H, 7/J

canbe placedin an eigenstateof J3. The operatorJiJi must also commute with

'H, so (l + 1/2)(l+ 3/2)is a goodquantum number. The operatorx/\\ V doesnot

commute with H,however,soboth the 7/Ji and ur7/J'lU3 monogenicsare needed
in the solution. While x/\\ V doesnot commute with H,the operator)

K == 'Yo (1- x/\\ V)) (8.162))

does,as follows from)

['Yo(l
- x/\\ V),V] == 2i'0V -

'Yo Vx/\\ V == O.) (8.163))
\"'-

We should therefore work with eigenstatesof the K operator.This implies that

1/J( x) can be written for positive l as either)

7/J( x,l + 1)== 7/Jzu( r) + Ur7/Jzv( r)Iu3) (8.164))

or)

'ljJ(x, -(l+ 1))== ur7/Jlu3 u(r)+ 7/JrIv(r).) (8.165))

In both casesthe secondlabel in 7/J(x, l + 1)specifiesthe eigenvalueof K. It is
useful to denotethis by K\" so we have)

A

K7/J
==

K,7/J,) K,== ...,-2,-1,1,2,...) (8.166))

and K, is a non-zero positive or negative integer.
In equations (8.164)and (8.165)the radial functions u(r) and v(r) are 'com-

plex'combinationsof 1and IU3'In the caseof the Hamiltonian of (8.123),with

V(r) real, it turns out that the real and imaginary equations decouple,and it is)
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sufficient to treat u(r) and v(r) as real, scalarquantities. On substituting our
trial functions into the Hamiltonian, we find that the radial equations reduceto)

(
u l

) (
(/1;
-l)/r

v'
-

E- eV (r)-m)
-(E- eV(r)+ m)

) (
u

)(-K-1)/r v') (8.167))

The same equation holdsfor all valuesof /1;. This successfullyseparatesthe Dirac
equation in any radially-symmetric potential. As one might expect,we arrive
at a pair of coupledfirst-order equations, as opposedto the single second-order
equation familiar from Schrodingertheory.)

8.4.3The hydrogen atom)

The radial equations describingthe relativistic quantum theory of the hydrogen
atom are obtained simply by setting eV == -Za/r,where a == e2

/47f is the fine

structure constant and Z is the atomic charge.The solution of the radial equa-
tions is describedin most textbookson relativistic quantum mechanics.The
conclusion is that the radial dependenceis governed by a pair of hypergeomet-
ricfunctions, which generalisethe Laguerre polynomialsof the non-relativistic
theory. Rather than reproducethe analysis here,we insteadpresenta more
direct method of solving the equations, first given by Eddington(1936)in his
unconventionalRelativity Theoryof Protonsand Electrons.

We start with the equation)

-jV1/J- Zo:
1/J + mio1/J = E1/J.

r) (8.168))
A

We assumethat 7jJ is in an eigenstateof K, so we can write)

x1\\ V 7jJ
==

7jJ
-

/1;io7jJ.) (8.169))
We now pre-multiply the Diracequation by jx and rearrange to find

rOr1/J + 1/J
-

/'\302\243io1/J

= jx(E +
\037o: )

1/J
- jmxio1/J.

On introducing the reducedfunction \\II ==
r7jJ the equation simplifiesto

1
OrW == jur(E-mio)\\II + -(jZaur + /1;io)\\II.r)

(8.170))

(8.171))

We accordinglydefine the two operators

P == -jur(E-mio),) 6 == -(jZaur + /1;io),) (8.172))
so that the Diracequation reducesto)

Or\\II +
(F

+ ;) \\II = O.) (8.173))
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The P and 6 operatorssatisfy

p2 == m2 _ E2 == f2,

62 == K
2 - (Za)2== y2,)

(8.174))

which definef and Y. The operatorsalsosatisfy the anticommutation relation)

A A A AFC+ CF== -2ZaE.) (8.175))

The next step is to transform to the dimensionlessvariable x == fr and remove
the large-xbehaviour by setting)

w == <Pe-x .) (8.176))

The function <P now satisfies)

Ox<I> + ;<I> + (
\037

-1)<I> = O.) (8.177))

We are now in a positionto considera power seriessolution, so we set)

<P == X
SLCnxn

,
n=O)

(8.178))

where the Cn are all multivectors. (In Eddington'soriginal notation theseare
his 'e-numbers'.)The recursion relation is first-order and is given simply by)

(n+s+G)Cn=-(\037 -l)Cn-l.) (8.179))

Setting n == 0 we seethat)

(s+ 6)Co == o.) (8.180))

Acting on this equation with the operator (s-6) we seethat we must have
82 == 62 == y2. We set s == y in order that the wavefunction is well behaved at
the origin.

With the small and large x behaviour now separatedout, all that remains
is the power series.One can show that, in order for 7jJ to fall to zero at large
distances,the seriesmust terminate. We therefore set Cn+I == 0, and it follows
that)

( \037

-
1)

Cn = 0,)
A

or FCn == fCn.) (8.181))

But we alsohave)

(\037

+
1)

(n + v + G)Cn = -
(\037

+
1)(\037

-
1)

Cn-1 = 0,) (8.182))
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so)

(
A

)
A F A

2(n+v)+G+yG Cn=O.) (8.183))

If we write this as)

(2(n + v) +
\037

(C;F+
FC;))

Cn = 0,) (8.184))

we find that we must have)

ZaE
n + v -

f
= O.

This is preciselyour energy quantisation condition. The equation is equivalent
to)

(8.185))

E
(m2 -E2)1/2

which rearrangesto the standard formula)

n+v
Za ') (8.186))

E2
== m2 (1_ (Za)2

)n2 + 2nv + 1),2
') (8.187))

where n is a non-negative integer.
The non-relativistic formula for the energy levelsis recoveredby first recalling

that a \037 1/137is small.We can therefore approximate to)

v \037 II),I
== l + 1,) (8.188))

where l > 0 and)

E\037m (l-(Za)2 1
)2 n2+2n(l+1)+(l+1)2.) (8.189))

Subtractingoff the rest massenergy we are left with the non-relativisticexpres-
SIon)

E _ _ (Za)2 1
NR- m

2 (n+l+l)2)
mZ 2e4 1

327r2E6n2 n,2 ,) (8.190))

where n' == n + l + 1and the dimensionalconstantshave beenreinserted.We

have recoveredthe familiar Bohr formula for the energy levels. This derivation
shows that the relativistic quantum number n differs from the Bohr quantum
number n'.

Expandingto next orderwe find that

E == -m(Za)2_ m (Za)4
(
\037_ \037 ) .N R 2n,2 2n,4 l + 1 4)

(8.191))

The first relativistic correctionshowsthat the binding energy is increasedslightly

from the non-relativistic value, and also introducessome dependenceon the)
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3D5/2

3D3/2)

Energy)

381/ 2)

3P3/2
3P1/ 2)

2P3/ 2)

1 Fine structure)281/ 2) r 2Pl/2

Lamb shift)

181/ 2) Hyperfine structure)

Figure 8.3Hydrogen atom energy levels. The diagram illustrates how

various degeneraciesare broken by relativistic and spin effects.The Dirac
equation accountsfor the fine structure. The hyperfine structure is due to
interaction with the magnetic moment of the nucleus. The Lamb shift is
explainedby quantum field theory. It lifts the degeneracybetween the 81/2
and P1/2 states.)

angular quantum number l. This lifts some degeneraciespresent in the non-
relativistic solution. The various correctionscontributing to the energy levels
are shown in figure 8.3.A more completeanalysis also requiresreplacing the
electronmassm by the reducedmassof the two-body system.This introduces
correctionsof the sameorderof the relativistic corrections,but only affects the
overall scale.)

8.5Scatteringtheory)

Many of the experimental tests of Diractheory, and quantum electrodynamics
in general, are based on the resultsof scattering.Herewe seehow our new

formulation can help to simplify thesecalculations through its handling of spin.)
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To aid this analysis it is useful to introduce the energy projectionoperators)

1
AI. 'ljJ

==

2m (m'ljJ -::tP'ljJ1o),) (8.192))

which projectonto particleand antiparticle states.
A key role in relativistic quantum theory is played by Feynman propagators,

which provide a means of imposing causalboundary conditions.We start by
replacing the Dirac equation with the integral equation)

'IjJ(x) = 'IjJ;(x) + eJd4x'SF(X-x')A(x')'IjJ(x'),) (8.193))

where 'ljJi (x) is the asymptotic in-stateand solvesthe free-particleequation, and
5p(x-x') is the propagator.Substituting (8.193)into the Diracequation, we
find that 5p(x-x') must satisfy)

jV' xSp(x-X
I
)'ljJ(X

')10-m5p(x-XI)'ljJ(X') == b4(x-XI)'ljJ(X').) (8.194))

The solution to this equation is)

S (
'
)I}/' (

I
) J d4p p'ljJ(X'),O+ m'ljJ(x') -jp.(x-x')px-x o/X == e.

(27r)4 p2 -m2 + jE)
(8.195))

The factor of jE is a mnemonicdeviceto tell us how to negotiate the polesin the
complexenergy integral, which is performed first. The factor ensurespositive-
frequencywavespropagateinto the future (t > t') and negative-frequencywaves
propagateinto the past (t

' > t). The result of performingthe energy integration
is summarised in the expression)

J d3p 1
(

. .

)SF(X)= -2mj (2np2E {}(t)A+e-JP\"x+ {)(-t)A_e1Pox
,) (8.196))

where E == + V p2 + m2.
There are other choicesof relativistic propagator,which may be appropriate

in other settings.For classicalelectromagnetism,for example,it is necessaryto
work with retardedpropagators. If one constructsa closedspacetimesurface
integral, with boundary conditions consistent with the field equations, then the
choiceof propagatoris irrelevant, sincethey all differ by a spacetimemonogenic
function. In most applications,however,we do not work like this. Insteadwe
work with initial data, which we seekto propagateto a later time in such a way

that the final result is consistent with imposing causal boundary conditions.In
this caseone has to use the Feynman propagatorfor quantum fields.)
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8.5.1Electronscattering)

In scattering calculations we write the wavefunction as the sum of an incoming

planewave and a scatteredbeam,)

7/J (x)==
7/Ji (x)+ 7/J diff (x).) (8.197))

At asymptotically large times
7/Jd\037ff

is given by)

'ljJdiff(x)
= -2mjeJd4x'J (\037\0373

2\037
A+ (A(x')'IjJ(x'ho)e-jp.(x

-x'). (8.198))

This can be written as a sum over final states)

J
d3 1. _ Pf _ -jPf'x

'IjJ d'ff (x)-
(27r)3 2Ej 'IjJ je ,) (8.199))

where the final states are plane waveswith)

'ljJj
= -jeJd4x'(pjA(x')'IjJ(x')+ mA(x')'IjJ(x'ho)e1Pf\"X'.) (8.200))

The number of scatteredparticlesis given by (recalling that J ==
7/J,07/J))

J 3 J d3pj 1
(
'O.Jf

) J d3pj 1
dX'YO\"Jd'ff= (27r)32Ej 2Ej

=
(27r)32EjNj,) (8.201))

where Nj is the number density per Lorentz-invariantphasespaceinterval:)

Nj = 'Yo'Jj = 'Yo' ('IjJ no'IjJj) = \302\243L.

2Ej 2Ef 2m)
(8.202))

The integral equation (8.193)is the basisfor a perturbative approach to solving
the Dirac equation in an external field. We seekthe full propagatorSA which

satisfies)

(jV2-eA(X2))SA(X2,XI),O-mSA(X2,XI) ==
b\"4(X2

-XI)') (8.203))

The iterative solution to this is provided by)

J 4 A

SA(Xj, Xi) == SF(Xf-Xi) + d Xl Sp(Xj-xI)eA(Xl)SF(Xl-Xi)

if 4 4 A A

+ d XI d X2 SF(Xj-xI)eA(Xl)SP(XI-x2)eA(X2)SP(X2-Xi) + ...,

(8.204))

which is the basisfor a diagrammatic representationof a scatteringcalculation.
In the Born approximation we work to first orderand truncate the seriesfor SA)
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after the first interaction term.Assuming incident plane waves of momentum

Pi, so that 1/Ji (x)== 1/;i exp(-jPi.x), we find that the final states become

1/;f = -jeJd4x' (PfA(x')+ A(X')Pi)1/;ieiQ -X'

== -je(pfA(q)+ A(q)pi)1/;i') (8.205))

where q == Pf -Piis the change in momentum, and A(q) is the Fourier transform
of the electromagnetic potential. The form of the result here is quite typical,
and in general we can write)

1/Jf
== Sfi1/Ji,) (8.206))

whereSfi is the scattering operator. This isa multivector that takesinitial states
into final states.Sinceboth 1/Ji and 1/Jf are plane-waveparticlestates, we must

have)

SfiSfi== Pfi,) (8.207))

where Pfi is a scalar quantity (which determinesthe crosssection).We can
therefore decomposeSfi as)

1/2Sfi ==
Pfi Rfi,) (8.208))

where Rfi is a rotor.This rotor takesthe initial momentum to the final momen-

tum,)

RfiPiRfi == Pf') (8.209))

8..5..2Spin effectsin scattering)
The multi vector Sfi dependson the initial and final momenta and, in somecases,
the initial spin. The final spinis determined from the initial spinby the rotation
encodedin Sfi. If Si and sf denotethe initial and final (unit) spinvectors, we
have) -

sf == RfiSiRfi.) (8.210))

Sometimesit is of greater interest to separateout the boost terms in Rfi to
isolatea pure rotation in the }fa frame. This tellsus directly what happensto
the spin vector in the electron'srest frame. With Li and Lf the appropriate
pureboosts,we define the rest spinscatteringoperator)

-
Ufi == LfRfiLi') (8.211))

This satisfies)
- 1- -

UfifaUfi == -LfRfiPiRfiLf== fa,m

so is a pure rotation in the fa frame.)

(8.212))
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The fact that pjSji== SjiPiensuresthat Sjiis always of the form)

Sji== -j(pjM+ Mpi),) (8.213))

where M is an odd-grademultivector. In the Born approximation of equa-
tion (8.205),for example,we have M == eA(q).In general, M can contain both
real and imaginary terms,so we must write)

Sji'l/Ji == -j(pj(Mr + jMj) + (Mr + jMj)Pi)'l/Ji,) (8.214))

where Mj and Mr are independentof j. We can now use)
A-

j'l/Ji ==
'l/Ji I173 == Si'l/Ji,) (8.215))

A A-

where Si is the initial unit spinbivector. SinceSi and Pi commute, Sji can still

be written in the form of equation (8.213),with)

A-

M == Mr + MjSi .) (8.216))

SoM remains a real multivector, which now dependson the initial spin. This
schemeis helpful if we are interestedin any spin-dependentfeatures of the scat-

tering process.)

8.5.3Positronscatteringand pairannihilation

Adapting the precedingresultsto positronscatteringis straightforward. In this

casea negative-energyplane wave arrives from the future and scattersinto the

past, sowe set)

'l/Ji(X) ==
'l/J2 e1Pi- X

, 'l/Jj(x) == 'l/Jje1pj 'x
.) (8.217))

In this caserepeatingthe analysis gives)

Sji'l/Ji
== -j(-PjM'l/Ji + M'l/Ji10),) (8.218))

which we can write as)

Sji== j(pjM+ Mpi)') (8.219))

This amounts to simply swapping the sign of Sji. In the Born approximation,
q is replacedby -qin the Fourier transform of A(x),which will alter the factor
M if A(x) is complex.

The other caseto consideris when the incoming electron is scatteredinto the

past, correspondingto pair annihilation. In this casewe have)

Sji== -j(-P2M + Mpl),) (8.220))

where PI and P2 are the incoming momenta of the electron and positronrespec-
tively. We decomposeSji as)

1/2Sji== Pji IRji,) (8.221))
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since8ji must now contain a factor of I to map electronsinto positrons.This
form for 8ji implies that)

8jiSji == -pji') (8.222))

The minus sign reflectsthe fact that the transformation between initial and final

momenta is not properorthochronous.)

8.5.4Crosssections)

We must now relate our resultsto the crosssectionsmeasuredin experiments.
The scatteringrate into the final states,per unit volume, per unit time, is given

by)

1 1 ,0.Jj
Wfi =

VTNj =
VT 2Ej)

Pi
2mVT') (8.223))

where V and T denotethe total volume and time respectively. The density Pi
is given by)

Pi == 18iiSjilpi== PiiPi.) (8.224))

Here 8i\0378ji
== -::tPii,where the plus sign correspondsto electron to electron

and positron to positronscattering,and the minus sign to electron-positron
annihilation.

The differentialcrosssectionis defined as

d \037iia--
target density x incident flux')

(8.225))

When 8fi is of the form)

Sji == -j(21f)454(Pj- Pi)Tf\037') (8.226))

where the 8-functionensuresconservationof total momentum, we have)

ISfi 1

2 == VT(27r)48
4(Pj -Pi) ITfi 1

2
.) (8.227))

Working in the Ji frame the target density isjust Pi so,writing the incident flux

as X, we have)

deJ = \037(27f)4<54(Pj-Pi)ITfiI
2.

2mx
Alternatively we may be interestedin an elastic scattering with just energy
conservation (Ej == Ei ) and)

(8.228))

8fi == -j21f8(Ej -Ei)Tfi') (8.229))

In this case)

18fi 1

2
== 27rT5(Ef- E\037) ITfi1

2
.) (8.230))
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A target density of I/V and an incident flux of IJil== pilpil/mthen gives)

n
]

2deJ =
fPJO(Ef

-E,)ITfi .) (8.231))

The total crosssectionis obtainedby integrating over the availablephasespace.
For the caseof a single particlescatteringelastically we find that

J d3pj 1 n 2 J ITjtl2eJ =
(271\3") 2Ef Ipi I

O(Ef-Ei) ITfi I
= dO.

1671\"2
.) (8.232))

This is usually expressedin terms of the differentialcrosssectionper solidangle:)

dO'
dO

j)

ITfil
2

16n2 .) (8.233))

8.5.5Coulombscattering)
As an application of our formalism considerCoulombscatteringfrom a nucleus,
with the external field defined by)

-Ze
A(x) =

I 1

1'0'4n x

Working with the first Born approximation, M is given by M == eA(q),where

A(q) is the Fourier transform of A(x) given by)

(8.234))

27fZ e
A(q) == -

2 5(Ej-Ei),o
q)

(8.235))

and q',o== Ej-Ei . Writing

Sfi == -j27fo(Ej- Ei)Tfi) (8.236))

and using energy conservationwe find that

Ze2
Tfi == -\037(2E+ q).q

The crosssectionis therefore given by the Mott scatteringformula:

dO' Z 2nj2 Z2nj2_ L.t

(4E2 2
)
_ L.t

(1 (3
2' 2

(0/2))
dOj

-
q4

- q -
4p2{32sin4

(O/2)
- SIn ,)

(8.237))

(8.238))

where)

q2 == (Pj_ Pi)2 == 2p2(1- cos(0)) and j3 == Ipl/E.) (8.239))

The angle 0 measuresthe deviation between the incoming and scatteredbeams.
In the low velocity limit the Mott result reducesto the Rutherford formula.
The result is independentof the sign of the nuclear charge and, to this order,is
obtained for both electron and positronscattering.)
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A significant feature of this derivation is that no spin sumsare required.In-

stead,all the spindependenceis contained in the directional information in Tfi'
As well as beingcomputationally more efficient,this method for organisingcross
sectioncalculations offersdeeperinsights into the structure of the theory. For
Coulombscattering the spin information is contained in the rotor)

R . ==
Pf'o+ ,0Pi L2 + L \037f z 4E2_ q2

ex f z ,

where Lf and Li are the pure boosts from }fa to Pf and Pi respectively. The
behaviourof the rest spinis governedby the unnormalised rotor)

(8.240))

\037 2 -2 \037 \037

(
2

Ufz == Lf(Lf + Li )Li == LfLi + LfLi, == 2 (E+ m) + PfPi)') (8.241))

It follows that the rest-spinvector precessesin the Pfl\\Pi plane through an angle
J, where)

sin( B)tan(8/2)= (E+ m)/(E-m) + cos(O)')
(8.242))

This method of calculating the spinprecessionfor Coulombscattering was first

describedby Hestenes(1982a).)

8.5.6Comptonscattering)

Compton scatteringis the processin which an electron scattersoff a photon.To
lowest order there are two Feynman diagrams to consider,shown in figure 8.4.
The precedinganalysis follows through with little modification, and gives rise
two terms of the form)

M - 2
jJd

4 d4 d4p
A ( )

pA2(X2) + A 2(X2)Pi
1- e Xl X2

(2 )4
1 XI 2 2 \302\260

7r P -m + JE

x e1X1 o(Pf -p)e1X2 \302\260(p

-Pi)
,) (8.243))

where)

A(x) == Ee\037jk.x) (8.244))

is the (complex)vector potential. The vector E denotesthe polarisation state,
so k.E == 0 and \302\2432

== -1.In relativistic quantum theory there appearsto be no
alternative but to work with a fully complexvector potential.

Performing the integrations and summing the two contributions we arrive at)

M == e2(27r)4J4(p)(Ef
(Pi + ki)Ei + EiPi _

Ei
(Pi -kf )Ef + EfPi

)
,2ki .Pi 2Pi.kf

where P == Pf + kf -Pi - ki , so that the o-functionenforcesmomentum conser-
vation. Gauge invariancemeans that we can set Pi '\302\243i

==
Pi'\302\243 f == 0, in which case)

(8.245))
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kI)

P\037) PI) P\037) PI)

Figure 8.4 Compton scattering. Twodiagrams contribute to the ampli-
tude, to lowest order.)

M simplifies to

M == e2
(27r)454(pj+ kj -Pi - k z ) (

EjkiEi +
EzkjEj

)
.

2ki .Pi 2Pi.k j)

(8.246))

We now set)

Sji== _j(27r)4J4(pj+ kj -Pi - ki)Tji,) (8.247))

so that the crosssectionis given by equation (8.228).After a little work, and
making useof momentum conservation,we find that)

JTjil
2 == e4

(4(fi off)2_ 2 + Pi okf + Pi oki

) .
Pi .k i Pi .kj

This is all that is requiredto calculate the crosssectionin any desiredframe.
Again, this derivation appliesregardlessof the initial electron spin.

The same schemecan be appliedto a wide range of relativistic scattering
problems.In all casesthe spacetimealgebraformulation provides a simplerand
clearer method for handling the spin, as it does not force us to work with a
preferredbasisset.In section14.4.1the same formalism is appliedto scattering
from a blackhole.At somepoint, however, it is necessaryto face questionsof
secondquantisation and the construction of a relativistic multiparticle quantum

theory. This is discussedin the following chapter.)

(8.248))

8.6Notes)

A significant amount of new notation was introduced in this chapter, relating
to how spinorsare handledin spacetimealgebra.Much of this is important in

later chapters,and the most useful resultsof this approach are summarised in

table 8.3.
Quantum mechanics has probably been the most widely researchedapplica-

tion of geometric algebrato date.Many authors have carriedout investigations
into whether the spacetimealgebraformulation of Dirac theory offersany deeper
insights into the nature of quantum theory. Among the most interesting of these
are Hestenes'work on zitterbewegung (1990),and his comments on the nature)
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Pauli spinors)

Pauli operators)

Pauli observables)

Diracspinors)

Diracoperators)

Diracequation)

Diracobservables)

Plane-wavestates)

(
aO + ia3

)
0 k

I\037)
== 2 + . 1 +--7

\037

== a + a IUk-a 'ta)

a-kl\037)
+--7 O'k\0370'3

il\037)
+--7 \037I0'3 ==

j\037

(\037I\037/)
+--7

(\037t\037/)q
==

\037(\037t\037'
+ 0'3\037t\037/0'3)

p ==
\037\037

t

s ==
\037\0370'3\037t)

(
1</\302\273

)1\"7)

+--7
\037

==
cP + \"70'3)

iJ-t 1 \037 ) +--7
\037 J-t \037\037O

jl\037)
+--7 \037i0'3

i51\037) +--7
\0370'3

(1/JI\037/)
+--7

(;j;\037/)q)

\\l\037I0'3
-

eA\037
=

m\037\037o)

peii3 ==
\037;j;

S ==
\037i0'3\037)

-J ==
\037\037o\037

s ==
\037\0373 \037)

\037(+) (x) == L(p)<f!e-i0'3P'X

\037(-) (x) == L(p)<f!0'3e\0370'3P'X

L(p) ==
(p\037o + m)/V 2m(E+ m))

Table8.3 Quantum statesand operators.Thistable summarises the main
features of the spacetimealgebrarepresentationof Pauli and Diracspinors
and operators.)

of the electroweakgroup (1982b).Many authors have advocated spacetimeal-

gebraas a better computational tool for Dirac theory than the explicit matrix
formulation (augmented with variousspinsum rules).A summary of theseideas
is contained in the paper 'Electronscattering without spin sums' by Lewis et
al. (2001).Elsewhere,a similar approachhas beenappliedto modellinga spin
measurement (Challinor et al. 1996)and to the resultsof tunnelling experiments
(Gull et al. 1993b).Much of this work is summarised in the review 'Spacetime
algebra and electron physics'by Doran et al. (1996b).

There is no shortage of goodtextbooksdescribingstandard formulations of
Dirac theory and quantum electrodynamics.We particularly made use of the
classictexts by Itzykson & Zuber (1980),and Bjorken& Drell (1964).For a
detailedexpositionof the solution of the Dirac equation in various backgrounds
one can do little better than Greiner'sRelativistic Quantum Mechanics(1990).)
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Also recommendedis Grandy'sRelativistic Quantum Mechanicsof Leptons and
Fields(1991)which, unusually, doesnot shy away from the more problematic
areasof the conceptualfoundations of quantum field theory.)

8.7Exercises)

8.1 The spin matrix operators8k are defined as a set of 2 x 2 Hermitian
matrices satisfying the commutation relations [Si,8j]== inEijk8k. Given
that 83 is defined by)

83 = A
G \0371)')

show that the remaining matricesare unique, up to an overall choice
of phase. Find A and show that we can choosethe phase such that

Sk == n/2ak.
8.2 Verify that the equivalencebetween Pauli spinorsand even multivectors

defined in equation (8.20)is consistentwith the operatorequivalences)

o-kl\037)
\037 Uk\037U3 (k == 1,2,3).)

8.3 Supposethat two spin-1/2states are representedby the even multivec-
tors cP and \037, and the accompanyingspinvectors are)

- -
81 ==

cPU3cP and 82 ==
\037U3\037')

Prove that the quantum mechanicalformula for the probability of mea-

suring state cP in state
\037

satisfies)

l(cPl\037)12 IP =
(4)14>)('l/JI'l/J)

= '2(1+ cos(0)))

where 0 is the angle between 81 and 82.
8.4 Verify that the Pauli inner productis invariant under both spatialrota-

tions and gauge transformations (i.e.rotations in the IU3 plane applied
to the right of the spinor\037). Repeat the analysis for Dirac spinors.

8.5 Prove that the angular momentum operatorsLB == jB.(x/\\V) satisfy)

[LB1, LB2] == -jLBlxB2 .)

8.6 Prove that, in any dimension,)

[B.(x/\\ \\7)
- !B,\\7] == 0,)

where B is a bivector.)
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8.7 The Majorana representationis definedin terms of a setof real matrices.
Prove that the complexconjugation operation in this representationhas
the spacetimealgebraequivalent)

1\037)MaJ
+-+ \037U2'

Confirm that this anticommutes with the operation of multiplying by

the imaginary.
8.8 Prove that the associatedLegendrepolynomials satisfy the following

recursion relations:)
dpm(x)(1-x2

)
\037x

+ mxPzm(x) = -(1-X
2)1/2Pt+1(x),

(1-x2
)
dP[m(x)_ mxPzm(x) = (1-X

2)1/2(l+ m)(l-m + l).Pzm-l(x).dx

8.9 Prove that the sphericalmonogenicssatisfy

J n
( mt m'

)
\302\243mm'\302\243 (l+m+1)!dH 'l/J[ 'l/J[' q = U ull'47r

(l _ m)!
.)

8.10) From the result of equation (8.248),show that the crosssectionfor

scatteringof a photon of a free electron (initially at rest) is determined
by the Klein-Nishina formula

d 2

( )
2

( )
a a Wi wi Wi 2-==-- -+-+4(Ef'Ei)-2.

dO 4m2
wi Wi Wf)
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Multiparticlestatesand
quantum entanglement)

The previous chapter dealt with the quantum theory of single particles in a

backgroundfield. In this chapterwe turn to the study of multiparticle quantum

theory. In many ways, this subjectis even more strange than the single-particle
theory, as it forces us to face up to the phenomenonof quantum entanglement.
The basicideais simpleenoughto state.The joint state of a two-particlesystem
is describedby a tensorproduct state of the form 11fJ) Q9

14\302\273.
This is usually

abbreviated to
11fJ)I4\302\273. Quantum theory allowsfor linear complexsuperpositions

of multiparticle states,which allowsus to considerstateswhich have no classical
counterpart. An exampleis the spinsinglet state)

1
Ie:)=

y'2(IO)ll)-11)10)).) (9.1))

Statessuch as these are referred to as being entangled. The name reflects the
fact that observablesfor the two particlesremain correlated,even if measure-
ments are performed in such a way that communication between the particles
is impossible.The rapidly evolving subjectof quantum information processing
is largely concernedwith the propertiesof entangled states, and the prospects
they offer for quantum computation.

Quantum entanglement isall around us, though rarely in a form we can exploit.
Typically,a state may entangle with its environment to form a new pure state.
(A pure state is one that can be describedby a singlewavefunction, which may
or may not be entangled.)The problem is that our knowledgeof the state of
the environment is highly limited. All we can measure are the observablesof our
initial state.In this casethe wavefunction formulation isof little practical value,
and insteadwe have to considerequations for the evolution of the observables
themselves. This is usually handled by employing a representationin terms of

density matrices.Theseleadnaturally to conceptsof quantum statisticalphysics
and quantum definitionsof entropy.)
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In this chapter we explorehow theseconceptscan be formulated in the lan-

guage of geometric algebra.One of the essentialmysteriesof quantum theory
is the origin of this tensorproductconstruction.The tensorproductis used in

constructing both multiparticle statesand many of the operatorsacting on these
states.So the first challenge is to find a representationof the tensor product
in terms of the geometric product. This is surprisingly simple to do, though

only once we have introduced the ideaof a relativistic configurationspace.The

geometric algebraof such a spaceis calledthe multiparticle spacetime algebra
and it provides the ideal algebraic structure for studying multiparticle states
and operators.This has applicationsin a wealth of subjects,from NMR spec-
troscopyto quantum information processing,someof which are discussedbelow.
Most of these applicationsconcern non-relativistic multiparticle quantum me-
chanics.Later in this chapter we turn to a discussionof the insights that this
new approachcan bring to relativistic multiparticle quantum theory. There we
find a simple,geometricencodingof the Pauli principle,which opensup a route

through to the full quantum field theory.)

9.1Many-body quantum theory)

In orderto set the context for this chapter,we start with a reviewof the basics
of multiparticle quantum theory. We concentrate in particular on two-particle
systems,which illustrate many of the necessaryproperties. The key concept
is that the quantum theory of n-particlesis not describedby a set of n single
wavefunctions. Instead, it is describedby one wavefunction that encodesthe
entire state of the systemof n particles.Unsurprisingly, the equations governing
the evolution of such a wavefunction can be extraordinarily complex.

For a wide range of problemsone can separateposition degreesof freedom
from internal (spin) degreesof freedom. This is typically the casein non-
relativistic physics,particularly if the electromagnetic field can be treated as
constant. In this casethe positiondegreesof freedomare handled by the many-
bodySchrodingerequation. The spindegreesof freedomin many ways represent
a cleaner systemto study, as they describethe quantum theory of n two-state

systems.This illustratesthe two most important features of multiparticle quan-
tum theory: the exponential increasein the sizeof state space,and the existence
of entangled states.)

9.1.1The two-bodySchrodingerequation

Two-particlestates are describedby a single wavefunction 1/1(rl,r2)'The joint
vectors (rI,r2)definean abstractsix-dimensionalconfigurationspaceoverwhich

1/1 definesa complex-valuedfunction. This sort of configurationspaceis a useful
tool in classicalmechanics, and in quantum theory it is indispensable.The)
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kinetic energy operatoris given by the sum of the individual operators:
\037 n

2Vi n2V\037K == - (9.2)2mI 2m2
The subscriptsrefer to the individual particles,and mi is the massof particlei.
The two-particle Schrodingerequation is now

,; T> 81j;
== _ n

2V 2
n
2V 2

\" It
at 2ml

l
'lj;
-

2m2
2

'1j; + V(rI,r2)'Ij;.

As a simpleexample,considerthe bound state Coulombproblem)

(9.3))

n?Vi
'lj;

_ n?V\037
'Ij;

_ ql q2
'Ij;

= E'Ij; (9.4)2ml 2m2 47rEor
'

where r is the Euclideandistancebetween the pointsrl and T2. This problem is
separatedin a similar manner to the classicalKeplerproblem (seesection3.2).
We introduce the vectors)

R Tl T2T == rl -T2, - == -+ -,
J-L ml m2)

(9.5))

where
f.-l

is the reducedmass. In terms of these new variables the Schrodinger
equation becomes)

n?V;
'Ij;

_ 'h
2v'k

'Ij;
_ ql q2

'Ij;
= E'Ij;.

2f.-l 2M 47rEor

We can now find separablesolutions to this equation by setting)

(9.6))

r\037

/)

1j;(rl,T2) == rjJ(r)\\I!(R).) (9.7))

The wavefunction W satisfies a free-particle equation, which correspondsclassi-
cally to the motion of the centre of mass. The remaining term, rjJ( r), satisfies
the equivalentsingle-particleequation, with the massgiven by the reducedmass
of the two particles.

This basicexampleillustrateshow quantum mechanicsaccounts for multipar-
ticle interactions.There is a singlewavefunction, which simultaneouslyaccounts
for the propertiesof all of the particles.In many casesthis wavefunction de-
composesinto the productof a number of simplerwavefunctions,but this is not

always the case.One can construct states that cannot be decomposedinto a
single directproductstate.An important exampleof this ariseswhen the two

particlesin question are identical.In this caseone can see immediately that if

1)J(rI,r2)is an eigenstateof a two-particle Hamiltonian, then so to is 1j;(T2,TI).
The operator that switchesparticlelabelslike this is calledthe particleinter-

A

changeoperatorP,and it commuteswith all physically-acceptableHamiltonians.
Sinceit commutes with the Hamiltonian, and squaresto the identity operation,

A

there are two possibleeigenstatesof P.Theseare)

1j;\037
== 1j;(rl,T2)::I::1j;(r2,TI)') (9.8))
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Thesetwo possibilitiesare the only onesthat arisephysically, and give riseto the
distinction between fermions (minus sign) and bosons(plussign).Herewe see
the first indications of some new physical possibilitiesentering in multiparticle
interactions.Quantum theory remains linear, so one can form complexsuper-
positionsof the n-particlewavefunctions. Thesesuperpositionscan have new

propertiesnot presentin the single-particletheory.)

9.1.2Spin states)

Ignoring the spatialdependenceand concentrating insteadon the internal spin

degreesof freedom,a spin-l/2state can be written as a complexsuperpositionof

'up'and 'down'states,which we will denoteas 10)and 11).Now supposethat a
secondparticleis introduced,so that system1is in the state I'l/J) and system2 is

in the state
14\302\273.

The joint state of the systemis describedby the tensorproduct
state)

j\\l1)
==

I'l/J) 014\302\273,) (9.9))

which is abbreviated to
1'l/J)I4\302\273.

The total set of possiblestates is describedby

the basis)

100)== 10)10),

110)== 11)10),)

101)== 10)11),
111)==

1
1)11).)

(9.10))

Thisillustratesan important phenomenonof multiparticle quantum theory. The
number of available states grows as 2n

, so large systemshave an enormously
larger state spacethan their classicalcounterparts.Superpositionsof thesebasis
states will, in general, producestateswhich cannot be written as a singletensor

productof the form
1'l/J)I4\302\273.

Such states are entangled.A standardexampleis
the singlet state of equation (9.1).Onefeature of theseentangled states is that

they provide 'short-cuts'through Hilbertspacebetween classicalstates.The

speed-up this can offer is often at the coreof algorithms designedto exploit the

possibilitiesofferedby quantum computation.
A challengefaced by theoristslooking for ways to exploit theseideasis how

best to classifymultiparticle entanglement. The problem is to describeconcisely
the propertiesofa state that are unchangedunder localunitary operations.Local

operationsconsistof unitary transformations appliedentirely to one particle.
They correspondto operationsappliedto a single particle in the laboratory.
Featuresof the state that are unchanged by these operationsrelate to joint
propertiesof the particles,in particular how entangled they are.

To date, only two-particle (or 'bipartite')systemshave beenfully understood.
A general state of two particlescan be written)

W == Laijli)0Ij),) (9.11))

2,))
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wherethe Ji) denotesomeorthonormal basis.The Schmidtdecomposition(which
is little more than a singular-valuedecompositionof aij)tells us that one can
always construct a basissuch that)

W == LPili')(8}li').) (9.12))
i)

The Pi are all real parametersthat tell us directly how much entanglement is

present. Theseparametersare unchanged under local transformations of the
state W. An important exampleof the Schmidt decomposition,which we shall
revisit frequently, is for systemsof two entangled spinors.For thesewe find that
a general state can be written explicitly as)

J1/J) ==pI/2eix (cos(a/2)eiT/2 (
cos(OI/2)e\037i<PI/2

) (8) (
cos(02/2)e\037i<P2/2

)sin(01/2)e2<Pl /2 sin(02/2)eZ<P2 /2

(
.

(0 /2) -iq;I/2

) (
.

(0 /2) -i<P2/2

))
+ sin(a/2)e-iT/2

SIn 1 e
_ (8)

SIn 2 e . . (9.13)-cos(Ol/2)eZ<Pl/2 -cos(02/2)eZ<P2/2)

In this decompositionwe arrange that 0 < a < 'if /4, so that the decomposition
is unique (save fO\037' certain specialcases).)

9.1.3Pure and mixedstates)

Sofar the discussionhas focusedentirely on pure states,which can be described
in terms of a single wavefunction. For many applications,however,such a de-
scription is inappropriate. Suppose,for example,that we are studying spin
states in an NMR experiment.The spinstates are only partially coherent, and
one works in terms of ensembleaverages. For example,the average spinvector
(or polarisation)is given by)

1 n

p == -LSi.n i=l)
(9.14))

Unlessall of the spinvectors are preciselyaligned (a coherent state),the polar-
isation vector will not have unit length and so cannot be generatedby a single
wavefunction. Instead,we turn to a formulation in terms of density matrices.
The density matrix for a normalised pure state is)

p == 11/;)(1/;1,) (9.15))

which is necessarilya Hermitian matrix. All of the observablesassociatedwith

the state I1/;) can be obtainedfrom the density matrix by writing)

(1/; I Q j 1/;) == t r (pQ) .) (9.16))
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For an incoherent mixture (a mixed state) the density matrix is the weighted
sum of the matrices for the pure states:)

n)

P ==
LPil\037i)(\037il.
i=1)

(9.17))

The real coefficientssatisfy)
n)

LPi == 1,
i=1)

(9.18))

which ensuresthat the density matrix has unit trace.The definition of P ensures
that all observablesare constructedfrom the appropriateaverages of the pure
states.In principle,the state of any systemis describedby a Hermitian density
matrix, which is constrainedto be positive-semidefiniteand to have unit trace.
All observablesare then formed accordingto equation (9.16).

The needfor a density matrix can be seenin a secondway, as a consequenceof

entanglement. Supposethat we are interestedin the state of particle1,but that

this particlehas beenallowedto entangle with a secondparticle2, forming the

pure state I\037).
The density matrix for the two-particlesystemis again described

by equation (9.15).But we can only perform measurements of particle1.The
effectivedensity matrix for particle1is obtained by performing a partial trace
of p to trace out the degreesof freedomassociatedwith particle2.We therefore
define)

PI == tr2P,) (9.19))

where the sum runs over the spaceof particle 2.One can easily check that, in

the casewhere the particlesare entangled, PI is no longer the density matrix

for a pure state. The most extremeexampleof this is the singlet state (9.1)
mentioned in the introduction. In the obvious basis, the singlet state can be
written as)

1
jE:)

=
y'2

(O,1,-1,O)t.) (9.20))

The density matrix for this state is)

P = Ic)(cl=!2)

o 0
o 1
o -1
o 0)

o 0
-1 0
1 0
o 0)

(9.21))

This is appropriatefor a pure state, as the matrix satisfies p2 == p. But if we

now form the partial trace over the secondparticlewe are left with)

A 1
(
1

PI ==

'2 0)
\037)

.) (9.22))
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This is the density matrix for a totally unpolarisedstate, which is to beexpected,
since there can be no directional information in the singlet state. Clearly, PI
cannot be generatedby a single-particlepure state.)

9.2Multiparticlespacetimealgebra
The key to constructing a suitablegeometric framework for multiparticle quan-
tum theory involves the full, relativistic spacetimealgebra.This is becauseit is
only the relativistic treatment which exposesthe nature of the (Ti as spacetime
bivectors. This is crucial for determining their algebraic propertiesas further

particlesare added. The n-particlespacetimealgebra is the geometric algebra
of 4n-dimensionalrelativistic configurationspace.We call this the multiparticle
spacetimealgebra.A basis is for this is constructedby taking n sets of basis
vectors {/\037}' where the superscriptlabelsthe particlespace.Thesesatisfy the

orthogonality conditions)

I\037I\037
+

,\037,\037
==

{
0

21]p,v

which are summarisedin the single formula

a b \037abIp,
.Iv == U 7]p,v .)

a:j:b
,

a==b)
(9.23))

(9.24))

There is nothing uniquely quantum-mechanical in this construction.A system
of three classicalparticlescould be describedby a set of three trajectoriesin a

singlespace,or by one path in a nine-dimensionalspace.The extradimensions
label the propertiesof each individual particle,and are not to be thought of as
existing in anything other than a mathematical sense.One unusual feature con-

cerningrelativistic configurationspaceis that it requiresa separatecopy of the
time dimension for each particle,as well as the three spatialdimensions.This
is requiredin order that the algebrais fully Lorentz-covariant. The presence
of multiple time coordinatescan complicate the evolution equations is the rela-
tivistic theory. Fortunately, the non-relativistic reduction doesnot suffer from

this problemas all of the individual time coordinatesare identifiedwith a single
absolute time.

As in the single-particlecase,the evensubalgebraofeachcopyof the spacetime
algebradefinesan algebrafor relativespace.We performall spacetimesplitswith

the vector 10,using a separatecopy of this vector in each particle'sspace.A
basisset of relative vectors is then defined by)

a a a
(Ti == Ii10') (9.25))

Again, superscriptslabel the particlespace in which the object appears,and

subscriptsare retained for the coordinate frame. We do not enforce the sum-
mation convention for superscriptedindicesin this chapter. If we now consider)
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bivectors from spaces1and 2, we find that the basiselements satisfy
12 112212212211 2 IlTi lTj

== '1ilo'1jlO== '1iIjlOlO== '1jlOli'10==
lTjlTi') (9.26))

The basiselementscommute, rather than anticommute. This solvesthe problem
of how to representthe tensor product in geometric algebra. The geometric
product lTflT\037

is the tensorproduct. Sincesingleparticlestatesare constructed
out of geometricalgebraelements,this givesa natural origin for tensorproduct
states in the multiparticle case.This property only holdsbecausethe relative
vectors lTf are constructedas spacetimebivectors.

The pseudoscalarfor each particlespacei$,clefined in the obviousway, so that)

Ia -
\"\"Va \"\"Va \"\"Va \"\"Va-

fO f1 /2 f3') (9.27))

Relative bivectors in each space take the form IalTk . Wherever possiblewe
abbreviate theseby droppingthe first particlelabel,so that)

IlT%
== IalTk') (9.28))

The reverse operation in the multiparticle spacetimealgebrais denotedwith a
tilde, and reversesthe order of productsof all relativistic vectors. Wherever
possiblewe usethis operation when forming observables.The Hermitian adjoint
in each spacecan be constructedby inserting appropriatefactors of 18.)

9.2.1Non-relativisticstatesand the correlator)
In the single-particletheory, non-relativisticstatesare constructedfrom the even
subalgebraof the Pauli algebra.A basisfor theseisprovided by the set {I,IlTk}'
When forming multiparticle states we take tensor productsof the individual

particlestates.Sincethe tensorproductand geometric product are equivalent
in the multiparticle spacetimealgebra,a completebasisis provided by the set)

{I,IlTk, IlT\037, IlT}IlT\037}.) (9.29))

But these basis elements span a 16-dimensionalreal space,whereas the state
space for two spin-l/2particlesis a four-dimensionalcomplexspace-only

eight real degreesof freedom. What has gone wrong? The answer lies in our
treatment of the complexstructure.Quantum theory works with a single unit

imaginary i,but in our two-particle algebrawe now have two bivectors playing
the role of i:

IlT\037
and

IlT\037. Right-multiplication of a state by either of these
has to result in the same state in order for the geometric algebra treatment to
faithfully mirror standardquantum mechanics.That is, we must have)

\037IlT\037
==

\037IlT5.) (9.30))

Rearranging this, we find that

\037

==
-\037IlT\037 IlT5 ==

\037!(1
-

IlT\037 IlT\037).) (9.31))
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This tellsus what we must do. If we define)

E ==
\037 (1- IlT1IlT5),) (9.32))

we find that)
\037

E2
== E.) (9.33))

Soright-multiplication by E is a projection operation. If we include this factor
on the right of all states we halve the number of (real) degreesof freedom from

16to the expected8.
The spacetimealgebrarepresentationof a direct-producttwo-particle Pauli

spinor is now given by 'ljJ

I
cjJ2 E, where

'ljJ

1 and cjJ2 are spinors(even multivectors)
in their own spaces.A completebasisfor two-particlespinstates is provided by)

10)10)\037 E,
10)11)\037 -IlT\037 E,
11)10)\037 -IlT\037 E,
11)11)\037

IlT\037 IlT\037
E.)

(9.34))

We further define)

J ==
EIlT\037

==
EIlT\037

==
\037(IlT1 + IlT\037),) (9.35))

so that)

J2 == -E.) (9.36
))

Right-sidedmultiplication by J takeson the role of multiplication by the quan-
tum imaginary i for multiparticle states.

This procedureextendssinlply to higher multiplicities. All that is requiredis

to find the 'quantum correlator'En satisfying)

EnIlT\037
==

EnIlT\037
== In for all a, b.) (9.37))

En can be constructedby picking out the a == 1space,say, and correlating all

the other spacesto this, so that)

n

En == II \037
(1- IlTj IlT\037).

b=2)

(9.38))

The value of En is independentof which of the n spacesis singledout and
correlatedto.The complexstructure is defined by)

In ==
EnIlT\037,) (9.39))

where IlT3 can be chosen from any of the n spaces.To illustrate this consider)
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the caseof n == 3, where)

E3 ==
\037(1

- Iu1Iu\037)(1
- Iu1Iu\037)-1{1- Iul Iu2-Iul Iu3 - Iu2Iu3

)-4 33 33 33) (9.40))

and) .f)

J3 == i(Iu1+ Iu\037 + Iu\037
- Iu1Iu\037 Iu\037).

Both E3 and J3 are symmetric under permutations of their indices.)

(9.41))

9.2.2Operatorsand observables
All of the operatorsdefinedfor the single-particlespacetimealgebraextendnat-
urally to the multiparticle algebra.In the two-particle case,for example,we
have)

iak Q911\037)
\037 Iul\037,

I Q9 iakl\037) \037
Iu%\037,)

(9.42)
(9.43))

A

where I is the 2 x 2 identity matrix and a factor of E is implicit in the spinor\037.

For the Hermitian operatorswe form, for example,)
A All 1ak Q9 II\037)

\037 -Iuk\037J == uk\037u3') (9.44
))

This generalisesin the obviousway, so that

1Q9\"'Q9akQ9\"'Q9II\037)\037
Uk\037u\037.) (9.45))

We continue to adopt the j symbol as a convenientshorthand notation for the
complexstructure,so)

il\037)
\037

j\037
==

\037J
==

\037Iu\037.) (9.46
))

The quantum inner productis now)

(\037Icp)
\037 2n-1

((cpE;j;)- (cpJ;jJ)j).) (9.47))

The factor of E in the real part is not strictly necessaryas it is always presentin
the spinors,but including it doesprovide a neat symmetry between the real and
imaginary parts. The factor of 2n-I guarantees completeconsistencywith the
standardquantum inner product,as it ensuresthat the state E has unit norm.

Supposethat we now form the observablesin the two-particle case.We find

that)

(\037I ak Q9 II\037) \037 -2Iul.(\037J\037)) (9.48))
and)

(\037I aj Q9 ak I\037)
\037 -2{Iu}Iu%).(\037E\037).) (9.49))
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All of the observablesone can construct are therefore contained in the multivec-- -
tors 1j;E1j; and 1j;J1j;.This generalisesto arbitrary particlenumbers.To seewhy,

we use the fact that any density matrix can be expandedin terms of products
of Hermitian operators,as in the two-particle expansion)

1 A A A.......
P =

l\"p)(\"pl
=

4\"
(101+ ak ak 0 1 + bk 1 0 ak + Cjk aj 0 ak)') (9.50))

The various coefficientsare found by taking inner productswith the appropriate
combinationsof operators.Each of thesecorrespondsto picking out a term in- -
1jJE1j; or 1j;J1j;.If an even number of Pauli matrices is involved we pickout a- --
term in 1j;E1j;,and an odd number picksout a term in 1j;J1j;.In general, 1j;E1j;

contains terms of grades0, 4, ...,and 1j;J1j;contains terms of grade2, 6, ....
Theseaccount for all the coefficientsin the density matrix, and hence for all the
observablesthat can be formed from 1j;. - -

An advantage of working directly with the observables1j;E1j; and 1j;J'lj; is that

the partial traceoperation has a simpleinterpretation. If we want to form the

partial traceover the ath particle,we simply removeall terms from the observ-
abieswith a contribution in the ath particlespace.No actual trace operation is

required.Furthermore, this operation of discardinginformation is preciselythe
correct physical picture for the partial traceoperation-we are discardingthe

(often unknown) information associatedwith a particle in one or more spaces.
A minor complication in this approach is that 1j;J1j; givesrise to anti-Hermitian

terms, whereas the density matrix is Hermitian. One way round this is to cor-
relate all of the pseudoscalarstogether and then dualise all bivectors back to
vectors. This is the approachfavoured by Havel and coworkersin their work on
NMR spectroscopy.Alternatively, one can simply ignore this feature and work- -
directly with the observables'lj;E1j; and 1j;J1j;.When presentedwith a general
density matrix one often needsto pull it apart into sumsof terms like this any-

way (the productoperatorexpansion),so it makes senseto work directly with

the multivector observableswhen they are available.)

9.3Systemsof two particles
Many of the precedingideasare most simply illustrated for the caseofa systemof
two particles.For these,the Schmidt decompositionof equation (9.13)provides
a useful formulation for a general state.The geometric algebra versionof this is
rather more compact,however,as we now establish.First, we definethe spinor)

1j;(e,q;) == e-<jJ 1U3/2 e-()!U2/2
.) (9.51))

We alsoneeda representationof the state orthogonal to this, which is)

(
sin(e/2)e-i<jJ/2

)_ cas(()/2)ei<jJ/2
+--+\"p( (), 1>)IlT2') (9.52))
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Now we are in a positionto construct the multiparticle spacetimealgebraversion
of the Schmidt decomposition.We replace

equat\\\037on
(9.13)with

'ljJ =//2(cos(a/2)'ljJ1(flt,<pd'ljJ2({h \302\2532)e

Jr/2

+ sinea/2)'ljJ1(191, <pd'ljJ2 (192, cP2)IlT\037 IlT\037e

-Jr
/2)e

JxE

\037pI/2'ljJI(()I' cPI)'ljJ2(()2,cP2)e
JT/2

(cos(a/2)+ sin(a/2)IlT\037 IlT\037)
eJxE. (9.53))

We now define the individual rotors)

R \037 'ljJ(()I,cPI)e
I0'3T/4, S \037 'ljJ(()2,cP2)e

I0'3T/4
,) (9.54

))

so that the wavefunction
'ljJ simplifiesto)

'ljJ
\037 pl/2RIS2(cos(a/2)+ sin(a/2)IlT\037IlT\037)eJXE.) (9.55))

This gives a compact,general form for an arbitrary two-particlestate.The de-
greesof freedomare held in an overallmagnitude and phase,two separaterotors
in the individual particlespaces,and a singleentanglement anglea.In total this

givesnine degreesof freedom,so one must be redundant.This redundancy lies
in the single-particlerotors.If we take)

R I---t ReI0'3(3 8 I---t 8e-10'3(3
,) (9.56))

then the overallwavefunction 'ljJ
is unchanged. In practicethis redundancy is not

a problem,and the form of equation (9.55)turns out to be extremely useful.)

9.3.1Observablesfor two-particlestates
The individual rotors R I and 82 generate rotations in their own spaces.These
are equivalent to local unitary transformations. The novel features associated
with the observablesfor a two-particlesystemarisefrom the entanglement angle
a.To study this we first form the bivector observable 'ljJJ'ljJ:

'ljJJ;j; \037RI S2(cos(a/2) + sin(a/2)IlT\037 IlT\037)
J(cos(a/2) + sin(a/2)IlT\037 IlT\037)

RI52

\037!RI82(cos2(a/2)-
sin2(a/2))(IlT\037 + IlT\037)RI52

==\037 cos(a)((RIlT3R)I+ (8IlT35)2), (9.57))

wherewe have assumedthat p == 1.This result extendsthe definition of the spin
bivector to multiparticle systems.One can immediately seethat the lengths of
the bivectorsare no longer fixed,but insteaddependon the entanglement. Only
in the caseof zero entanglement are the spinbivectors unit length.

The remaining observablesare contained in)

'ljJE;jJ
=!R182

(1- IlT\037IlT\037 + sinea) (IlT\037IlT\037
-

IlT\037
IlT\037))

jp82
.) (9.58))
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To make this result clearerwe introduce the notation)

Ak == RIukR, Bk == SIukS,) (9.59))

so that)

2'lj;E,(j; == 1-
A\037B\037 + sin(a) (A\037B\037

-
A\037 Bf).) (9.60

))

The scalarpart confirms that the state is normalised correctly. The 4-vector

part contains an interesting new term, which goesas
A\037B\037

-Ai Br.None of the
individual AI, A 2, BI , or B2 bivectors isaccessibleto measurement in the single-
particle caseas they are not phase-invariant. But in the two-particle casethese
terms do start to influencethe observables.This is one of essentialdifferences
betweenclassicaland quantum modelsof spin.)

9.3.2Densitymatricesand probabilities
Now that we have all of the observables,we have also found all of the terms in

the density matrix. Of particular interest are the resultsof partial traces,where
we discardthe information associatedwith one of the particles.If we throw out

all of the information about the secondparticle,for example,what remains is
the single-particledensity matrix)

P== \037(I+p),) (9.61))

where the polarisationvector is given by)

p == cos(a)Ru3R .) (9.62))

This vector no longer has unit length, so the density matrix is that of a mixed
state. Entanglement with a secondparticlehas led to a loss of coherenceof
the first particle.This process,by which entanglement producesdecoherence,is

central to attempts to explainthe emergenceof classicalphysicsfrom quantum

theory.
For two particleswe seethat there is a symmetry between the degreeof en-

tanglement. If we perform a partial trace over particle1,the polarisation vector
for the secondparticlealso has its length reducedby a factor of cos(a).More

generally the picture is lesssimple,and much work remains in understanding
entanglement beyond the bipartitecase.

A further application of the precedingis to calculate the overlap probability
for the inner productof two states.Given two normalisedstates we have)

P('lj;,cP)
==

1 ('lj;lcP) 1

2 ==
tr(p1};pcjY).) (9.63))

- -
The degreesof freedom in the density matrices are contained in 'lj;E'lj; and 'lj;J'lj;,

with equivalentexpressionsfor cPo When forming the inner product between two)
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density matrices,the only terms that can ariseare inner productsbetween these
observables.A little work confirms that we can write, in the n-particlecase,)

P(7jJ, <p)
== 2n-2((7jJEr(f)(<PE\037))

- 2n-2((7jJJ;j;)(<PJ\037)).) (9.64))

Expressionslike this are unique to the geometric algebraapproach. The ex-
pressionconfirmsthat once one has found the two multivector observablesfor a
state, one has all of the available information to hand.

As an example,supposethat we are presentedwith two separablestates, 7jJ

and <p. For separablestates we know that the observablestake the forms)

27jJJ;j; == Al + B2
,) 27jJE;j; == 1- A IB2)

(9.65
))

and)

2<pJ\037
== C1+ D2

,) 2<PE\037
== 1-C1D2

,) (9.66))

where each of the A 1, B2, CI and D2 are unit bivectors.We can now write)

P(7jJ, <p)
==

\037 ((1-Al B2)(1-CID2)- (AI + B2)(CI + D2))
==

\037(1
+ A.CB.D-A.C-B.D)

== !(l-A.C)!(l-B.D).) (9.67))

This confirms the probability is the product of the separatesingle-particleprob-
abilities.If one of the states is entangled this result no longer holds,as we see
in the following section.)

9.3.3The singletstate)

As a further exampleof entanglement we now study some of the propertiesof
the non-relativistic spinsinglet state.This is)

1
jE;)

=
J2(IO)11)-11)10)).) (9.68

))

This is representedin the two-particle spacetimealgebra by the multivector)

1
(

I 2
)E: = J2 lU2-lu2 E.

The propertiesof E are more easily seenby writing

c ==
\037 (1+ Icr\037 Icr\037)! (1+ Icr1Icr5)V2 Icr\037, (9.70)

which shows how E contains the commuting idempotents(1+ Icr\037 Icr\037)/2 and
(1+ Icr\037 IO'\037)/2. Identifying theseidempotentstellsus immediately that

Icr\037c
== !(Icr\037

-
IO'\037)! (1+ Icr\037 Icr\037) V2IO'\037

== -
Icr\037E (9.71))

(9.69))

and)

Icr\037c
==

-Icr\037c.) (9.72
))
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If follows that)

Iuic==
lu\037lu\037c

==
-Iu\037Iu\037E

==
Iu\037Iu\037c

== -luic.) (9.73))

Combining theseresults,if M1 is an arbitrary even element in the Pauli algebra
(MI == Mo + Mkluk), E satisfies

Mic== if2c. (9.74))

Here MI and M2 denote the same multivector, but expressedin space 1or

space2.
Equation (9.74)provides a novel demonstration of the rotational invarianceof

c.Undera joint rotation in two-particlespace,a spinor7/J transforms to R 1
R27/J,

where RI and R2 are copiesof the samerotor but acting in the two different

spaces.From equation (9.74)it follows that, under such a rotation, E transforms
as)

E f---+ RIR2c == R1Aic == c,) (9.75))

so that c is a genuine two-particle rotational scalar.
If we now form the observablesfrom E we find that

3
2cE\342\202\254

== 1+ LIulIu\037

k=l)
(9.76))

and)

EJE == O.) (9.77))

The latter has to hold, as there are no rotationally-invariantbivectorobservables.
Equation (9.76)identifiesa new two-particle invariant, which we can write as

3

LIulIu\037
== 2EE -1.

k=l)
(9.78))

This is invariant under joint rotations in the two particlesspaces.This multi-

vector equation contains the essenceof the matrix result
3

\037 A a A b 2 \037a \037b \037a \037b

\037 a-k a' a-k b
' ==

Ub' ua' - ua' ub\"

k=I)
(9.79))

where a, b, a',b' labelthe matrix components.In standardquantum mechanics
this invariant would be thought of as arising from the 'innerproduct'of the spin
vectors o-J and 0-;.Here,we have seenthat the invariant arisesin a completely
different way, as a component of the multivector cE.

The fact that cJ\342\202\254
== 0 confirms that the reduceddensity matrix for either

particle spaceis simply one-half of the identity matrix, as establishedin equa-
tion (9.22).It follows that all directionsare equally likely. If we align our

measuringapparatusalong somegiven axisand measure the state of particle 1,)
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then both up and down have equal probabilitiesof 1/2.Supposenow that we
construct a joint measurement on the singlet state.We can model this as the
overlap probability between

'ljJ
and the separablestate)

cjJ
== R1S2E.) (9.80

))

Denoting the spindirectionsby)

-
RIu3R== P, SIu3S== Q,) (9.81))

we find that, from equation (9.64),)

P('ljJ,cjJ)
==

(\037(1
-pIQ2)!(1+ IulIu%))

==
\037(1

-p.(Iuk)Q.(Iuk))
==

\037 (1- cos(e))) (9.82))

where e is the angle between the spinbivectors P and Q.SO,for example,the
probability that both measurementsresult in the particleshaving the same spin
(e == 0) is zero, as expected.Similarly, if the measuring devices are aligned,
the probability that particle1is up and particle 2 is down is 1/2,whereas if

there was no entanglement presentthe probability would be the productof the
separatesingle-particlemeasurements (resulting in 1/4).

Someconsequencesof equation (9.82)run counter to our intuitions about
locality and causality. In particular, it is impossibleto reproducethe statistics
of equation (9.82)if we assumethat the individual particlesboth know which

spin state they are in prior to measurement. Thesecontradictions are embodied
in the famous Bellinequalities.The behaviour of entangled stateshas now been
testedexperimentally,and the resultsconfirm all of the predictionsof quantum
mechanics.The resultsare unchanged even if the measurements are performed
in such a way that the particlescannot be in causalcontact. This does not
provide any conflict with specialrelativity, as entangled states cannot be used
to exchangeclassicalinformation at faster than the speedof light. The reason
is that the presenceof entanglement can only be inferred when the separate
measurements on the two subsystemsare compared. Without knowing which

measurements observer 1 is performing, observer 2 cannot extract any useful
classicalinformation from an entangled state.

For many years the propertiesof entangled states were exploredlargely as
a theoretical investigation into the nature of quantum theory. Now, however,
physicistsare starting to view quantum entanglement as a resourcethat can be
controlled in the laboratory. To date our control of entangled states is limited,
but it is improving rapidly, and many predict that before long we will seethe
first viable quantum computersable to exploit this new resource.)
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9.4Relativisticstatesand operators
The ideasdevelopedfor the multiparticle Pauli algebra extendimmediately to
the relativistic domain. A single-particlerelativistic state is describedby an

arbitrary even element of the full spacetimealgebra.Accordingly, a two-particle
state is constructedfrom the tensorproductof two such states.This resultsis a

spaceof of 8 x 8 == 64 real dimensions.Post-multiplyingthe direct-productspace
by the quantum correlator E reducesto 32 real dimensions,which are equiva-
lent to the 16complexdimensionsemployedin standardtwo-particlerelativistic

quantum theory. All the single-particleoperatorsand observablesdiscussedin

section8.2extendin fairly obviousways.
To begin,the individual matrix operatorshave the equivalent action)

1M Q9 II\037)
+rl

1\037 \03716,

I Q9 1M I\037)
+rl

1;\03716,)

(9.83))

A

where I denotesthe 4 x 4 identity matrix. The multiparticle spacetimealgebra
operators commute, as they must in orderto representthe tensor product. The
result of the action of

1\037 \03716, for example,does not take us outsidethe two-

particle state space,sincethe factor of 16on the right-hand sidecommuteswith

the correlator E. The remaining matrix operatorsare easily constructednow,
for example)

iM1v Q9 II\037)
+rl

1\0371\037\037')
(9.84))

The role of multi plication by the unit imaginary i is still played by right- multi-

plication by J, and the individual helicity projectionoperatorsbecome)

75 Q911\037)
+rl -II\037J ==

\037u\037.) (9.85))

Relativistic observablesare alsoconstructedin a similar manner to the single-
particle case.We form geometric products \037E\037, where E is any combination
of 10and 13from either space.The result is then guaranteed to be Lorentz-
covariant and phase-invariant. The first observableto consideris the multivector)

\037\037

==
\037E;j;

== (\037E;j;)0,8+ (\037E\037)4.) (9.86))

The grade-Oand grade-8terms are the two-particlegeneralisationof the scalar+
pseudoscalarcombination

\037\037

== p exp(i(3) found at the single-particlelevel. The
4-vector part generalisesthe entanglement terms found in the non-relativistic
case.This allowsfor a relativistic definition of entanglement, which is important
for a detailedstudy of the relationship between locality and entanglement.

Next, we form two-particle current and spinvectors:)12-:J==
(\037(10 + 10)\037)I,12-S ==
(\037(13 + 13)\037)1')

(9.87)
(9.88))
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(The calligraphicsymbol :Jis usedto avoidconfusionwith the correlatedbivec-
tor J.)The full observableswill contain grade-1and grade-5terms.For direct-
product states the latter are seen to arise from the presenceof a (3 factor in

either of the single-particlestates.Finally, we can also define the spinbivector
S by)

S == ('ljJJ'ljJ)2.) (9.89))

Theseexpressionsshow how easy it is to generalisethe single-particleformulae
to the multiparticle case.)

9.4.1The relativisticsingletstate)

In the non-relativistic theory the spin singlet state has a specialsignificance,
both in beingmaximally entangled, and in its invariance under joint rotations
in the two-particle space.An interesting question is whether we can construct
a relativistic analogue that plays the role of a Lorentz singlet. Recalling the
definition of E (9.69),the property that ensuredE was a singlet state was that)

IO\"iE == -
IO\"\037E,)

k == 1,.. ., 3.) (9.90
))

In addition to (9.90)a relativistic singlet state, which we will denoteas TJ, must

satisfy)

1 2
O\"kTJ

==
-O\"kTJ,) k==I,...,3.) (9.91))

It follows that TJ satisfies)

II I 1 I 2 2 2 12
TJ

==
0\"10\"20\"3TJ

== -0\"30\"20\"1TJ
==

TJ.) (9.92
))

For this to hold, TJ must contain a factor of (1-II12). We can thereforeconstruct
a Lorentz singlestate by multiplying E by (1-1112), and we define)

71 \037 (10\"1 - I0\"2 )!(1- 10\"1 10\"2 )1(1- II12)'/ \037 2 2 2 3 3 2 .) (9.93))

This is normalised so that 2(TJEij) == 1.The propertiesof TJ can be summarised
as)

MITJ == M2
TJ,) (9.94))

where M is an even multivector in either the particle-lor particle-2spacetime
algebra.The proof that TJ is a relativistic invariant now reducesto the simple
identity)

R1
R2TJ == R I

fllTJ ==
TJ,) (9.95))

where R is a single-particlerelativistic rotor.
Equation (9.94)can be seen as originating from a more primitive relation)
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between vectors in the separatespaces.Usingthe result that 16/6commutes
with 1],we can derive)

I I 112211I
J-L 1]'0== I

J-L '0,01],0,0'0
2

( )
1 2

== 10IJ-L10 1]'0
2 2

== I
J-L 1]'0.) (9.96

))

For an arbitrary vector a we can now write)

a11]16== a21],5.) (9.97))

Equation (9.94)follows immediately from equation (9.97)by writing

aIb1
1]== a1b21]1516

== b2a21],515
== b2a2

1].) (9.98))

Equation (9.97)can therefore be viewed as the fundamental property of the
relativistic invariant 1].

The invariant 1]can be usedto construct a seriesof observablesthat are also
invariant under coupledrotations in the two spaces.The first is)

21]Eij== (1-1112)- (Uk u\037
- IUk Iu\037).) (9.99

))

The scalarand pseudoscalar(grade-8)terms are clearly invariants, and the 4-
vectorterm, (uL u\037

-Iu1Iu\037), is a Lorentz invariant becauseit is a contraction
over a completebivector basisin the two spaces.Next we considerthe multivec-
tor)

21]1615iJ== 1615- II
I2/\037/\037

- III2/6r5 -
,\037/\037)

== (r615-/\037r\037)(I- /112
).) (9.100))

The essentialinvariant here is the bivector)

K ==
I\037 /\\rJ-L2 ,) (9.101))

and the invariants from (9.100)are simply K and KI1I2. The bivector K takes
the form of a 'doubling'bivector, which will beencounteredagain in section11.4.

From the definition of K in equation (9.101),we find that

K/\\K == -2/6r5/\037/\037 + (/\037/\037)/\\(rJ,;)
== 2(uku\037

- Iu1Iu%),) (9.102))

which recovers the grade-4invariant found in equation (9.99).The full set of

two-particle invariants constructedfrom K are summarised in table 9.1.These
invariants are regularly employedin constructing interaction terms in multipar-
ticle wave equations.)
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Typeof
Invariant interaction Grade

1 Scalar 0
K Vector 2

KAK Bivector 4
[1[2K Pseudovector 6
[1[2 Pseudoscalar 8)

Table9.1Relativistic invariants in the two-particle algebra.)

9.4.2Multiparticlewave equations)

The questionof how to construct a valid, relativistic, multiparticle wave equation
has troubled physicistsalmost from the moment Diracproposedhis equation.
The question is far from settled,and the current preferred option is to ignore the
question where possibleand insteadwork within the framework of perturbative
quantum field theory. This approach runs into difficulties when analysingbound
states,however, and for theseproblemsthe need for a suitable wave equation
is particularly acute.The main candidatefor a relativistic two-particle system
is the Bethe-Salpeterequation.Written in the multiparticle spacetimealgebra,
this equation is)

. A I . A 2
(J \\1r -m I)(J \\1s -m2) 7jJ (r,8) == T(r,8)7jJ (r,8

)) (9.103
))

where T(r,8) is an integral operatorrepresentingthe interparticle interaction,
and

\\1\037
and \\7; denotevector derivativeswith respectto r l and 82 respectively.

The combinedvector)

x == r1 + 82
==

rM,\037
+ 8M,;) (9.104

))

is the full positionvector in eight-dimensionalconfigurationspace.
One slightly unsatisfactory feature of equation (9.103)is that it is not first-

order.This has led researchersto proposea number of alternative equations,
typically with the aim of providing a more detailedanalysis of two-body bound
state systemssuch as the hydrogen atom, or positronium. One such equation is)

(\\7;7jJ,6 + \\7;7jJ(5)J == (m1 + m2)7jJ.) (9.105))
As well as beingfirst order,this equation also has the requiredproperty that it

is satisfied by directproductsof single-particlesolutions.But a problem is that

any distinction between the particlemasseshas beenlost, sinceonly the total
massenters.A secondcandidateequation, which doeskeepthe massesdistinct,
IS)

(
\\71 \\12

)
\037 + \037 7jJ(x)J == 7jJ(x)(,6+ (5).
m1 m2)

(9.106))
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This equation has a number of attractive features, not leastof which is that the
mass enters in a manner that is highly suggestiveof gravitational interactions.
A potential weaknessof this equation is that the state spacecan no longer be
restrictedto sumsof direct productsof individual states.Insteadwe have to
widen the state spaceto include the entire (correlated)even subalgebraof the

two-particlespacetimealgebra.This doublesthe number of degreesof freedom,
and it is not clear that this doubling can be physical.

Practically all candidatetwo-particle wave equations have difficulties in per-
forming a separationinto centre-of-massand relative coordinates.This is symp-
tomatic of the fact that the centre of masscannot be defined sensiblyeven in

classicalrelativistic dynamics. Usually someapproximation scheme has to be
employedto avoid this problem,even when looking for bound state solutions.
While the question of finding a suitablewave equation remains an interesting
challenge,one should be wary of the fact that the massterm in the Diracequa-
tion is essentiallya remainder from a more complicatedinteraction with the

Higgs boson.The electroweaktheory immediately forcesus to considerparticle
doublets,and it could be that one has to considermultiparticle extensionsof
these in orderto arrive at a satisfactory theory.)

9.4.3The Pauliprinciple)
In quantum theory, indistinguishable particlesmust obey either Fermi-Dirac
or Bose-Einsteinstatistics.For fermions this requirement results in the Pauli
exclusionprinciplethat no two particlescan occupy a state in which their prop-
erties are identical.The Pauli principle is usually enforced in one of two ways
in relativistic quantum theory. At the level of multiparticle wave mechanics,
antisymmetrisation is enforced by using a Slaterdeterminant representationof
a state.At the level of quantum field theory, however,antisymmetrisation is a

consequenceof the anticommutation of the creation and annihilation operators
for fermions. Herewe are interestedin the former approach,and look to achieve
the antisymmetrisation in a simple geometricalmanner.

We start by introducing the grade-4multivector)

Ip == fofIf2f3,) (9.107))
where)

1
(

1 2
)r

lL
=

V2 'lL + 'lL .

It is a simplematter to verify that Ip has the properties

I\037
== -1)

(9.108))

(9.109))
and)

Ip/\037Ip
==

r\037, Ip/\037Ip
==

I\037') (9.110))
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It follows that Ip functions as a geometrical version of the particleexchange
operator.In particular, acting on the eight-dimensionalpositionvector x ==

rl + 82 we find that)

IpxIp == r2 + 81) (9.111))

where)

r2
==

I\037 rJ.\\ 8I ==
'{\037

8J.L .) (9.112))

SoIp can be usedto interchange the coordinatesof particles1and 2.Next we
must confirm that Ip is independentof the choiceof initial frame. Supposethat
insteadwe had started with the rotated frame {R'{J.Lil},with

r' = \037 (R
l..../Rl+ R2.....?R?) = RlR2r il2ill

J.L V2 J.L J.L J.L') (9.113))

The new
r\037

vectors give riseto the rotated 4-vector

I'p == RIR2IpH?ill.) (9.114))

But, acting on a bivector in particle space1,we find that)

IpalAblIp== -(IpaIIp)A(IpbIIp)== -a2 Ab 2
,) (9.115))

and the same is true of an arbitrary evenelement in either space.Moregenerally,
the operation M \037 IpMIp appliedto an even element in one of the particle
spacesflips it to the other particlespaceand changes sign, while appliedto an

odd element it just flips the particlespace.It follows that)

IpH?ill== illIpili == illil2Ip ,) (9.116))

and substituting this into (9.114)we find that I'p == Ip. It follows that Ip is
independentof the chosenorthonormal frame, as required.

We can now use the 4-vector Ip to encodethe Pauli exchangeprinciple geo-
metrically. Let 1./J(x)be a wavefunction for two electrons.The state)

1./J(x)'== -Ip1./J(IpxIp)Ip ,) (9.117))

then swapsthe positiondependence,and interchangesthe spaceof the multivec-
tor components of 1./J. The antisymmetrised state is therefore)

1./J-(x)== 1./J(x)+ Ip1./J(IpxIp)Ip .) (9.118))

For n-particlesystemsthe extensionis straightforward, as we require that the
wavefunction is invariant under the interchangeenforcedby the Ipsconstructed
from each pair of particles.

For a single Diracparticlethe probability current J ==
1./J'{o1./J has zero diver-

gence, and can therefore be used to define streamlines.Theseare valuable for

understanding a range of phenomena, such as wavepacket tunnelling and spin)
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measurement. We now illustrate how these ideasextend to the multiparticle
domain. The two-particle current is)

I 2-J == ('l/J(ro + ro)'l/J)I,) (9.119))

as defined in equation (9.87).The vector :1has components in both particle-l
and particle-2spaces,which we write as)

J == Jl+Jl.) (9.120))

For sumsof separablesolutions to the single-particleequations, the individual

currents are both conserved:)

v 1.:1l== v 2':1l== o.) (9.121))

It follows that the full current :1is conserved in 8-dimensionalspace,so its

streamlinesnever crossthere.The streamlinesof the individual particles,how-

ever,are obtainedby integrating Jl and :12in a singlespacetime,and thesecan
crossif plotted in the same space.For example,supposethat the wavefunction

is just)

'l/J
==

<pI (r1)X2(s2)E,) (9.122))

where cp and X are Gaussianwavepacketsmoving in oppositedirections.Since
the distinguishablecaseis assumed,no Pauli antisymmetrisation is used. One

can easily confirm that for this casethe streamlinesand the wavepacketssimply

passstraight through each other.
But supposenow that we assumeindistinguishability, and apply the Pauli

symmetrisationprocedureto the wavefunction of equation (9.122).We arrive at

the state)

'l/J
==

(<j.>I(r
I)x2(s2)-xI (r2

)<j.>2(sl))E,) (9.123))

from which we form Jl and J2,as before. Figure 9.1shows the streamlines
that result from thesecurrents. In the left-hand plot both particlesare in the
same spinstate.The corrugated appearanceof the lines near the origin is the
result of the streamlineshaving to pass through a region of highly oscillatory
destructive interference, sincethe probability of both particlesoccupying the
same position (the origin) with the same spin state is zero.The right-hand

plot is for two particlesin different spinstates.Again, the streamlines are seen
to repel.The reasonfor this can be found in the symmetry propertiesof the

two-particlecurrent.Given that the wavefunction 'l/J
has beenantisymmetrised

accordingto equation (9.118),the current must satisfy)

IpJ(IpxIp)Ip == J(x).) (9.124
))

It follows that at the same spacetimeposition,encodedby IpxIp == x in the two-

particle algebra,the two currents JI and :12are equal.Hence,if two streamlines)
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Figure 9.1Streamlinesfor an antisymmetrised two-particle wavefunction.
The wavefunction is 'lj;

== (\037I(rl)x2(s2)
-

xl(r2)\0372(sl))E. The individual

wavepackets passthrough each other, but the streamlines from separate
particlesdo not cross.The left-hand figure has both particleswith spins
aligned in the +z direction. The right-hand figure shows particleswith

oppositespins, with
\037

in the +z direction, and X in the -zdirection.)

ever met, they could never separateagain. For the simulations presentedhere,
the symmetry of the set-upimpliesthat the spatial currents at the origin are
both zero.As the particlesapproach the origin, they are forcedto slow up. The
delay means that they are then swept backin the direction they have just come
from by the wavepackettravelling through from the other side.This repulsion
has its origin in indistinguishability, and the spin of the states exertsonly a
marginal effect.)

9.5Two-spinorcalculus
The ideasintroduced in this chapter can beemployedto construct a geometrical-
gebraversionof the two-spinorcalculusdevelopedby Penrose& Rindler (1984).
The building blocksof their approachare two-componentcomplexspinors,de-
noted K

A and w A'.Indicesare raisedand loweredwith the antisymmetric tensor
tAB. In the spacetimealgebraversionboth K

A and K:A have the samemultivector

equivalent, which we write as)

K:
A

+-+ K!(1+ 0\"3).) (9.125))

The presenceof the idempotent (1+0\"3)/2allowsus to restrictK to the Pauli-even
algebra, as any Pauli-oddterms can be multiplied on the right by 0\"3 to convert
them back to the even subspace.This ensuresthat K has four real degreesof
freedom,as required.Undera Lorentz transformation the full spinortransforms)
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to)

RK:\037 (1+ 0'3)== K:'!(1+ 0'3),) (9.126))

where R is a Lorentz rotor.If we decomposethe rotor R into Pauli-even and
Pauli-odd terms,R == R+ + R-,then K:' is given by)

ft/ == R+\", + R-\"'0'3.) (9.127))

The decompositioninto Pauli-even and Pauli-oddterms is frame-dependent, as
it dependson the choice of the \"Yo direction. But by augmenting '\" with the

(1+0'3)/2idempotent we ensurethat the full objectisa properLorentz-covariant

spinor.
The oppositeidempotent,(1-0'3)/2,also generatesa valid two-spinorwhich

belongs to a secondlinear space (or module).This is the w
A' spinor in the

notation of Penrose& Rindler, which we translate to)

-A' 1
W \037 == -wI0'2'2(1- 0'3).) (9.128))

The factor of -10'2is a matter of convention,and is insertedto simplify someof
the later expressions.Undera Lorentz transformation we seethat the Pauli-even
elementw transforms as)

W 1---+ w' == R+w - R_W0'3') (9.129))

SoK: and w have different transformation laws: they belongto distinct carrier

spacesof representationsof the Lorentz group.
The power of the two-spinorcalculus is the easewith which vector and tensor

objectsare generatedfrom the basictwo-spinors.As emphasisedby Penrose&

Rindler, this makesthe calculus equally useful for both classicaland quantum

applications.It is instructive to seehow this looksfrom the geometric algebra
point of view. Unsurprisingly, what we discoveris that the two-spinorcalculus is

a highly abstract and sophisticatedmeans of introducing the geometricproduct
to tensor manipulations. Oncethis is understood,much of the apparatusof the

two-spinorcalculus can be strippedaway, and one is left with the now familiar

spacetimealgebraapproach to relativistic physics.)

9.5.1Two-spinorobservables)

In two-spinor calculus one forms tensor objectsfrom pairs of two-spinors, for

example K:
A

ti:
A'.To formulate this in the multiparticle spacetimealgebrawe

simply multiply together the appropriatespinors,putting each spinor in its own

copy of the spacetimealgebra. In this way we replicatethe tensor product
implicit in writing \",Ati:

A'.The result is that we form the object)

K:
A

K
A'

\037 _\",I
\037 (1+ 0'\037)K:2 IO'\037 \037 (1- O'\037) 1(1- IO'\037 10'5).) (9.130))
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!(1+ O'!)\037(1
-

O'\037)E
==

-\037(r6 + 1j)IO'\037E16!(1-O'!)!(1+ O'5)E== -
\037 (16-1j)IO'\037E16

\037 (1+ O'\037) \037 (1+ O'5)E== -
\037 (O't+ IO'\037)E

\037 (1-u!)!(1- O'\037)E
== -!(-O't+ IU\037)E)

Table9.2 Two-spinoridentities. The identities listed herecanbe usedto
convert any expressioninvolving a pair of two-spinors into an equivalent
mul tivector.)

As it stands this looksrather clumsy, but the various idempotentshide what is
really going on. The key is to exposethe Lorentz singlet structure hidden in the
combination of idempotents.To achieve this we define two new Lorentz singlet
states)

E==7]\037(l+O'\037), E==7]\037(I-O'5),) (9.131))
where 7] is the Lorentz singlet defined in equation (9.93).Thesenew statesboth
satisfy the essentialequation)

MIE== lVJ2f
,)

MI- M
-2-

E ==
f,) (9.132))

where M is an even-grade multivector. The reason is that any idempotents
appliedon the right of 7] cannot affect the result of equation (9.94).Expanding
out in full, and rearranging the idempotents,we find that)

E ==
(IO'\037

-
IO'\037) \037

(1+ 0'1)\037 (1+ O'\037)E,

E ==
(IO'\037

-
IO'\037) \037 (1- O'\037)! (1- (5)E.)

(9.133))

Theserelations can manipulated to give, for example,)

IO'\037f
== -(1+ IO'\037 IO'\037) \037 (1+ O'\037) \037

(1+ O'5)E,
O'lE== -(1- IO'\037 IO'\037)

\037
(1+ O'\037) \037 (1+ O'5)E.)

(9.134))

It follows that)

\037(1
+

O'\037)\037(l
+ O'5)E==

-\037(O'l + IO'\037)E.) (9.135))
There are four such identities in total, which are listedin table 9.2.

The resultsgiven in table 9.2enable us to immediatelyconvert any two-spinor
expressioninto an equivalentmultivector in the spacetimealgebra.For example,
returning to equation (9.130),we form

_KIK2
IO'\037 \037 (1+ O'\037)! (1-O'5)E== K1K2

\037 ()i6 + 1j)\302\24316

l
( ( )

_
)
1_ I== 2' K 10+13K E10') (9.136))
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The key term in this expressionis the null vector K(\"Yo + (3)ti;, which is con-
structed in the familiar manner for relativistic 0bservables.A feature of the

two-spinorcalculus is that it lendsitself to formulating most quantities in terms
of null vectors.The origin of thesecan be tracedbackto the original (1::f:0'3)/2
idempotents,which contain the null vector \"Yo ::f:'3'Theseare rotated and dilated
onto spacetimenull vectors through the application of a spinor.)

9.5.2The two-spinorinnerproduct)

A Lorentz-invariant inner product for a pair of two-spinorsis constructedfrom

the antisymmetric combination)

A
\037 WA == -KOWI + \037IWO,) (9.137))

where the subscriptshere denotecomplexcomponentsofa two-spinor. The result
of the inner product is a Lorentz-invariant complexscalar.The antisymmetry
of the inner producttellsus that we should form the equivalent expression)

(\037IW2
-

K2WI)\037(1 + O'\037)!(1+ O'\037)E
== -\037(K(O'1+ IO'2)w-W(O'I + ICT2)f1:)I(
== -(/\"\\:(0'1 + IO'2)w)6,4(' (9.138))

The antisymmetric productpicksout the scalarand pseudoscalarparts of the

quantity K(O'1+ IO'2)w. This is sensible,as these are the two terms that are
invariant under Lorentz transformations.

The fact that we form a scalar+ pseudoscalarcombination reveals a second
important feature of the two-spinorcalculus,which is that the unit imaginary is
a representation of the spacetimepseudoscalar.The complexstructure therefore
has a concrete,geometric significance,which is one reason why two-spinortech-

niques have proved popular in general relativity, for example.Further insight

into the form of the two-spinor inner product is gained by assemblingthe full

even multivector)

'l/J
==

K\037 (1+ 0'3)+ wIO'2
\037 (1- 0'3).) (9.139))

The essentialterm in the two-spinor inner productis now reproducedby)

'l/J;j;
==

-/\"\\:\037(1 + O'3)IO'2w + wIO'2!(1-O'3)h:
== -(K(CTI+ IO'2)w)0,4,) (9.140))

so the inner productspickup both the scalarand pseudoscalarparts of a full

Diracspinorproduct'l/J'l/J. This form makesthe Lorentz invarianceof the product
quite transparent. Interchanging K and W in

'l/J
of equation (9.139)is achieved

by right-multiplication by 0'1,which immediately reversesthe sign of
'l/J'l/J.)
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9.5.3Spin-framesand the null tetrad)

An important conceptin the two-spinor calculus is that of a spin-frame. This
consistsof a pair of two-spinors,K A and w A

say, normalised such that KAW A ==

1. In terms of the spinor 1./J
of equation (9.139),this normalisation condition

amounts to saying that
1./J

satisfies1./J1./J
== 1.A normalisedspin-frame is therefore

the two-spinor encoding of a spacetimerotor.This realisation alsosheds light
on the associatedconceptof a null tetrad. In terms of the spin frame {K

A ,w A},
the associatednull tetrad is definedas follows:)

la == K
A

K
A'

f---+ (K(10+ 13)K)1\302\24315,

na
== wAW

A'
f---+ (w(10+ 13)W)lE1J,

== KAwA' (K(10+ 13)W)I\302\24316,

(9.141)
ma

f---+

ma == w
A

ii:
A'

f---+ (w(10+ 13)h:)
I
E16.)

In each casewe have projectedinto a single copy of the spacetimealgebrato
form a geometric multi vector. To simplify these expressionswe introduce the
rotor R defined by)

R ==
K\037 (1+ 0'3)+ wI0'2

\037 (1- 0'3).) (9.142))

It follows that)

R(1I+ I12)R== -K1I(1+ 0'3)I0'2w
== K(10+ 13)W.) (9.143))

The null tetrad inducedby a normalised spin-frame can now be written in the
spacetimealgebraas)

l == R(10+ 13)R,
n == R(10-13)R,)

m == R(1I+ I12)R,
m == R(11- I12)R.)

(9.144))

(Onecan chosealternative normalisations, if required).The complexvectors m a

and ma of the two-spinorcalculus have now beenreplacedby vector + trivector
combinations.This agreeswith the earlier observationthat the imaginary scalar
in the two-spinor calculus plays the role of the spacetimepseudoscalar.The
multivectors in a null tetrad satisfy the anticommutation relations)

{l,n} == 4, {m,m}== 4, all others== O.) (9.145))

Theserelations providea framework for the formulation ofsupersymmetricquan-
tum theory within the multiparticle spacetimealgebra.)
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9.6Notes)

The multiparticle spacetimealgebrawas introduced in the paper 'Statesand
operatorsin the spacetimealgebra'by Doran, Lasenby& Gull (1993a).Sinceits
introduction the multiparticle spacetimealgebra has beendevelopedby a range
of researchers.For introductions seethe papersby Parker & Doran (2002)and
Havel & Doran (2000a,2002b).Of particular interest are the papersby Somaroo
et al. (1998,1999)and Havel et al. (2001),which show how the multiparticle
spacetimealgebracan be appliedto great effect in the theory of quantum infor-
mation processing.Theseresearcherswere primarily motivated by the desireto
create quantum gates in an NMR environment, though their observations can
be appliedto quantum computation in general.For a goodintroduction into the
subjectof quantum information, we recommendthe coursenotesmade available
by Preskill(1998).

The subjectof relativistic multiparticle quantum theory has beentackledby
many authors. The most authoritative discussionsare contained in the papers
by Salpeter& Bethe(1951),Salpeter(1952),Breit (1929)and Feynman (1961).
A more modern perspectiveis contained in the discussionsin Itzykson & Zu-

ber (1980)and Grandy (1991).For more recent attempts at constructing a
two-particleversion of the Diracequation, seethe papersby Galeao & Ferreira

(1992),Cook(1988)and Koide (1982).A summary of the multiparticle space-
time algebraapproachto this problemis contained in Doran et al.(1996b).

The two-spinorcalculusis describedin the pair of books'Spinorsand Space-
time' volumesIand IIby Penrose& Rindler (1984,1986).The spacetimealgebra
versionof two-spinor calculus is describedin more detail in 'Geometricalgebra
and its application to mathematical physics'by Doran (1994),with additional
material contained in the paper '2-spinors,twistors and supersymmetry in the

spacetimealgebra'by Lasenby et al.(1993b).The conventionsadoptedin this
book differ slightly from thoseadoptedin many of the earlier papers.)

9.7Exercises)
9.1 Explain how the two-particle Schrodingerequation for the Coulomb

problemis reducedto the effectivesingle-particleequation

n?V 2

'I/J

_ ql q2
'I/J

= E'I/J,
2J.L 47TEor

where J.L is the reducedmass.
9.2 Given that 'ljJ(8,cjJ)

== exp(-cjJIu3/2)exp(-8Iu2/2),prove that

(
sin(()/2)e-icp /2

)_ cos((J/2)eit/>!2
f-7

'I/J ((J,<p )10'2.

Confirm that this state is orthogonal to
'ljJ (8, cjJ).)
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9.3 The interaction energy of two dipolesis given classicallyby

E ==
JLo

(
J-ti

.
J-t2 _ 3J-tl .r J-t2.r

)4n r3 r5 ')

where J-ti denotesthe magnetic moment of particlei. For a quantum

systemof spin 1/2particleswe replacethe magnetic moment vectors
with the operatorsilk == (, ti/2)o-k' Given that n == r/r,show that the
Hamiltonian operatortakesthe form of the 4-vector)

H= -
\037 (tIlTkIlT\037

-3In1In2

)k-l)

and find an expressionfor d. Can you solvethe two-particleSchrodinger
equation with this Hamiltonian?

9.4
1./J

and cjJ are a pair of non-relativistic multiparticle states.Prove that
the overlap probability between the two states can be written)

P('ljJ </J)
= (('ljJE;[J)(</JE\037\302\273_- (('ljJ!;[J)(</JJ\037)).,

2(1./JE1./J) (cjJEcjJ))

9.5 Investigate the propertiesof the l == 1,m == 0 state)

11./J)
== 10)11)+ 11)10).)

Isthis state maximally entangled?
9.6 The 13mu operatorsthat act on states in the two-particle relativistic

algebra are definedby:)

/3{t (1./J)
==

r\037 1./Jr6 +
r\037 1./Jr6.)

Verify that theseoperatorsgenerate the Duffin-Kemmer ring)

/3{t(3v(3p+ (3p/3v/3p ==
TJvp/3p + TJv{t(3p.)

9.7 The multiparticle wavefunction
1./J

is constructedfrom superpositions
of states of the form cjJi (ri

)X2 (8
2), where cjJ and X satisfy the single-

particleDirac equation. Prove that the individual currents ..1land ..122
are conserved,where)

..1l+ ..1l==
(1./J( r6 + (6)\037)I.)

9.8 In the two-spinorcalculusthe two-componentcomplexvector f1:A is acted
on by a 2 x 2 complexmatrix R . Prove that R is a representationof the
Lorentz rotor group if det R == 1.(This definesthe Lie group SI(2,C).)
Henceestablishthat the antisymmetric combination f1:\302\260W

1 - KIW O is a
Lorentz scalar.)
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9.9 The two-spinorcalculus versionof the Diracequation is

VA'
A

K:A
==

J-LW
A'

,

V AA'
WA' ==

J-Lf\302\243A,)

where
J-L

== m/.J2.Prove that these equations are equivalent to the
single equation V1./J1u3 == m1./Jl'oand give an expressionfor

1./J
in terms

of f\302\243A and WA',

9.10 A null tetrad is defined by the set)

I == R(l'o +1'3)R,
n == R(l'o -1'3)R,)

m == R(I'I+ II'2)R,
in == R(l'l- II'2)R.)

Prove that thesesatisfy the anticommutation relations)

{I,n}== 4, {m,in}== 4, all others == O.)
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Geometry)

In the precedingchaptersof this bookwe have dealt entirely with a singlegeomet-
ric interpretation of the elements of a geometric algebra.But the relationship
between algebraand geometry is seldomunique. Geometric problemscan be
studied using a variety of algebraictechniques, and the same algebraic result
can typically be pictured in a variety of different ways. In this chapter, we

explorea range of alternative geometric systems,and discover how geometric
algebracan be appliedto each of them. We will find that there is no unique
interpretation forcedon the multivectorsof a given grade.For example,to date
we have viewed bivectors solely as directedplane segments.But in projective
geometry a bivector representsa line, and in conformalgeometry a bivector can
representa pair of points.

Ideasfrom geometry have always been a prime motivating factor in the de-
velopment of mathematics. By the nineteenth century mathematicians were
familiar with affine, Euclidean,spherical,hyperbolic,projective and inversive

geometries.The unifying framework for studying thesegeometrieswas provided
by the Kleinian viewpoint. Under this view a geometry consistsof a spaceof
points,together with a group of transformations mapping the pointsonto them-
selves.Any property of a particular geometrymust be invariant under the action
of the associatedsymmetry group.Klein was thus able to unite various geome-
tries by describinghow some symmetry groupsare subgroupsof larger groups.
For example,Euclideangeometry is a subgeometry of affine geometry,because
the group of Euclideantransformations isa subgroupof the group of affine trans-
formations.

In this chapter we will seehow the various classicalgeometries,and their
associatedgroups,are handled in geometricalgebra.But we will alsogo further

by addressingthe question of how to representvarious geometric primitives in

the most compact and efficient way. The Kleinian viewpoint achievesa united

approach to classicalgeometry, but it does not help much when it comesto)
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addressingproblemsof how to perform calculations efficiently. For example,
circlesare as much geometric primitives in Euclidean geometry as points,lines
a planes. But how should circlesbe representedas algebraicentities? Storing
a point and a radiusis unsatisfactory, as this representationinvolves objectsof
different grades.In this chapter we answer this question by showing that both
linesand circlesare representedas trivectors in the conformalmodelofEuclidean
geometry.

We begin with the study of projective geometry. The addition of an extra
dimensionallowsus to createan algebraof incidencerelations between points,
lines and planes in space.We then return to Euclidean geometry, but rather
than viewing this as a subgeometry of projective geometry (the Kleinian view-

point), we will insteadincreasethe dimensiononcemore to establisha conformal
representationof Euclideangeometry. The beauty of this construction is that
the group of Euclideantransformations can now be formulated as a rotor group.
Euclidean invariants are then constructedas inner productsbetween multivec-
tors. This framework allowsus to extendthe projective treatment of incidence
relations to include circlesand spheres.

A further attractive feature of the conformalmodel is that Euclidean,spherical
and hyperbolic geometriesare all handled in the same framework. This allows
the Poincare discmodel of non-Euclideangeometry in the plane to be extended
seamlesslyto higher dimensions.Of particular importance is the clarification
of the role of complexcoordinatesin planar non-Euclidean geometry. Much
of their utility rests on features of the conformal group of the plane that do
not extendnaturally. Instead,we work within the framework of real geometric
algebra to obtain resultswhich are independentof dimension.Finally in this

chapter we turn to spacetimegeometry. The conformalmodel for spacetimeisof
considerableimportance in formulations of supersymmetrictheoriesof gravity,

and alsolies at the heart of the twistor program. We display some surprising
links between these ideasand the multiparticle spacetimealgebradescribedin

chapter 9.Throughout this chapter we denotethe vector spacewith signature
p, q by V(p, q), and the geometric algebraof this spaceby Q(p,q).)

10.1Projectivegeometry
There wasa time when projective geometryformeda large part of undergraduate
mathematics courses.For various reasonsthe subject fell out of fashion in the
twentieth century, making way for the more relevant subjectof differential geom-
etry. But in recent years projective geometry has enjoyeda resurgencedue to its
importance in the computer graphicsindustry. For example,the routines at the
core of the OpenGLgraphicslanguage are built on a projective representation
of three-dimensionalspace.

The key idea in projective geometry is that pointsin spaceare representedas)
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a)

o)

b)

II)

Figure 10.1Projectivegeometry. Points in the projectiveplane are repre-
sentedby vectorsin a spaceone dimension higher. The planeIIdoesnot

intersectthe origin O.)

vectors in a spaceof one dimensionhigher. For example,points in the projective
plane are representedasvectors in three-dimensionalspace(seefigure 10.1).The

magnitude of the vector is unimportant, as both a and Aa representthe same

point. This representationof points is said to be homogeneous. The two key
operationsin projective geometry are the joinand meet. The join of two points,
for example,is the line between them. Forming the join raisesthe grade,and
the join can usually be encodedalgebraicallyvia the exterior product (this was
Grassmann'soriginal motivation for introducing his exterior algebra).The meet
is usedfor forming intersections,such as two lines in a plane meeting at a point.
The meet is traditionally encodedvia the notion of duality, and in geometric
algebrathe role of the meet is played by the inner product. Operationssuch
as the meet and join do not dependon the metric, so in projective geometry
we have a non-metric interpretation of the inner product. This is an important
point. Someauthors have argued that, becausegeometric algebrais built on a

quadratic form, it is intimately tied to metric geometry. This view is incorrect,
as we demonstratebelow.)

10.1.1Theprojectiveline)

The simplestplace to start is with a one-dimensionalline. The 'Euclidean'
model of the line consistsof labelling each point with a real number. But there
are drawbackswith this representation of a line.Geometrically,all pointson the
line are equal. But algebraically there are two exceptionalpoints on the line.
The first is the origin, which is representedby the algebraicallyspecialnumber

zero.The secondis the point at infinity, which becomesimportant when we start
to considerprojective transformations. The resolution of both of theseproblems
is to representpointsin the line as vectors in two-dimensionalspace.In this way)
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the point x is replacedby a pair of homogeneouscoordinates(XI, X2), with)

XI
X == -.

x2

One can immediately seethat the origin is representedby the non-zero vector
(0,1),and that the point at infinity is (1,0).

If the vectors {eI,e2}denotean orthonormal frame for two-dimensionalspace,
we can set)

(10.1))

x == Xl el+ X2e2.) (10.2))
The set of all non-zero vectors x constitute the projective line, Rpl.The fact
that the origin is excludedimplies that in projective spacesone loseslinear-
ity. This is obvious from the fact that x and AX representthe same point, so
linear combinations do not make geometric sense.Indeed,no geometric signifi-
cancecan be attached to the addition of two points in projective geometry. One
cannot form midpoints,for example,as distancesand angles are not projective
invariants.

The projective group consistsof the group of general linear transformations
appliedto vectors in projective space.For the caseof the projective line this

group is defined by transformations of the form)

(
Xl

) \037 (
a b

) (
Xl

)
== (

aXI + bX2

) ,
X2 e d X2 eXI + dX2

In termsof pointson the line, this transformation correspondsto)

ab - be
=1-=

O.) (10.3))

I ax+ b
X \037 X ==. (10.4)cx+d

The group action includesdilations, inversionsand translations. The last are
obtained for the casee == 0, a/d == 1.The fact that translations becomelin-
ear transformations in projective geometry is of considerableimportance. In
three-dimensionalgeometry,for example,both rotations and translations can be
encodedas 4 x 4 matrices.While this may appear to be an overly-complicated
representation, it makesstringing together a seriesof translations and rotations
a straightforward exercise.This is important in computer graphics,and is the
representation employed in all OpenGLroutines.

In geometric algebranotation we write a general linear transformation as the
map x \037 f(x), where det (f) =1-= o. Valid geometric statementsin projective
geometry must be invariant under such transformations, which is a strong re-
striction. Inner products between projective vectors (points)are clearly not
invariant under projective transformations. The outer product does transform

sensibly, however, due to the propertiesof the outermorphism. For example,
supposethat the pointsa and (3 are representedprojectively by)

a == ael+ e2, b == (3el+ e2.) (10.5))
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L)

L')

Figure 10.2The crossratio. Points on the lines Land L' representtwo

different projectiveviews of the samevectorsin space.The crossratio of
the four points is the sameon both lines.)

The outer productof these is)

aAb == (0:- (3)eIAe2,) (10.6))

which is controlled by the distancebetween the points on the line. Undera

projective transformation in two dimensions)

elAe2 \037 f(elAe2) == det (f) elAe2,) (10.7))

which is just an overallscaling.
The fact that distancesbetween points are scaledunder a projective transfor-

mation provides us with an important projective invariant for four pointson a
line.This is formed from ratios of lengths along a line.We must further ensure
that the ratio is invariant under individual rescalingof individual vectors to be
a true projective invariant. We therefore definethe crossratio of four points,A,

B,C,D, by)

(ABCD)=
AC BD= aAc bAd
BCAD bAc aAd'

where AB denotesthe distancebetween A and B. Given any four points on

a line, their crossratio is a projective invariant (seefigure 10.2).The figure

illustratesone possiblegeometric interpretation of a projective transformation,
which is that the line onto which points are projectedis transformed to a new line.
Invariants such as the crossratio are important in computer vision where, for

example,we seekto extract three-dimensionalinformation from a seriesof two-)

(10.8))
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dimensionalscenes.Knowledgeof invariants can help establishpoint matches
between the scenes.)

10.1.2Theprojectiveplane)
Rather more interesting than the caseof a line is that of the projective plane.
Points in the plane are now representedby vectors in the three-dimensional
algebra 9(3,0).Figure 10.1shows that the line between the pointsa and b is
the result of projectingthe plane defined by a and b onto the projective plane.
We therefore define the joinof the points a and b by)

join(a, b) == al\\b.) (10.9))
Bivectors thus define lines in projective geometry. The line itself is recovered

by solving the equation)

al\\bl\\x == O.) (10.10))
This equation is solved by)

x == Aa + fLb,) (10.11))
which definesthe set of projective points on the line joining A and B.

By taking exteriorproductsof vectors we define (projectively) higher dimen-
sionalobjects.For example,the join of a point a and a line b 1\\ c is the plane
definedby the trivector al\\bl\\c. Three points on a line cannot definea projected
area, so for thesewe must have)

al\\bl\\c == 0 ::::}a, b, c collinear.) (10.12))
This was the condition used to recover the pointsx on the line a 1\\ b. The join
itself can be slightly more problematic.Given three pointsone cannot just write
that their join is al\\bl\\c, as the result may be zero.Insteadthe join is definedas
the smallestsubspacecontaining a, band c. If they are collinear, then the join
is the common line.This is well defined mathematically, but is hard to encode
computationally. The problemis that the finite precisionused on computers
means that testing for zero is unreliable.Wherever possibleit is safer to avoid
defining the join and insteadwork with the exterior product.

Projective geometry dealswith relationshipsthat are invariant under projec-
tive transformations. The join is one such concept-as two pointsare trans-
formed the line joining them transforms in the obviousway:)

al\\b r-+ f(a)l\\f(b) == f(al\\b).) (10.13))

So,for example,the statement that three points lie on a line (a 1\\ b 1\\ c == 0) is
unchangedby a projective transformation. Similarly, the statement that three
lines intersect at a point must alsobe a projective invariant. We therefore seek)
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an algebraicencodingof the intersectionof two lines.This is the calledthe meet,
usually denotedwith the V symbol.Beforewe can encodethis, however,we need
to define the dual. In the projective plane,points and lines are representedas
vectors and bivectors in Q(3,0).We know that thesecan be interchanged via

a duality transformation, which amounts to multiplying by the pseudoscalarf.
In this way every point has a dual line, and vice versa. The geometric picture
associatedwith duality dependson the embeddingplane.

If wedenotethe dual of A by A *
, the meet A V Bisdefinedby the 'deMorgan'

rule)

(A V B)* == A* I\\B*.) (10.14))

For a pair of lines in a plane,this amounts to)

A V B == -I(IA)I\\(IB)== fAxB == A.(IB) == (fA).B.) (10.15))

These formulae show how the inner product can be used to encodethe meet,
without imposing a metric on projective space.The expression)

AvB==IAxB) (10.16))

shows how the construction works.In three dimensions,A x B is the plane per-
pendicularto A and B,and fAxB is the line perpendicularto this plane, through

the origin. This is therefore the line commonto both planes,soprojectivelygives
the point of intersection of two lines.

The meet of two distinct lines in a plane always resultsin a non-zero point.
If the lines are parallel then their meet returns the point at infinity. Parallelism
is not a projective invariant, however,so under a projective transformation two

parallel lines can transform to lines intersecting at a finite point. This illustrates
the fact that the point at infinity does not necessarilystay at infinity under

projective transformations. It is instructive to seehow the meet itself transforms
under a projective transformation. Usingthe resultsof section4.4,we find that)

A V B \037 f(A) V f(B) == I (If(A))1\\ (ff(B))
== det (f)2If-1(IA)l\\f-1(IB)
== det (f)2If-I((IA) 1\\ (IB))
== det (f) f(I(fA)I\\(fB)).) (10.17))

We can summarise this result as)

f(A) V f(B) == det (f) f(A V B).) (10.18))

But in projective geometry,a and Aa representthe same point, so the factor of
det (f) doesnot affect the resulting point. This confirms that under a projective
transformation the meet transforms as required.)
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Figure 10.3Desargues'theorem. The lines P,Q,R meet at a point if and

only if the points p, q, r lie on a line. The two triangles are then projectively
related.)

The condition that three lines meet at a commonpoint requiresthat the meet

of two lineslieson a third line, which goesas)

(A V B)I\\C== (1AxB)I\\C== O.) (10.19))

Dualising this result we obtain the condition)

((A x B)C)== (ABC)== 0, =? A, B,C coincident.) (10.20))

This is an extremely simplealgebraicencodingof the statement that three lines

(representedby bivectors) all meet at a common point. Equations like this

demonstrate how powerful geometricalgebracan be when appliedin a projective
setting.

As an application considerDesargues'theorem, which is illustrated in fig-
ure 10.3.The pointsa, b, c and a',b', c' define two triangles.The associated
lines are defined by)

A == bl\\c, B == cl\\a, C== al\\b,) (10.21))

with the samedefinitionsholding for A',B',C'in terms of a',b',c'.The two sets)
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of vertices determine the lines)

P==a/\\a', Q==b/\\b', R==el\\c',) (10.22))
and the two sets of lines determine the points

p == A X A' I, q == BX B'I, r == Cx C'I.) (10.23))

Desargues'theorem states that, if p, q, r lie on a common line, then P,Q and
R all meet at a commonpoint. The latter condition requires)

(PQR)== (al\\a'bl\\b' cl\\e')== O.) (10.24))

Similarly, for p,q, r to fall on a line we form)

pl\\ql\\r == (AxA' IBxB'ICxC'1)3
== -I(AxA' BxB'CxC').) (10.25))

Desargues'theorem is then proved by the algebraicidentity

(al\\bl\\c a'I\\b' I\\c') (al\\a'bl\\b' cl\\c')== (A x A' B X B'CxC'),) (10.26))
the proof of which is left as an exercise.The left-hand sidevanishes if and only
if the lines P,Q, R meet at a point. The right-hand sidevanishes if and only if

the pointsp, q, r lie on a line.This proves the theorem. The complexgeometry
illustrated in figure 10.3has thereforebeenreducedto a straightforward algebraic
identity.

We can find a simplegeneralisationof the crossratio for the caseof the projec-
tive plane. From the derivation of the crossratio, it is clear that any analogous
objectfor the plane must involve ratios of trivectors. Theserepresentareas in

the projective plane. For example,supposewe have six points in spacewith

positionvectors aI,... ,a6' Theseproducethe sixprojectedpointsAI, . .. ,A6'
An invariant is formed by

asI\\ a41\\ a3 a61\\ a21\\aI AS43 A 621-- (10.27)
asl\\aII\\ a3 a61\\ a2/\\a4 A S13A 624

'
where A ijk is the projectedarea of the triangle with vertices Ai,Aj,Ak . Again,
elementary algebraicreasoning quickly yieldsa geometricallysignificant result.)

10.1.3Homogeneouscoordinatesand projectivesplits
In typical applicationsofprojectivegeometrywe are interestedin the relationship
betweencoordinatesin an imageplane (for example in terms of pixelsrelative to
someorigin) and the three-dimensionalpositionvector. Supposethat the origin
in the imageplane isdefinedby the vector n, which isperpendicularto the plane.
The line on the image plane from the origin to the image point is representedby
the bivector al\\n (seefigure 10.4). The vector OA belongsto a two-dimensional)
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Image plane)

Figure 10.4The image plane. Vectors in the image plane, OA, are de-
scribedby bivectorsin 9(3,0).The point A can be expressedin terms of

homogeneous coordinatesin the image plane.)

geometricalgebra.We can relate this directly to the three-dimensionalalgebra
by first writing)

n + OA == Aa.) (10.28))

Contracting with n, we find that A == n2(a.n)-1.It follows that)

2an -a.nn
OA ==

a.n)
al\\n==-n.
a.n) (10.29))

If we now drop the final factor of n, we obtain a bivector that is homogeneous
in both a and n. In this way we can directly representthe line OA in two

dimensionswith the bivector)

A==
al\\n

.
a.n) (10.30))

This is the projective split, first introduced in chapter 5 as a means of relating
physicsas seenby observerswith different velocities.

The map of equation (10.30)relatesbivectors in a higher dimensional space
to vectors in a spaceof dimensionone lower. If we introduce a coordinate frame

{ei},with e3 in the n direction,we seethat the coordinatesof the image of
a == aieiare)

al a2
A == -eIe3+ -e2e3== A 1EI + A 2E2.

a3 a3

This equation definesthe homogeneouscoordinatesAi:

A . - ai
1-
- .

a3)

(10.31))

(10.32))
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Homogeneouscoordinatesare independent of scaleand it is these that are usu-
ally measuredin a camera projectionof a scene.The bivectors (EI , E2) act as
generatorsfor a two-dimensionalgeometric algebra. If the vectors in the pro-
jective spaceare all Euclidean,the Ei bivectors will have negative square. If
necessary,this can be avoided by letting e3 be an anti-Euclidean vector. The
projective split is an elegant scheme for relating results in projective spaceto
Euclideanspaceone dimensionlower. Algebraically,the projective split restson
the isomorphism)

g+(p + 1,q) \037 g(q,p) .) (10.33))
This states that the even subalgebraof the geometric algebrawith signature
(p + 1,q) is isomorphicto the algebra with signature (q,p). The projective split
is not always the bestway to map from projectivespacebackto Euclideanspace,
however,as constructing a set of bivectors can be an unnecessarycomplication.
Often it is simpler to choosean orthonormal frame, with n one of the frame
vectors, and then scaleall vectors x such that n .x == 1.)

10.1.4Projectivegeometryin threedimensions
To handle complicatedthree-dimensional problemsin a projective framework
we require a four-dimensionalgeometric algebra.The basicelements of four-
dimensionalgeometricalgebra will be familiar from relativity and the spacetime
algebra, though now the elements are given a projective interpretation. The
algebraof a four-dimensionalspacecontains sixbivectors, which representlines
in three dimensions.As in the planar case,the important feature of the projective
framework is that we are free from the restriction that all lines pass through the
origin. The line through the points a and b is again representedby the bivector
a 1\\ b. This is a blade,as must be the casefor any bivector representinga line.
Any bivector bladeB == al\\b must satisfy the algebraic condition)

BI\\B == al\\bl\\al\\b == 0,) (10.34))

which removesone degreeof freedom from the sixcomponentsneededto specify
an arbitrary bivector. This is known at the Plucker condition. If the vector e4
definesthe projectioninto Euclideanspace,the line al\\ b has coordinates)

a 1\\ b == (a + e4)1\\ (b + e4) == a1\\ b + (a- b) 1\\ e4,) (10.35))
where a and b denotevectors in the three-dimensionalspace.The bivector B
therefore encodesa line as a combination of a tangent (b - a) and a moment
al\\b. Theseare the Plucker coordinatesfor a line.

Given two lines as bivectors BandB',the test that they intersect in three
dimensionsis that their join doesnot spanall of projective space,which implies)
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that)

BI\\B' == O.) (10.36))

This providesa projective interpretation for commuting bivectors in four dimen-
sions. Commuting (orthogonal) bivectors have BB'equalling a multiple of the

pseudoscalar.Projectively, thesecan be interpretedas two lines in three dimen-
sionsthat do not sharea commonpoint. As mentionedearlier,the problem with

a test such as equation (10.36)is that one can never guarantee to obtain zero
when working to finite numericalprecision.In practice,then, one tendsto avoid

trying to find the intersection of two lines in the three dimensions,unlessthere
is goodreasonto believe that they intersect at a point.

The exteriorproductof three vectors in projectivespaceresultsin the trivector

encoding the plane containing the three points. One of the most frequently
encounteredproblemsis finding the point of intersection of a line L and a plane
P.This is given by)

x == P.(IL),) (10.37))

where I is the four-dimensionalpseudoscalar.This will always return a point,
providedthe line doesnot lie entirely in the plane.Similarly, the intersection of
two planesin three dimensionsmust result in a line.Algebraically,this line is

encodedby the bivector)

L == (IPI).P2 == IPIX P2,) (10.38))

where PI and P2 are the two planes.Such projective formulae are important in

computer vision and graphicsapplications.)

10.2Conformalgeometry
Projective geometry doesprovide an efficient framework for handling Euclidean
geometry. Euclideangeometry is a subgeometry of projective geometry,so any

valid result in the latter must hold in the former. But there are some limitations
to the projective viewpoint. Euclideanconcepts,like lengths and angles,are
not straightforwardly encoded,and the relatedconceptsof circlesand spheres
are equally awkward. Conformal geometry provides an elegant solution to this

problem. The key is to introduce a further dimension of oppositesignature,
so that points in a spaceof signature (p, q) are modelledas null vectors in a

spaceof signature (p + 1,q + 1).That is, points in V(p, q) are representedby

null vectors in V(p + 1,q + 1).Projective geometry is retained as a subsetof
conformalgeometry,but the range of geometricprimitives is extendedto include
circlesand spheres.

We denotea point in V(p, q) by x,and its conformalrepresentation by X. We

continue to employ the spacetimenotation of using the tilde symbol to denote)
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Figure 10.5A stereographicprojection.The line is mappedinto the unit

circle,so the points on the line Xl and X2 are mappedto the unit vectors
TI and T2. The origin and infinity are mappedto oppositepoints on the
circle.)

the reverseoperation for a general multivector in any geometricalgebra.A basis
set of vectors for Q(p,q) is denotedby {ei},and the two additional vectors {e,e}
completethis to an orthonormal basisfor Q(p+ 1,q + 1).)

10.2.1Stereographicprojectionofa line)

We illustrate the general construction by starting with the simplecaseof a line.
In projective geometry pointson a line are modeledas two-dimensionalvectors.
The conformalmodel is establishedfrom a slightly different starting point, using
the stereographicprojection.Undera stereographicprojection,points on a line
are mappedto the unit circlein a plane (seefigure 10.5).Points on the unit

circlein two dimensionsare representedby)

fa == cos(B) el+ sin(B) e2.) (10.39))
The correspondingpoint on the line is given by)

cos(B)x==1+ sin (B)
.) (10.40))

This relation inverts simply to give)

2x
cos(B) == 2 'l+x)

1-x2
sin(B) == 2.l+x) (10.41))

So far we have achieveda representationof the line in terms of a circlein two

dimensions.But the constraint that the vector has unit magnitude means that)
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we have lost homogeneity. To get round this we introduce a third vector, e,
which has negative signature,)

-2 1e ==-
,) (10.42))

and we assumethat e is orthogonal to el and e2.We can now replacethe unit

vector r with the null vector X, where)

2x 1-x2
X == cos(O)el+ sin(O)e2+ e == 2e1+ 1 2e2+ e.l+x +x) (10.43))

The vector X satisfiesX2 == 0, so is null.

The equation X2 == 0 is homogeneous.If it is satisfied for X, it is satisfied
for AX. We can therefore move to a homogeneousrepresentationand let both
X and AX representthe samepoint. Multiplying by (1+ x2

) we establishthe
conformalrepresentation)

X == 2xel+ (1- x2
)e2+ (1+ x2

)e.) (10.44))

This is the basicrepresentationwe use throughout. To establisha more general
notation we first replacethe vector e2 by -e.We therefore have)

e2 == 1
,)

-2 1e ==-
,)

e'e==O.) (10.45))

The vectors e and e are then the two extravectors that extendthe spaceV(p, q)
to V(p + 1,q + 1).Frequently, it is more convenientto work with a null basisfor
the extradimensions.We define)

n == e + e,)
- -
n == e - e.) (10.46))

Thesevectors satisfy)

n2
== fl? == 0,)

n.n== 2.) (10.47))

The vector X is now)

X == 2xel+ x2n - n.) (10.48))

It is straightforward to confirm that this is a null vector. The set of all null

vectors in this spaceform a cone,and the real number line is modelledby the
intersectionof this coneand a plane.The construction isillustrated in figure 10.6.)

10.2.2ConformalmodelofEuclideanspace
The form of equation (10.48)generaliseseasily. If x is an element of V(p, q), we

set)

F(x)== X == x2n + 2x- ii,) (10.49))
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Figure 10.6The conformal model of a line. Points on the line are repre-
sentedby null vectorsin three dimensions. These lie on a cone,and the
intersection of the conewith a plane recoversthe point.)

which is a null vector in V(p + 1,q + 1).This vector can be obtained simply via
the map,)

F(x) == -(x- e)n(x- e),) (10.50))
which is a reflectionof the null vector n in the plane perpendicularto (x- e).
The result must therefore be a new null vector. The presenceof the vector e
removesany ambiguity in handling the origin x == O.The map F(x) is non-linear
so,as with projective geometry,we move to a non-linear representationofpoints
in conformalgeometry.

More generally,any null vector in V(p + 1,q + 1)can be written as)

x ==
.-\\(x

2n + 2x - n),) (10.51))
with .-\\ a scalar.This provides a projective map between V(p + 1,q + 1) and
V(p, q). The family of null vectors, .-\\(x

2n + 2x-n), in V(p + 1,q+ 1)correspond
to the singlepoint x E V(p, q). Given an arbitrary null vector X, it is frequently
useful to convert it to the standard form of equation (10.49).This is achieved
by setting)

XX \037 -2-.
X.n) (10.52))

This map is similar to that employed in constructing a standardembeddingin

projective geometry. The status of the vector n is clear here-it representsthe
point at infinity.)
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Given two null vectors X and Y, in standardform, their inner product is)

X .Y == (x2n + 2x - n) .
(y2 n + 2y -

n)
== _2X2- 2y

2 + 4x.y
==-2(X-y)2.) (10.53))

This result is of fundamental importance to the conformalmodel of Euclidean
geometry. The inner product in conformalspaceencodesthe distance between

points in Euclideanspace.It follows that any transformation of null vectors
in V(p + 1,q + 1) which leaves inner products invariant can correspondto a
transformation in V(p, q) which leaves angles and distancesinvariant. In the
next sectionwe discussthesetransformations in detail.)

10.3Conformaltransformations)

The study of the main geometric primitives in conformal geometry is simpli-
fied by first understanding the nature of the conformalgroup.For pointsx,y in

V(p, q) the definition of a conformaltransformation is that it leavesangles invari-

ant. So,if f is a map from V(p, q) to itself, then f is a conformaltransformation
if)

f(a) .f (b) == Aa .b, \\f a, b E V (p,q),) (10.54))

where)

f(a) == a.\\lf(x).) (10.55))

While f(a) is a linear map at each point x, the conformal transformation f(x)
is not restrictedto beinglinear.Conformal transformations form a group, the
conformalgroup, the main elementsofwhich are translations, rotations, dilations
and inversions. We now study each of thesein turn.)

10.3.1Translations)

Tobegin,considerthe fundamental operation of translation in the spaceV(p, q).
This is not a linear operation in V(p, q), but does becomelinear in the pro-
jective framework. In the conformalmodel we achievea further refinement, as
translations can now be handled by rotors.Considerthe rotor)

R == Ta == ena/2
,) (10.56))

wherea E V(p, q), so that a.n == O.The generator for the rotor is a null bivector,
so the Taylor seriesfor Ta terminates after two terms:)

na
Ta == 1+ -.

2)
(10.57))
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The rotor Ta transforms the null vectors nand n into)
- 1 1 1TanTa == n + 'inan+ 2nan+ 4nanan == n) (10.58))

and)

r -r- - 2 2an a == n - a - a n.) (10.59))

Acting on a vector x E V(p, q) we similarly obtain

TaxTa == x+ n(a.x).) (10.60))

Combiningthesewe find that

TaF(x)Ta== x2n + 2(x+ a.xn)- (n - 2a - a2
n)

== (x+a)2n + 2(x+a)-n
== F(x+ a),) (10.61))

which performs the conformalversionof the translation x 1---+ x+ a. 'Ifanslations
are handled as rotations in conformal space,and the rotor group provides a
double-coverrepresentationof a translation. The identity)

Ta == T-a) (10.62))
ensures that the inverse transformation in conformal spacecorrespondsto a
translation in the oppositedirection, as required.)

10.3.2Rotations)

Next, supposethat we rotate the vector x about the origin in V(p, q). This is
achieved with the rotor REg(p, q) via the familiar transformation x 1---+ x' ==

RxR.The image of the transformed point is

F(X')== x/2n + 2RxR - n

== R(x2n + 2x -n)R == RF(x)R.) (10.63))
This holdsbecauseR is an even element in Q(p,q), so must commute with both
nand n. Rotations about the origin therefore take the sameform in either space.

Supposeinsteadthat we wish to rotate about the point a E V(p, q). This can
be achievedby translating a to the origin, rotating and then translating forward

again. In terms of X == F(x) the result is)

X 1---+ TaRT-aXT-aRTa== R'XR.) (10.64))
The rotation is now controlled by the rotor)

I
-

(
na

) (
an

)R == TaRTa == 1+ 2 R 1+ 2 .) (10.65))

So,as expected,the conformalmodel has freed us from treating the origin as a)
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specialpoint. Rotations about any point are handled in the samemanner, and
are still generatedby a bivector blade. Similar observationshold for reflections,
but we delay a full treatment of these until we have describedhow lines and
surfacesare handled in the conformalmodel.The precedingformulae for trans-
lations and rotations form the basisof the subjectof screwtheory, which has its

origins in the nineteenth century.)

10.3.3Inversions)

Rotations and translations are elementsof the Euclideangroup, as they leave
distancesbetween points invariant. This is a subgroupof the larger conformal
group, which only leavesanglesinvariant. The conformalgroup essentiallycon-
tains two further transformations: inversionsand dilations.An inversion in the
origin consistsof the map)

x
X 1---+ 2'x

The conformalvector correspondingto the inverted point is

1
F(x-I) == x-2n + 2x-1- n == 2(n + 2x -x2n).

x)

(10.66))

(10.67))

But in conformalspacepointsare representedhomogeneously,so the pre-factor
of x-2 can be ignored. In conformal spacean inversion in the origin consists
solelyof the map)

n 1---+ -n,) n 1---+ -no) (10.68))
This is generatedby a reflection in e,since)

- --ene== -een== -no) (10.69))
We can therefore write)

-eF(x)e== x2F(x-I ),) (10.70))
which showsthat inversionsin V(p, q) are representedas reflectionsin the confor-
mal spaceV(p + 1,q + 1).As both X and -X are homogeneousrepresentations
of the same point, it is irrelevant whether we take -e(...)eor e(...)eas the
reflection. In the following we will usee(...)efor convenience.

A reflection in e correspondsto an inversion in the origin in Euclidean space.
To find the generator of an inversion in an arbitrary point a, we translate to the
origin, invert and translate forward again. The resulting generator is then

TaeT-a= (1+
\037a ) e(1+ a;) = e _ a _

\0372

n. (10.71)
Now, recalling that e == (n + n)/2, the generating vector can alsobe written as)

TaeT-a== !(n-F(a)) == !(n-A).) (10.72))
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A reflection in (n -F(a)) therefore achievesan inversion about the point a in

Euclideanspace.As with translations, a nonlinear transformation in Euclidean
spacehas beenlinearisedby moving to a conformalrepresentationof points.The
generator of an inversion is a vector with positive square. In section10.5.1we
seehow thesevectors are relatedto circlesand spheres.)

10.3.4Dilations)

A dilation in the origin is given by)

, -a
X I---t X == e X,) (10.73))

where a is a scalar.Clearly, this transformation does not alter angles,so is
a conformaltransformation. The null vector correspondingto the transformed
point is)

F(x')== e-a (x2e-an + 2x + ean).) (10.74))

Clearly the map we needto achieve is)

n I---t e-an,) n I---t ean.) (10.75))

This transformation does not alter the inner product of nand n, so can be
representedwith a rotor.As the vector X is unchanged, the rotor can only be
generatedby the timelike bivector ee.If we set)

N - 1-
/\\== ee== -n n

2) (10.76))

then N satisfies)

Nn == -n == -nN
,)

Nn==n==-nN
,)

N2
== 1.) (10.77))

We now introduce the rotor)

Da == eaN/2
== cosh(a/2)+ sinh(a/2)N.) (10.78))

This rotor satisfies)

DanDa== e-an,
DanDa== ean)

(10.79))

and so carriesout the requiredtransformation. We can therefore write)

F(e-ax)== e-aDaF(x)Da,) (10.80))

which confirms that a dilation in the origin is representedby a simplerotor in

conformalspace.To achievea dilation about an arbitrary point a we form)

D' -T D T
- -eaN'/2a-aaa- ,) (10.81))
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where the generator is now)

I
- 1 \037

-- 1N == TaNTa == 2Tanl\\nTa== -2A l\\n,) (10.82))
with A == F(a).A dilation about a is therefore generatedby)

I

(
a Al\\n

)Do == exp(-aAl\\n/4)== exp '2A.n
.) (10.83))

The generator is governedby two null vectors, one for the point about which the
dilation is performed and one for the point at infinity.)

10.3.5Specialconformaltransformations)
A specialconformaltransformation consistsof an inversion in the origin, a trans-
lation and a further inversion in the origin. We can therefore handle these in

terms of the representationswe have already established.In Euclideanspacethe
effectof a conformaltransformation can be written as)

x + ax2 1x 1---+ == x1+ 2a.x+ a2x2 1+ ax)

1 x.1+xa) (10.84))

The final expressionsconfirm that a specialconformal transformation corre-
spondsto a position-dependentrotation and dilation in Euclideanspace,sodoes
leaveanglesunchanged.To construct the equivalent rotor in Q(p+ 1,q + 1)we
form)

na
Ka == eTae == 1--,

2)
(10.85))

which ensuresthat KaF(x)Ka is a specialconformaltransformation. Explicitly,
we have)

F (X
1

) == (1+ 2a.x+ a2x2)-IKaF(x)Ka1+ax) (10.86))

and again we can ignore the pre-factor and useKaF(x)Kaas the homogeneous
representation of the result of a specialconformaltransformation.)

10.3.6Euclideantransformations
The group of Euclideantransformations is a subgroupof the full conformal
group.The additional restrictionis that lengths as well as anglesare invariant.

Equation (10.53)showed that the inner product of two null vectors is related
to the Euclideandistancebetween the correspondingpoints. To establisha
homogeneousformula, we must write)

2 A.B
la - bl

== -2
A B '.n .n) (10.87))
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which is homogeneouson A and B.The Euclideangroup can now be seento be
the subgroupof the conformalgroup which leavesn invariant. This is sensible,
as the point at infinity should stay there under a Euclideantransformation.
The Euclideangroup is thus the stability group of a null vector in conformal
space.The group of generatorsof reflectionsand rotations in conformal space
which leave n invariant then provide a doublecover of the Euclideangroup.
Equation (10.87)returns the Euclideandistancebetween points. If the vector
n is replacedby e or e we can transform to distancemeasuresin hyperbolic or

sphericalgeometry. This makes it a simpleexerciseto attach different geometric
picturesto algebraic resultsin conformalspace.)

10.4Geometricprimitivesin conformalspace)
Now that we have seen how points are encodedin conformal space, we can

beginto build up more complexgeometric objects.As in projective geometry,
we expectthat a multivector blade L will encodea geometric objectvia the

equation)

L/\\X == 0,) X2
== o.) (10.88))

The question,then, is what type of objectdoeseach gradeof multivector return.
Oneimportant result we can exploit is that X2 == 0 is unchanged if X 1----7 RXR.

SO,if a geometricobjectis specifiedby L via equation (10.88),it follows that)

R(L/\\X)R== (RLR)/\\(RXR)== o.) (10.89))

We can therefore transform the objectL with a generalelementof the conformal

group to obtain a new object.Similarconsiderationshold for incidencerelations.
Sinceconformaltransformations only preserveangles,and do not necessarilymap
straight lines to straight lines,the range of objectswe can describeby simple
bladesis clearly going to be larger than in projective geometry.)

10.4.1Bivectorsand points)

A pair of points in Euclideanspaceare representedby two null vectors in a space
of two dimensionshigher. We know that the inner productin this spacereturns
information about distances.The next question to ask is what is the significance
of the outer productof two vectors. If A and B are null vectors, we form the
bivector)

G == A/\\B.) (10.90))

The bivector G has magnitude)

c2 == (AB -A.B)(-BA+ A.B)== (A.B)2,) (10.91))

360)))



10.4GEOMETRICPRIMITIVESIN CONFORMALSPACE)

which shows that G is timelike, borrowingthe terminologyof specialrelativity.
It follows that G contains a pair of null vectors.If we look for solutions to the
equation)

GAX == 0,) X2 == 0,) (10.92))
the only solutions are the two null vectors contained in G.Theseare precisely
A and B, so the bivector encodesthe two points directly. In the conformal
model, no information is lost in forming the exterior productof two null vectors.
Spacelikebivectors, with B2 < 0, do not contain any null vectors, so in this case
there are no solutions to BAX == 0 with X2 == O. The critical caseof B2 == 0
implies that Bcontains a single null vector.

Given a timelike bivector, B2 >0, we require an efficient means of finding the
two null vectors in the plane.This can be achievedwithout solving any quadratic
equations as follows.Pickan arbitrary vector a, with a partial projectionin the
plane, a.B i= O. If the underlying spaceis Euclidean,one can use the vector e,
sinceall timelike bivectors contain a factor of this. Now removethe component
of a outsidethe plane by defining)

/ \037 \037

a ==a-aABB,) (10.93))
where B == B/IBIis normalised so that B2 == 1.If a/ is already null then it

definesone of the requiredvectors.If not, then one can form two null vectors in

the Bplane by writing)

Ax == a/ :!:a/B.) (10.94))

One can easily confirm that Ax are both null vectors, and so return the desired
points.)

10.4.2'I'rivectors,linesand circles)

If a bivector now only representsa pair of points,the obvious question is how

do we describea line? Supposewe construct the line through the pointsa and
b in V(p, q). A point on the line is given by)

x == Aa + (1- A)b.) (10.95))
The conformalversion of this line is)

F(x)==
(A

2a2 + 2A(1-A)a.b+ (1-A)2b)n + 2Aa + 2(1- A)b
- n

== AA + (1-A)B + !A(l-A)A.Bn, (10.96))
and any multiple of this encodesthe same point on the line. It is clear,then,
that a conformalpoint X is a linear combination of A, Bandn, subjectto the
constraint that X2 == O. This is summarised by)

(AABAn)AX == 0,) X2
== O.) (10.97))
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So it is trivectors that representlines in conformalgeometry. This illustratesa
general feature of the conformalmodel-geometricobjectsare representedby

multivectors of one gradehigher than their projective counterpart. The extra
degreeof freedomis absorbedby the constraint that X2 == o.

As stated above, if we apply a conformaltransformation to a trivector repre-
senting a line, we must obtain a new line.But there isno reasonto expectthis to
be straight. To seewhat elsecan result,considera simpleinversion in the origin.
Supposethat (Xl, X2) denotea pair of Cartesiancoordinatesfor the Euclidean
plane, and considerthe line XI == 1.Points on the line have components (1,X2),
with -00<X2 < +00.The image of this line under an inversion in the origin
has coordinates(x\037, x;),where)

, 1
X -

1- 1+ x\037

'
It is now straightforward to show that)

, X2x2 == 1+
x\037

.) (10.98))

(
' 1

)
2

(
'
)
2

(
1
)

2
Xl -:2 + X2 == :2 .) (10.99))

Henceinversion of a line producesa circle, centred on (1/2,0)and with radius

1/2.
It follows that a general trivector in conformalspacecan encodea circle,with

a line representingthe specialcaseof infinite radius.This is entirely sensible,as
three distinct pointsare requiredto specify a circle.The points define a plane,
and any three non-collinearpoints in a plane specify a unique circle.So,given
three points AI, A 2, A 3, the circlethrough all three is defined by)

Al /\\A 2 /\\A 3/\\X == 0,) (10.100))

together with the restriction (often unstated)that X2 == O. The trivector)

L == Al /\\A 2 i\\A 3) (10.101))
thereforeencodesa unique circlein conformalgeometry. The test that the points
lie on a straight line is that the circlepassesthrough the point at infinity,)

L /\\ n == 0 =? straight line.) (10.102))
This explainswhy our earlier derivation of the line through Al and A 2 led to
the trivector Al /\\ A 2/\\ n, which explicitly includesthe point at infinity. UnUke

tests for linear dependence,testing for zero in equation (10.102)is numerically
acceptable.The reasonis that the magnitude of L/\\n controls the deviation from

straightness.If precisionis limited, one can then define how closeL /\\ n should
be to zero in orderfor the line to be treatedas straight. This is quite different to
linear independence,where the conceptof 'nearly independent'makes no sense.

Given that a trivector L encodesa circle,we shouldexpectto beable to extract
the key geometricpropertiesof the circledirectly from L. In particular, we seek)
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e2)

-el)

Figure 10.7 The unit circle. Three referencepoints are marked on the
circle.)

expressionsfor the centre and radius of the circle.(The plane containing the
circle is specifiedby the 4-vector L /\\ n, as we explain in the following section.)
Any circlein a plane can be mappedonto any other by a translation and a
dilation. Underthat latter we find that)

L/\\n r-+ (Do:LDQJ/\\n== eQDo:(L/\\n)Do:.) (10.103))

It follows that (L/\\n)2 scalesas the inversesquareof the radius.Next, consider
the unit circlein the circlein the xy plane,and take as three points on the circle
those shown in figure 10.7.The trivector for this circle is)

Lo == F(el)/\\F(e2)/\\F(-eI)== 16ele2e.) (10.104))

It follows that)

L2
o

== -1
(Lo/\\ n)2 '

which is (minus) the squareof the radius of the unit circle.We can translate
and dilate this into any circlewe choose,so the radius p of the circleencodedby

the trivector L is given by)

(10.105))

L2
2

P == -
(L/\\n)2')

(10.106))

This is a further illustration of how metric information is carriedaround in the

homogeneousframework of the conformalmodel.If L representsa straight line

we know that L/\\ n == 0, so the radiuswe obtain is infinite.

Similar reasoningproducesa formula for the centre of a circle.Essentiallythe

only objectswe have to work with are Landn. If we form LnL for the caseof)
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the unit circlewe obtain)

LonLo ex: ele2eneele2== -no) (10.107))
But n is the null vector for the origin, so this expressionhas returned the desired
point. Again, wecan translate and dilate this result to obtain an arbitrary circle,
and we find in general that the centre C of the circleL is obtainedby)

C== LnL.) (10.108))
We will seein section10.5.5that the operation L... L generatesa reflection in

a circle.Equation (10.108)then saysthat the centre of a circle is the image of
the point at infinity under a reflection in the circle.)

10.4.34-vectors,spheresand planes)
We can apply the same reasoning for lines and circlesto the caseof planesand
spheresand, for mixedsignature spaces,hyperboloids.Supposeinitially that the
pointsa, b, c define a plane in V(p, q), so that an arbitrary point in the plane is
given by)

x == aa + /3b + rC,) a + /3 + r == 1.) (10.109))
The conformalrepresentationof x is)

x == aA + /3B+ rC+ bn,) (10.110))
where A == f(a) etc.,and

b ==
\037(Q/3A.B + QrA .C + /3rB.C).) (10.111))

Varying Q and /3, together with the freedomto scaleF(x),now producesgeneral
null combinationsof the vectors A, B,Cand n. The equation for the plane can
then be written)

A/\\B/\\C/\\n/\\X == o.) (10.112))
The plane passesthrough the pointsdefinedby A, B,C and the point at infinity

n. We can therefore seethat a general plane in conformal spaceis defined by
four points.

If the four points in question do not lie on a (flat) plane, then the 4-vector
formed from their outer productdefinesa sphere.To seethis we again consider
inversion in the origin, this time appliedto the xI == 1plane. A point on the
plane has coordinates(1,X2, X3), and under an inversion this mapsto the point
with coordinates)

, 1
xI == 1+

x\037
+

x\037

')

, y
x2 == 1+

x\037 +
x\037

')

, zx ==3 1+ x\037 +
x\037

.) (10.113))
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The new coordinatessatisfy)

(
' 1

)
2

(
'
)
2

(
'
)
2

(
1
)
2

Xl -\"2 + X2 + X3 ==
\"2

') (10.114))

which is the equation of a sphere.Inversionthus interchangesplanesand spheres.
In particular, the point at infinity n is transformed to the origin fi under inver-

sion, which is now one of the pointson the sphere.
Given any four distinct pointsAI, .. ., A 4, not all on a line or circle,the equa-

tion of the unique spherethrough all four points is)

A l /\\A 2/\\A 3/\\A 4/\\X == P/\\X == 0,) (10.115))

so the sphereis defined by the 4-vectorP == Al /\\A 2 /\\A 3!\\A 4. The sphereis flat

(a plane) if it passesthrough the point at infinity, the test for which is)

A l /\\A 2J\\A 3!\\A 4/\\n == P/\\n == O.) (10.116))

The 4-vector P contains all of the relevant geometric information for a sphere.
The radiusof the spherep is given by)

p22
P ==

(P!\\n)2
') (10.117))

as is easily confirmedfor the caseof the unit sphere,P == ele2e3e.Similarly, the
centre of the sphereC== F(c) is given by)

C== PnP.) (10.118))

Theseformulae are the obviousgeneralisationsof the resultsderived for circles.)

10.5Intersectionand reflectionin conformalspace
One of the most significant advantages of the conformalapproach to Euclidean
geometry is the easewith which it solvescomplicatedintersection problems.So,
for example,finding the circleof intersection of two spheresis now no more

complicated than finding the line of intersection of two planes.In addition, the

concept of reflection is generalisedin conformalspaceto include reflection in a
sphere. This provides a very compact means of encoding the key conceptsof
inversi ve geometry.)

10.5..1Duality in conformalspace
The conceptof duality is key to intersecting objectsin projective space,and the
same is true in conformalspace.Supposethat we start with the Euclideanplane,
modelled in 9(3,1).Duality in this algebrainterchanges spacelikeand timelike)
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bivectors.It alsomapstrivectors to vectors, and vice versa. A trivector encodes
a line, or circle,so the dual of the circleC is a vector c, where)

c == C* == IC) (10.119))
and I is the pseudoscalarfor 9(3,1).The equation for the circle,XAC == 0, can
now be written in dual form and reducesto)

X.c== -I(XAC) == O.) (10.120))
The radiusof the circleis now given by)

c2
p2 ==

(c'n)2
'

as the vector dual to a circlehas positive signature. This picture provides us
with an alternative view of the conceptof a point as beinga circleof zero radius.

Similar considerationshold for spheresin three-dimensionalspace.Theseare
representedas 4-vectors in 9(4,1),so their dual is a vector. We write)

(10.121))

8 == S* == IS
,) (10.122))

where I is the pseudoscalar,so that the equation of a spherebecomes)

X'8 == I(XAS) == O.) (10.123))
The radius of the sphereis again given by

82
p2 ==

(8'n)2
'

so that points are spheresof zero radius. One can seethat this is sensibleby

consideringan alternative equation for a sphere.Supposewe are interestedin

the spherewith centre C and radiusp2. The equation for this can be written)

(10.124))

X.C 2-2 == p .X'nC.n
Rearranging, this equation becomes)

(10.125))

X.(2C+ p
2C.nn)== 0,) (10.126))

and if C is in standardform, C == F(c),we obtain)

X.(F(c)-p
2
n) == O.) (10.127))

We can therefofe identify 8 == S*with the vector F(c)-p2n,which neatly encodes
the centre and radiusof the spherein a single vector. Whether the 4-vector S
Of its dual vector 8 is most useful dependson whether the sphereis specifiedby
four pointslying on it, or by its centre and radius. For a given sphere8 we can
now write)

8 == .\\(2C+ p
2C.nn).) (10.128))
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It is then straightforwardto confirm that the radiusis given by equation (10.124).
The centre of the circlecan be recoveredfrom

C _ s p2 _ sns
C.n- s.n-2n -

2(s.n)2
. (10.129)

The sns form for the centre of a sphereis dual to the SnSexpressionfound in

equation (10.118).)

10.5.2Intersectionoftwo linesin a plane
As a simpleexampleof intersection in the conformalmodel, considerthe inter-
sectionof two lines in a Euclideanplane. The lines are describedby trivectors
LI and L2 in 9(3,1).The intersection is describedby the bivector)

B ==
(L\037 AL;)*== I(L1x L2),) (10.130))

where1is the conformalpseudoscalar.The bivector B can contain zero, one or
two points,dependingon the sign of its square,as describedin section10.4.1.
This is to be expected,as distinct circlescan intersect at a maximum of two

points. If the lines are both straight, then one of the points of intersection will

be at infinity, and BAn == O.
To verify this result, considerthe caseof two straight lines, both passing

through the origin, and with the first line in the a direction and the secondin

the b direction.With suitablenormalisation we can write)

L1 == aN,) L2 == bN,) (10.131))

where N == ee.The intersection of L1 and L2 is controlled by)

B == I aAb ex N) (10.132))
and the bivector N contains the null vectors nand n. This confirms that the
lines intersectat the origin and infinity. Applying conformal transformations
to this result ensuresthat it holds for all lines in a plane, whether the lines
are straight or circular.The formulae for LI and L2 also show that their inner

product is relatedto the angle between the lines,)

(LIL2) == a.b.) (10.133))

We can therefore write)

(L1L2)
cos(O)=

ILIIIL21
'

where ILl == J(L2).This equation returns the angle between two lines. The

quantity is invariant under the full conformalgroup, and not just the Euclidean
group, becauseangles are conformalinvariants. It follows that the same formula

must hold even if L1 and L2 describecircles.The angle between two circlesis)

(10.134))
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the angle made by their tangent vectors at the point of intersection.Two circles
intersectat a right angle, therefore, if)

(LIL2) == O.) (10.135))
This result can equally be expressedin terms of the dual vectors IIand l2.)

10.5.3Intersectionofa lineand a surface
Now supposethat the 4-vector P definesa plane or spherein three-dimensional
Euclidean space,and we wish to find the point of intersection with a line de-
scribedby the trivector L. The algebra proceedsentirely as expectedand we
arrive at the bivector)

B == (P*/\\L*)* == (IP).L== I(PxL).) (10.136))
This bivector can again describezero,one or two points,dependingon the sign of
its square.This setupdescribesall possibleintersectionsbetweenlinesor circles,
and planesor spheres-an extremely wide range of applications.Preciselythe
same algebra enablesus to answer whether a ring in spaceintersectsa given
plane, or whether a straight line passesthrough a sphere.)

10.5.4Surfaceintersections)

Next, supposewe wish to intersect two surfaces in three dimensions.Suppose
that theseare spheresdefined by the 4-vectors81 and 52.Their intersection is
describedby the trivector)

L == 1(51x52).) (10.137))
This trivector directly encodesthe circleformed from the intersection of two

spheres.As with the bivector case,the sign of L2 defineswhether or not two

surfaces intersect.If L2 > 0 then the surfaces do intersect.If L2 == 0 then the
surfaces intersect at a point. Testssuch as this are extremely helpful in graphics
applications.

We can similarly expressthe intersection in terms of the dual vectors 81 and
82 as)

L == I 81/\\82,) (10.138))
As a check,the point X lieson both spheresif)

X'81== X'82== O.) (10.139))
It follows that)

X.(81;\\82) == X '8182-X '8281== O.) (10.140))
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The dual result is that X/\\(1 81/\\82) == 0, which confirms that X liesin the space
definedby the trivector L.)

10.5.5Reflectionsin conformalspace)

At variouspointsin previous sectionswe have obtainedformulaewhich generate
reflections. We now discussthesemore systematically. In section2.6we estab-
lished that the vector obtainedby reflectinga in the hyperplane perpendicular
to l, l2 == 1,is -lal.But this formula assumesthat the line and plane intersect
at the origin. We seeka more general expression,valid for an arbitrary line and

plane. Let P denotethe plane and L the line we wish to reflect in the plane,
then the obviouscandidatefor the reflected line L' is)

L' == PLP.) (10.141))

(The sign of this is irrelevant in conformalspace.)To verify that this is correct,
supposethat L passesthrough the origin in the a direction,)

L == aN3) (10.142))
and the plane P is defined by the origin and the directionsband c,)

P == b/\\cN.) (10.143))
In this case)

\302\243'
== b/\\c a b/\\c N == (-(13b/\\c)a(13b/\\c)) N,) (10.144))

where13is the three-dimensionalpseudoscalar.This result achievesthe required
result. The vector a is reflected in the b/\\c plane to obtain the desireddirection.
The outer product with N then defines the line through the origin with the

requireddirection.Equation (10.141)is correct at the origin, so therefore holds
for all lines and planes,by conformalinvariance.

There are a number of significant consequencesof equation (10.141).The
first is that it recovers the correctline in three dimensions without having to
to find the point of reflection. The secondis that it is straightforward to chain
together multiple reflectionsby forming successiveproductswith planes.In this

way complicatedreflectionscan be easily composed,all the time keepingtrack
of the direction and positionof the resultant line.A further consequenceis that
the samereflection formula must hold for higher dimensionalobjects.Suppose,
for example,we wish to reflect the sphere5 in the plane P.The result is)

5'== P5P.) (10.145))
Thistype ofequation isextremelyuseful in dealingwith wave propagation, where
a wavefront is modelledas a seriesof expandingspheres.

Conformalinvarianceof the reflectionformula (10.141)ensuresthat the same)
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formula holds for reflection in a circle,or in a sphere.For example,suppose
we wish to carry out a reflection in the unit circlein two-dimensionalEuclidean
space.The circle is defined by Lo == ele2e,and the dual vector is)

ILo==e.) (10.146))
Reflection in the unit circle is therefore performed by the operation

M 1---+ eMe.) (10.147))
This is an inversion, as discussedin section10.3.3.In this manner, the main

resultsof inversive geometry are easily formulated in terms of reflectionsin con-
formal space.)

10.6Non-Euclideangeometry
The suddengrowth in the subject of geometry in the nineteenth century was
stimulated in part by the discoveryof geometrieswith very different properties
to Euclideanspace.Thesewere obtainedby a simple modification of Euclid's
parallel postulate. For Euclidean geometry this states that, given any line l
and a point P not on the line, there exists a unique line through P in the
plane of landP which doesnot meet l. This is then a line parallel to l. For

many centuries this postulatewas viewedas problematic,as it cannot be easily
experimentally verified. As a result, mathematicians attempted to remove the
parallel postulateby proving it from the remaining, uncontroversial,postulates
of Euclideangeometry. This enterpriseproved fruitless, and the reasonwhy

was discoveredby Lobachevskiiand Bolyai in the 1820s.One can replacethe
parallel postulatewith a different postulate,and obtain a new, mathematically
acceptablegeometry.

There are in fact two alternative geometriesone can obtain, by replacing
the statement that there is a single line through P which does not intersect
l with either an infinite number or zero.The caseof an infinite number pro-
duceshyperbolic geometry,which is the non-Euclideangeometry constructedby
Lobachevskiiand Bolyai. (In this section'non-Euclidean'usually refers to the
hyperboliccase.)The caseof zero linesproducessphericalgeometry. Intuitively,
the sphericalcasecorrespondsto spacecurling up, so that all (straight) lines
meet somewhere,and the hyperboliccasecorrespondsto spacecurving outwards,
so that lines do not meet.From the more modern perspectiveof Riemannian
geometry, we are talking about homogeneous,isotropicspaces,which have no

preferred pointsor directions.Thesecan have positive, zero or negative curva-
ture, correspondingto spherical,Euclideanand hyperbolic geometries.Today,
the question of which of these correctly describesthe universe on the largest
scalesremains an outstanding problem in cosmology.

An extremelyattractive feature of the conformalmodelof Euclideangeometry)
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Figure 10.8Circlelimit IIIby Maurits Escher.@2002CordonArt B.V.,
Baarn,Holland.)

is that, with little modification,it can beappliedto both hyperbolicand spherical
geometriesas well. In essence,the geometry reducesto a choice of the point
at infinity, which in turn fixes the distancemeasure.This idea replacesthe
conceptof the absoluteconic,adoptedin classicalprojectivegeometryasa means
of imposing a distancemeasure. In this sectionwe illustrate these ideaswith

a discussionof the conformal approach to planar hyperbolic geometry. As a
concrete modelof this we concentrate on the Poincare disc. This version of
hyperbolic geometry is mathematically very appealing,and also gives rise to
some beautiful graphic designs,as popularisedin the prints of Maurits Escher
(seefigure 10.8).)

10.6.1The Poincaredisc)

The Poincare discV consistsof the set of points in the plane a distancer < 1
from the origin. At first sight this may not appear to be homogeneous,but in)
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Figure 10.9ThePoincaredisc.Points inside the discrepresentpoints in

a hyperbolic space.A set of d-linesare alsoshown. Theseare (Euclidean)
circlesthat intersectthe unit circleat right angles.The d-lines through A

illustrate the parallelpostulatefor hyperbolic geometry.)

fact the nature of the geometry will ensurethat there is nothing specialabout
the origin. Note that pointson the unit circler == 1are not included in this
model of hyperbolic geometry. The key to this geometry is the conceptof a
non-Euclideanstraight line. Theseare calledd-lines,and representgeodesicsin
hyperbolic geometry. A d-line consistsof a sectionof a Euclideancirclewhich

intersectsthe unit circleat a right angle.Examplesof d-linesare illustrated in

figure 10.9.Given any two points in the Poincare discthere is a unique d-line
through them, which representsthe 'straight'line between the points. It is now

clear that for any point not on a given d-line l, there are an infinite number of
d-linesthrough the point which do not intersect l.

We can now begin to encodethese conceptsin the conformal setting. We

continueto denotepointsin the plane with homogeneousnull vectors in precisely
the same manner as the Euclideancase.Suppose,then, that X and Yare the
conformal vectors representingtwo points in the disc. The set of all circles
through these two pointsconsistsof trivectors of the form X /\\ Y /\\ A, where A

is an additional point. But we require that the d-line intersectsthe unit circle
at right angles.The unit circle is describedby the trivector Ie,where I is the)
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pseudoscalarin 9(3,1).If a line L is perpendicularto the unit circle it satisfies)

(Ie).L== I(e/\\L)== O.) (10.148))
It follows that all d-linescontain a factor ofe.The d-line through X and Y must
therefore be describedby the trivector)

L == X /\\Y /\\e.) (10.149))
One can seenow that a general schemeis beginning to emerge.Everywhere in

the Euclideantreatment that the vector n appears it is replacedin hyperbolic
geometry by the vector e. This vector representsthe circleat infinity.

Given a pair of d-lines,they can either misseach other, or intersect at a point
in the disc V. If they intersect,the angle between the lines is given by the
Euclidean formula)

L1.L2
cos(B) =

I
LIIIL21

\ (10.150))

It follows that anglesare preservedby a general conformal transformation in

hyperbolic geometry. A non-Euclidean transformation takes d-linesto d-lines.
The transformation must therefore map (Euclidean)circlesto circles,while pre-
servingorthogonality with e. The group of non-Euclideantransformations must
therefore be the subgroupof the conformalgroup which leavese invariant. This
is confirmed in the following section,where we find the appropriatedistance
measure for non-Euclideangeometry.

The fact that the point at infinity is representedbye,as opposedto n in

the Euclideancounterpart, provides an additional operation in non-Euclidean
geometry. This is inversion in e:)

X 1---+ eXe.) (10.151))

As all non-Euclidean transformations leave e invariant, all geometric relations
remain unchanged under this inversion. Geometrically,the interpretation of the
inversion is quite clear.It mapseverything insidethe Poincare discto a 'dual'
versionoutsidethe disc.In this dual spaceincidencerelations and distancesare
unchanged from their counterpartsinsidethe disc.)

10.6.2Non-Euclideantranslationsand distance)

The key to finding the correctdistancemeasure in non-Euclidean geometry is
to first generalisethe conceptof a translation. Given pointsX and Y we know
that the d-lineconnecting them isdefinedby X/\\Y /\\e. This is the non-Euclidean
conceptof a straight line. A non-Euclidean translation must therefore move

pointsalong this line.Sucha transformation must take X to Y, but must also
leavee invariant. The generator for such a transformation is the bivector)

B == (X/\\Y /\\e)e == Le,) (10.152))
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Figure 10.10A non-Euclidean translation. The figure near the origin is
translated via a boost to give the distorted figure on the right. This dis-
tortion in the Poincarediscis oneway of visualising the effectof a Lorentz
boost in spacetime.)

where L == X /\\ Y /\\e. We find immediately that

B2
== L2 > 0

,) (10.153))

so non-Euclidean translations are hyperbolic transformations, as one might ex-

pect.An exampleof such a translation is shown in figure 10.10.
We next define)

A BB=
TBT')

B2 == 1
,) (10.154))

so that we can write)

Y == eaB/2Xe-aB/2.) (10.155))

By varying a we obtain the set of pointsalong the d-line through X and Y. To
obtain a distancemeasure,we first require a formula for ct. If we decomposeX
into)

X == XB2
== x.BB+ X /\\B B) (10.156))

we obtain)

Y == X /\\BB + cosh(a) X.BB - sinh (a) X .B.) (10.157))

The right-hand sidemust give zero when contracted with Y, so)

(X/\\B B /\\Y) + cosh(a)(X.BB.Y) + sinh(a)(X/\\Y).B== o.) (10.158))
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To simplify this equation we first find

X 13 ==
XI\\(XI\\Yl\\ee)

1\\

IBI)

e.XL
ILl)

(10.159))

and)

A L2
(X/\\Y).B=

TBT
=

ILl.) (10.160))

It follows that)

e.Xe.y+ cosh(o;)(X.Y- e.Xe.Y)+ sinh(o;)ILl == 0,) (10.161))
the solution to which is)

X.y
cosh(0;) == 1-

X Y
..e .e) (10.162))

The half-angle formula is more relevant for the distancemeasure,and we find

that)

2 X.Y
sinh (0;/2)== - .2X.ey.e) (10.163))

This closelymirrors the Euclideanexpression,with n replacedbye.
There are a number of obviouspropertiesthat a distancemeasure must satisfy.

Among theseis the additive propertythat)

d(XI , X2) + d(X2,X3) == d(X1,X3)) (10.164))
for any three pointsX1,X2, X3 in this orderalong a d-line.Returning to the
translation formula of equation (10.155),supposethat Z is a third point along
the line, beyond Y. We can write)

Z == e{3B/2ye-{3B/2 == e(O:+ {3)BXe-(0:+ {3)B/2.) (10.165))

Clearly it is hyperbolic anglesthat must form the appropriatedistancemeasure.
No other function satisfies the additive property.We therefore define the non-
Euclideandistanceby)

(
X.y

)

1/2
d(x,y) == 2sinh-1 - .2X.ey.e) (10.166))

In terms of the positionvectors x and y in the Poincare discwe can write)

(
I 1

2

)

1/2
d(x,y) = 2sinh-1

(1_
\0372)(\037

_ y2)
,) (10.167))

wherethe modulus refers to the Euclideandistance.The presenceof the arcsinh
function in the definition of distancereflects the fact that, in hyperbolic geome-
try, generatorsof translations have positive squareand the appropriatedistance
measure is the hyperbolic angle.Similarly, in sphericalgeometry translations
correspondto rotations, and it is the trigonometric angle which plays the role)
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of distance.Euclideangeometry is therefore unique in that the generatorsof
translations are null bivectors.For these,combining translations reducesto the
addition of bivectors, and hence we recoverthe standarddefinition of Euclidean
distance.)

10.6.3Metricsand physicalunits

The derivation of the non-Euclideandistanceformula of equation (10.166)forces
us to face an issuethat has been ignored to date. Physical distancesare di-
mensionalquantities, whereas our formulae for distancesin both Euclideanand
non-Euclideangeometriesare manifestly dimensionless,as they are homogeneous
in X. To resolve this we cannot just demand that the vector x has dimensions,
as this would imply that the conformalvector X contained terms of mixed di-
mensions.Neither can this problem be circumventedby assigningdimensionsof
distanceto fi and (distance)-Ito n, as then e has mixed dimensions,and the
non-Euclidean formula of (10.166)is non-sensical.

The resolution isto introduce a fundamental length scale,..\\, which isa positive
scalarwith the dimensionsof length. If the vector x has dimensionsof length,
the conformalrepresentationis then given by)

1
(

2 2-
)X ==

2..\\2
x n + 2..\\x -

..\\ n .) (10.168))

This representationensuresthat X remains dimensionless,and is nothing more
than the conformal representationof x /..\\. Physical distancescan then be con-
verted into a dimensionally meaningful form by including appropriatefactors
of..\\.Curiously, the introduction of ..\\ into the spacetimeconformalmodel has

many similarities to the introduction of a cosmologicalconstant A == ..\\
2.

We can make contact with the metric encoding of distanceby finding the
infinitesimal distancebetween the pointsx and x + dx. This defines the line

element)

2 4 dx2
ds = 4.\\

(.\\2
_ x2)2

,

where the factors of ..\\ have beenincludedand x is assumedto have dimensions
of distance.This line element is more often seenin polar coordinates,where it

takesthe form)

(10.169))

ds2 ==
4..\\4

(d 2 2do2
)

(..\\2
_ r2)2

r + r .) (10.170))

This is the line element for a spaceof constant negative curvature, expressedin

termsof conformalcoordinates.The coordinatesare conformalbecausethe line

element is that of a flat spacemultiplied by a scaling function. The geodesics
in this geometry are preciselythe d-linesin the Poincare disc.The Riemann
curvature for this metric shows that the spacehas uniform negative curvature,)
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sothe spaceis indeedhomogeneousand isotropic-there are no preferredpoints
or directions.The centre of the discis not a specialpoint, and indeedit can be
translatedto any other point by 'boosting'along ad-line.)

10.6.4Midpointsand circlesin non-Euclideangeometry
Now that we have a conformalencodingof a straight line and of distancein non-
Euclideangeometry,we can proceedto discussconceptssuch as the midpoint of
two points, and of the set of pointsa constant distancefrom a given point (a
non-Euclideancircle).Supposethat A and B are the conformalvectors of two

points in the Poincare disc.Their midpoint C lieson the line L == A/\\B/\\e and
is equidistant from both A and B.The latter condition implies that)

C.A C.B
C.eA.e C.eB.e'

Both of the conditions for Care easily satisfied by setting
A BC==

2A.e+ 2B.e+ ae, (10.172)
where a must be chosen such that C2 == O. Normalising to C.e == -1we find

that the midpoint is)

(10.171))

1
(

A B
)C=-

Vl+J 2A.e+ 2B.e+(Vl+J-l)e,) (10.173))

where)
A.B

r5 == -
2A.eB.e) (10.174))

An equation such as this is rather harder to achievewithout accessto the con-
formal model.

Next supposewe wish to find the set of points a constant (non-Euclidean)
distancefrom the point C. This definesa non-Euclidean circle with centre C.
From equation (10.166),any point X on the circlemust satisfy

X.C
X C = constant = a2

,2 .e .e) (10.175))

so that the radiusis sinh -1(a).It follows that

X.(C+ 2a2C.ee)== O.) (10.176))
If we define s by)

s == C + 2a2C.ee) (10.177))
we seethat s2 > 0, and the circleis definedby X.s== O.But this ispreciselythe
formula for a circlein Euclideangeometry,so non-Euclideancirclesstill appear
as ordinary circleswhen plotted in the Poincare disc.The only differenceis the

.)
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Figure 10.11Non-Euclideancircles.A seriesof non-Euclideancircleswith

differing radii are shown, all about the common centreA. A d-line through
A is alsoshown. This intersectseachcircleat a right angle.)

interpretation of their centre.The Euclideancentre of the circle s,defined by

sns, doesnot coincidewith the non-Euclidean centre C. This is illustrated in

figure 10.11.
Supposethat A, BandC are three points in the Poincare disc.We can still

define the line L through thesepointsby)

L == A/\\B/\\C,) (10.178))

and this definesthe circle through the three pointsregardlessof the geometrywe

are working in. All that is different in the two geometriesis the positionof the

midpoint and the sizeof the radius.The test that the three points lie on ad-line
is simply that L/\\e == O. Again, the Euclideanformula holds,but with n replaced
bye.Similar comments apply to other operationsin conformalspace,such as
reflection. Givena line L, pointsare reflectedin this line by the map X 1---+ LXL.
This formula is appropriatein both Euclideanand non-Euclideangeometry. In

the non-Euclidean caseit is not hard to verify that LXL correspondsto first

finding the d-line through X intersecting L at right angles,and then finding the

point on this line an equal non-Euclideandistanceon the other side.This is as
one would expectfor the definition of reflection in a line.)

.)
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10.6.5A unifiedframeworkforgeometry)

We have so far seenhow Euclideanand hyperbolicgeometriescan both be han-
dled in terms of null vectors in conformalspace.The key conceptis the vector

representingthe point at infinity, which remains invariant under the appropriate
symmetry group. The full conformal group of a spacewith signature (p, q) is
the orthogonal group O(p+ 1,q + 1).The group of Euclidean transformations
is the subgroupof O(p+ 1,q + 1)that leavesthe vector n invariant. The hyper-
bolic group is the subgroupof O(p+ 1,q + 1)which leavese invariant. For the
caseof planar geometry, with signature (2,0),the hyperbolic group is 0(2,1).
The Killing form for this group is non-degenerate(seechapter 11),which makes

hyperbolicgeometry a useful way of compactifyinga flat space.
The remaining planar geometry to consideris sphericalgeometry. By now, it

shouldcomeas little surprisethat sphericalgeometryishandled in the conformal
framework in terms of transformations which leave the vector e invariant. For

the caseof the plane,the conformalalgebrahas signature (3,1),with e the basis
vector with negative signature. The subgroupof the conformal group which

leavese invariant is therefore the orthogonal group 0(3,0),which is the group
one expectsfor a 2-sphere.The distancemeasure for sphericalgeometry is)

(
X,Y

)
1/2

d(x,y) = 2A sin-1 -
X _ Y _ ,2 .e .e) (10.179))

with e replacing n in the obviousmanner. To seethat this expressionis correct,
supposethat we write)

X \" _-==x-e
X - ,.e) (10.180))

where x is a unit vector built in the three-dimensional spacespannedby the
vectors eI,e2 and e. With Y/y.e written in the same way we find that

X.Y 1-x.iJ . 2
(B)== == SIn

2X.eY .e 2 ') (10.181))

where B is the angle between the unit vectors on the 2-sphere.The distance
measure is then preciselythe angle B multiplied by the dimensionalquantity .\\,

which representsthe radiusof the sphere.
Conformalgeometryprovidesa unified framework for the three typesof planar

geometry becausein all casesthe conformalgroupsare the same.That is, the

group of transformations of spherethat leave angles in the sphereunchanged is
the sameas for the plane and the hyperboloid.In all casesthe group is 0(3,1).
The geometriesare then recoveredby a choiceof distancemeasure.In classical
projective geometry the distancemeasure is defined by the introduction of the
absolute conic.All lines intersect this conic in a pair of points. The distance
between two pointsA and B is then found from the four-point ratio between A,

B,and the two pointsof intersectionofthe line through A and Band the absolute)
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conIC. In this way all geometriesare united in the framework of projective
geometry. But there is a priceto pay for this scheme\037 all coordinateshave to
be complex,to ensure that all lines intersect the conic in two points. Recovering
a real geometry is then rather clumsy. In addition, the conformalgroup is not a
subgroupof the projective group, so much of the elegant unity exhibitedby the
three geometriesis lost.Conformalgeometry is a more powerful framework for
a unified treatment of thesegeometries.Furthermore, the conformal approach
can be appliedto spacesof any dimension with little modification. Trivectors
representlines and circles,4-vectorsrepresentplanesand spheres,and so on.

So far we have restrictedourselvesto a single view of the various geometries,
but the discussionof the sphereillustratesthat there are many different ways of
representingthe underlying geometry. To beginwith, we have plottedpointson
the Euclideanplane accordingthe the formula)

x == _ XAN
NX'n ') (10.182))

where N == ee.This is the natural schemefor plotting on a Euclidean pieceof
paper,as it ensuresthat the anglebetween lineson the paperis the correctangle
in each of the three geometries.Euclideangeometryplottedin this way recovers
the obvious standard picture of Euclidean geometry. Hyperbolicgeometry led
to the Poincare disc model, in which hyperbolic lines appear as circles.For

sphericalgeometry the 'straight lines'are great circleson a sphere.On the plane
thesealso plot as circles.This time the condition is that all circlesintersectthe
unit circleat antipodal points. This then defines the sphericalline between
two points (seefigure 10.12).This view of sphericalgeometry is preciselythat
obtained from a stereographicprojectionof the sphereonto the plane. This
is not a surprise,as the conformal model was initially constructedin terms of
a stereographicprojection,with the e vector then enabling us to move to a
homogeneousframework. In this representation of sphericalgeometry the map)

X r--+ eXe) (10.183))

is a symmetry operation.This mapspoints to their antipodal oppositeson the
sphere.In the planar view this transformation is an inversion in the unit circle,
followedby a reflection in the origin.

We now have three separategeometries,all with conformalrepresentationsin
the plane such that the true angle betweenlines is the same as that measuredon
the plane.The pricefor such a representationis that straight lines in spherical
and hyperbolic geometriesdo not appear straight in the plane. But we could
equallychooseto replacethe map of equation (10.182)with an alternative rule of
how to plot the null vector X on a planar pieceofpaper.The natural alternatives
to considerare replacing the vector n with e and e.In total we then have three
different planar realisationsof each of the two-dimensionalgeometries.First,)
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Figure 10.12Stereographicview of sphericalgeometry. All great circleson
the 2-sphereprojectonto circlesin the plane which intersectthe unit circle
(shown in bold) at antipodal points. A seriesof such lines are shown.)

supposewe define)

y = X AN N.
X.e) (10.184))

In terms of the vector x we have)

2x)
(10.185))y== 1-x2 ')

which representsa radial rescaling.Euclideanstraight lines now appearas hy-

perbolaeor ellipses,dependingon whether or not the original line intersected
the disc.If the line intersectedthe discthen the map of equation (10.185)has
two branchesand definesa hyperbola.If the line missesthe discthen an ellipse
is obtained. In all casesthe image lines pass through the origin, as this is the
image of the point at infinity.

The fact that the map of equation (10.185)is two-to-onemeans it has little use
as a version of Euclideangeometry. It is better suitedto hyperbolic geometry,
as one might expect,as the Poincare discis now mappedonto the entire plane.
Hyperbolicstraight lines now appearas (single-branch)hyperbolae on the Eu-
clidean page,all with their asymptotescrossingat the origin. If the dual space
outsidethe disc is includedin the map, then this generatesthe secondbranch
of each hyperbola.Points then occurin pairs, with each point pairedwith its

imageunder reflection in the origin. Finally, we can considersphericalgeometry
as viewedon a plane through the map of equation (10.185).This definesa stan-
dard projective map between a sphereand the plane. Antipodal points on the
spheredefine the samepoint on the plane and sphericalstraight lines appearas
straight lines.

Similarly, we can considerplotting vectors in the plane according to)
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y = _ X/\\N
N = _ F(x)/\\NNX.e F(x).e) (10.186))

or in terms of the vector x)

2x
y == 1+ x2 .) (10.187))

This definesa one-to-onemap of the unit disconto itself, and a two-to-onemap
of the entire plane onto the disc.Euclideanstraight lines now appearplottedas
ellipsesinsidethe unit disc.This construction involves forming a stereographic
projectionof the plane onto the 2-sphere,so that lines map to circleson the
sphere.The sphereis then mappedonto the plane by viewing from above, so
that circleson the spheremap to ellipses.All ellipsespass through the origin,
as this is the image of the point at infinity.

Similarcommentsapply to sphericalgeometry. Sphericallines are great circles
on the sphere,and viewedin the plane accordingto equation (10.187)great circles
appear as ellipsescentredon the origin and touching the unit circleat their
endpoints.The two-to-oneform of the projectionmeans that circleintersections
are not faithfully representedin the discas some of the apparent intersections
are actually causedby pointson oppositesidesof the plane.Finally, we consider
plotting hyperbolic geometry in the view of equation (10.187).The discmaps
onto itself, sowe do have a faithful representationof hyperbolicgeometry. This
is a representationin which hyperboliclines appearstraight on the page,though

angles are not renderedcorrectly,and non-Euclideancirclesappearas ellipses.
As well as viewing each geometry on the Euclideanplane,we can also picture

the geometrieson a sphereor a hyperboloid.The sphericalpicture is obtained
in equation (10.180),and the hyperboloid view is similarly obtainedby setting)

X A-===x+eX.e ') (10.188))

where x2 == -1.The set of x defines a pair of hyperbolic sheets in the space
definedby the vectors {el,e2,e}.The fact that two sheetsare obtained explains
why some views of hyperbolic geometry end up with points representedtwice.
So,aswell as three geometries(definedby a transformation group) and a variety
of plotting schemes,we also have a choiceof spaceto draw on, providing a large
number of alternative schemesfor studying the three geometries.At the backof
all of this is a singlealgebraicscheme,basedon the geometricalgebraof confor-
mal space.Any algebraicresult involving productsof null vectors immediately
producesa geometrictheorem in each geometry,which can beviewedin a variety
of different ways.)
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10.7Spacetimeconformalgeometry
As a final application of the conformalapproach to geometry we turn to space-
time. The conformalgeometric algebrafor a spacetimewith signature (1,3)is
the six-dimensionalalgebrawith signature (2,4).The algebra9(2,4)contains
64 terms,which decomposeinto gradedsubspacesof dimensions1,6, 15,20, 15,
6 and 1.As a basisfor this spacewe use the standardspacetimealgebrabasis
{1{l}'together with the additional vectors {e,e}.The pseudoscalarI is defined
by)

I == 10111213ee.) (10.189))

This has negative norm, 12 == -1.The conformal algebra allows us to simply
encodeideassuch as closedcirclesin spacetime,or light-spherescentredon an
arbitrary point.

The conformal algebraof spacetimealsoarisesclassicallyin a slightly differ-
ent setting.In conformalgeometry,circlesand spheresare representedhomoge-
neouslyas trivectors and 4-vectors.Theseare unoriented becauseLand-L are
usedto encodethe sameobject.A method of dealing with oriented sphereswas
developedby SophusLie and is calledLie spheregeometry. A spherein three
dimensionscan be representedby a vector s in the conformal algebra9(4,1),
with S2 > O. Lie spheregeometry is obtainedby introducing a further basis
vector of negative signature, f, and replacing s by the null vector)

s == s + Islf,)
-2 0S == .) (10.190))

Now the spheresencodedby sand-shave different representationsas null

vectors in a spaceofsignature (4,2). This algebrais ideallysuitedto handling the
contact geometry of spheres.The signature shows that this spaceis isomorphic
to the conformalalgebraofspacetime,so in a sensethe introduction of the vector
f can be thought of as introducing a time direction.A spherecan then beviewed
as a light-sphereallowedto grow for a certain time. Orientation for spheresis
then handled by distinguishing between incoming and outgoing light-spheres.

The conformal geometry of spacetimeis a rich and important subject.The
Poincare group of spacetimetranslations and rotations is a subgroupof the full

conformal group, but in a number of subjectsin theoretical physics,including
supersymmetry and supergravity, it is the full conformalgroup that is relevant.
One reasonis that conformalsymmetry ispresentin most masslesstheories.This
symmetry then has consequencesthat can carryover to the massiveregime.We
will not developthe classicalapproach to spacetimeconformalgeometry further

here. Instead, we concentrate on an alternative route through to conformal
geometry,which unites the multiparticle spacetimealgebraof chapter 9 with the
conceptof a twistor.)
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10.7.1The spacetimeconformalgroup
For most of this chapter we have avoideddetaileddescriptionsof the relationships
between the groupsinvolved in the geometric algebraformulation of conformal
geometry. For the following, however, it is helpful to have a clearerpicture of
preciselyhow the various groupsfit together.The subjectof Lie groupsin gen-
eral is discussedin chapter 11.The spacetimeconformalgroup 0(1,3)consists
of spacetimemapsx 1---+ f(x) that preserve angles.This is the definition first

encountered in section10.3.The group of orthogonal transformations 0(2,4)
is a double-coverrepresentationof the conformal group, becausein conformal
spaceboth X and -x representthe same spacetimepoint. As with Lorentz
transformations, we are typically interestedin the restrictedconformal group.
This consistsof transformations that preserveorientation and time sense,and
contains translations,properorthochronousrotations, dilations and specialcon-
formal transformations. The restrictedorthogonalgroup, 80+(2,4),is a double-
cover representationof the restrictedconformalgroup.

We can form a double-coverrepresentationof 80+(2,4)by writing all re-
stricted orthogonal transformations as rotor transformations a 1---+ RaR. The
group of spacetimerotors,denotedspin+(2,4), is therefore a four-foldcovering
of the restrictedconformal group. The rotor group in Q(2,4)is isomorphic to
the Lie group SU(2,2).It follows that the action of the restrictedconformal
group can be representedin terms of complexlinear transformations of four-
dimensional vectors, in a complexspaceof signature (2,2).This is the basis
of the twistor program, initiated by Roger Penrose.Twistors were introduced
as objectsdescribingthe geometry of spacetimeat a 'pre-metric'level, one of
the aims being to provide a route to a quantum theory of gravity. Insteadof
points and a metric, twistors representincidence relations between null rays.
Spacetimepoints and their metric relations then emergeas a secondaryconcept,
correspondingto the points of intersection of null lines.

As a first step in understanding the twist or program, we establisha concrete
representationof the conformalgroup within the spacetimealgebra.The key to
this is the observation that the spinorinner product)

(;j;rp)q == (;jJrp)
- (;jJrpI0'3)I0'3) (10.191))

definesa complexspacewith preciselythe required metric.The complexstruc-
ture is representedby right-multiplication by combinations of 1and 10'3,as
discussedin chapter 8.We continue to refer to 1/J and rp as spinors,as they are
actedon by a spinrepresentationof the restrictedconformalgroup.To establish
a representation in terms of operatorson 1/J, we first form a representationof the
bivectors in Q(2,4) as)

ery{l f---7 ry{l1/JryO 10'3==
ry{l1/J

Iry3,

ery{l f---7 Iry{l1/Jryo.)

(10.192))
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A representationof the even subalgebraof 9(2,4), and hence an arbitrary rotor,
can be constructedfrom thesebivectors.The representationof each of the oper-
ations in the restrictedconformalgroup can now be constructedfrom the rotors
found in section10.3.We use the same symbol for the spinor representationof
the transformations as the vector case.A translation by the vector a has the
spin representation)

Ta(1jJ) ==
1jJ + a?/,I13!(1+ 0\"3).) (10.193))

The spinorinner productof equation (10.191)is invariant under this transfor-
mation. To confirm this, supposethat we set)

7/J' == Ta(1jJ ) and q/ == Ta(cP ) .) (10.194))
The quantum inner productcontains the terms)

(\037'cp')
== ((cp+ acpI'Y3!(1+ 0\"3))(\037-!(1- 0\"3) Iry3\037a))

==
(1jJcp)) (10.195))

and)

(\037' cp'10\"3) == ((cp + acp113!(1+ 0\"3))IlT3(\037

-!(1- lT3)Iry3\037a))

== ({;cpI0\"3). (10.196))
It follows that)

(\037' cp')q ==
(;jJCP)q,) (10.197))

as expected.
The spinorrepresentationof a rotation about the origin is preciselythe space-

time algebrarotor, so we can write)

Ro(1jJ)
== R?/\ (10.198))

where Ro denotesa rotation in the origin, and R is a spacetimerotor.Rotations
about arbitrary points are constructedfrom combinations of translations and
rotations.The dilation x t---7 exp(a)xhas the spinorrepresentation)

DQ(1jJ)== ?/,eCtU3/2
.) (10.199))

This representsa dilation in the origin. Dilations about a general point are
also obtainedfrom a combination of translations and a dilation in the origin.
The representationof the restrictedconformalgroup is completedby the special
conformaltransformations, which are representedby)

Ka (1jJ)==
7/J
-

a1jJ I13!(1- lT3) .) (10.200))
It is a routine exerciseto confirm that the precedingoperationsdo form a spin
representation of the restrictedconformalgroup.)
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The full conformal group includesinversions. Thesecan be representedas
antiunitary operators.An inversion in the origin is representedby)

7/J
\037 7/J' ==

7/J 1u2') (10.201))

The effectof this on the inner productof equation (10.191)is that we form)

(\037' q/)q ==
(\0377/J) q == ((\037 cp)q)

\037

.) (10.202))
This representationof an inversion in the origin satisfies)

Da (7/JIu2) == D_a (7/J) Iu2,) (10.203))
as required.)

10.7.2Multiparticlerepresentationofconformalvectors
We have defined a carrier spacefor a spin-l/2representationof the spacetime
conformalgroup.A vector representationof the conformalgroupscan therefore
be constructedfrom quadratic combinationsof spinors.Spinorscan be thought
of as belongingto a complexfour-dimensionalspace.The tensorproductspace
therefor contains 16complexdegreesof freedom. This decomposesinto a ten-
dimensionalsymmetric spaceand six-dimensionalantisymmetric space.The six
complexdegreesof freedom in the antisymmetric representationare precisely
the dimensions requiredto construct a conformalvector. The ten-dimensional
symmetric spacehas 20 real degreesof freedom, and forms a representationof
trivectors in conformalspacetime.

In principle,then, we will form complexvectors in conformalspacetime.But
for a specialclassof spinor the conformalvector is real.If we translate a constant
spinor by the positionvector r ==

x{l'\"'({l we form the object)

Tr(7/J)
==

7/J + r7/J I'\"'(3
\037 (1+ u3) ,) (10.204))

which is the spacetimealgebraversion of a twistor. A twistor is essentially a
spacetimealgebra spinorwith a particular positiondependence.The key to
constructing a real conformalvector from an antisymmetric pair of twistors is
to imposethe conditions that they are both null, and orthogonal. Supposethat
we set)

x == Tr(7/J ), Z == Tr(cp ) .) (10.205))
The conditions that thesegenerate a real conformalvector are then)

(XX)q == (ZZ)q == (XZ)q == O.) (10.206))
The positiondependencein X and Z doesnot affect the inner product,so the
same conditionsmust also be satisfiedby 7/J and cp. Choosingappropriatespinors)

386)))



10.7SPACETIMECONFORMALGEOMETRY)

satisfying theserelationshipsessentiallyamounts to a choiceof origin. The most
straightforward way to satisfy the requirements is to set)

x == w!(1- 0\"3) + rwI'JI3!(1+ 0\"3)) (10.207))
and)

z ==
Ii:\037 (1- lT3)+ rli:I'JI3

\037 (1+ 0\"3) ,) (10.208))
wherewand Ii: are Pauli spinors(spinorsin the spacetimealgebra that commute
with 'JI0),

To construct a vector from the two twistors X and Z we form their antisym-
metrisedtensor product in the multiparticle spacetimealgebra. We therefore
construct the multivector)

'ljJr
== (XlZ2 -

ZlX2)E,) (10.209))
where the notation follows section9.2.If we now make use of the results in
table 9.2we find that)

'ljJr
== (r.rE - rI1JrJJ- E) ((I0\"2f\302\243w)q,) (10.210))

where 1]is the Lorentz singlet state defined in equation (9.93),and E and E are
defined by)

E ==
1]\037 (1+ 0\"1), E ==

1]\037 (1- O\"\037).) (10.211))
The two-particle state ?jJ closelyresemblesour standardencodingof a point as a
null vector in conformalspace.The singletstate E representsthe point at infinity,
and is the spacetimealgebra version of the infinity twistor. The oppositeideal,
E, representsthe origin (r == 0).

Moregenerally,given arbitrary single-particlespinors,we arrive at a complex
six-dimensionalvector. Restricting to the real subspace,a general point in this
spacecan be written as the state)

'ljJp
== (V -W)E + PlTJr6+ (V + W)E,) (10.212))

where)

P == T'JIo + X'JII + Y'JI2 + Z'JI3.) (10.213))
To form the inner productof such states we require the resultsthat)

(EE)q == (EE)q == 0,) 4(EE) q == 1.) (10.214))
Now forming the quantum norm for the state 'ljJp we find that

2(;j;p'ljJp)q== r2 + V 2 - W 2 _ X2 _ y 2 _ Z2.) (10.215))
So (V, W, T, X, Y, Z) are the coordinatesof a six-dimensionalvector in a space
with signature (2,4).This establishesthe map between a two-particle antisym-
metrisedspinorand a conformalvector.)
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Our 'real'state 1/Jr can be cast into standard form by removing the complex
factor on the right-hand sideand setting)

1/Jr
1/Jr 1---+ - .

4(1/JrE)q)

(10.216))

Oncethis is done,all referenceto the original wand /<L spinorsis removed. The
inner product between two two-particle states 1/Jr and rps, where rps represents
the point s,returns)

!1jJrCPs\037q = (r-s).(r- s).4(1/Jr E)q(rpsE)q)

(10.217))

The multiparticle inner product therefore recoversthe squareof the spacetime
distancebetween points. This result is one reason why points are encoded
through pairsof null twistors.

We have now establisheda completerepresentationof conformal vectors for

spacetimein terms of antisymmetrised productsof a classof spinors,each eval-
uated in a single copy of the spacetimealgebra. We should now checkthat
our representationof the conformalgroup through its action on spinorsinduces
the correct vector representationin the two-particle algebra.We start with our
standardmultiparticle representationof a conformalvector as)

fJ/'
I 1J -

Cf\"r
== r.rE - r rryo

- E.) (10.218))

The first operation to consideris a translation. The spinor representationof a
translation by a inducesthe map)

1/Jr 1---+
1/J\037

== TalTa21/Jr.) (10.219))

After somealgebrawe establishthat)

1/J\037

== (r + a).(r+ a) E - (r + a)1rryJ J -
E,) (10.220))

as required.
Next considera Lorentz rotation centredon the origin. Theseare easily ac-

complishedas they correspondto multiplying the single-particlespinorby the
appropriaterotor.This inducesthe map)

?/Jr 1---+ R1
R21/Jr == r.rR1R2

E -R1rI
R27]JiJJ-R1R2

E

== r.rE - (RrR)17]Jl6J -
E,) (10.221))

which achievesthe desiredrotation. Reflectionsin planesthrough the origin are
equally easily achievedthrough the single-particleantiunitary operation)

1/J 1---+ Ia1/J JI2,) (10.222))

388)))



10.7SPACETIMECONFORMALGEOMETRY)

wherea is the normal vector to the plane ofreflection. Appliedto the two-particle
state we obtain)

7/Jr \037 a.a(r.rE + (ara-1)17JJi6J -
E),) (10.223))

which is the conformal representationof the reflected vector -ara-I. As we
also have a representationof translations, we can rotate and reflect about an
arbitrary point.

Inversions in the origin are handled in conformalspaceby an operation that
swapsthe vectors representingthe origin and infinity. In the multiparticle setting
we must therefore interchange E and E, which is achievedby right-multiplication
by I(j\037I(j\037,)

?/Jr \037
7/JrI(j\037I(j\037

== -r.rE+r1rrr6J+E

(
\"

(
'
)
1 1J -

)== -r.rr .r E - r 7JJio
- E

,) (10.224))
wherer' == r/(rr). Dilations in the origin are performed in a similar manner, this
time by scalingE and E through oppositeamounts. This is successfullyachieved
by the two-particle map inducedby equation (10.199),)

7/Jr \037
7/J\037

==
7/Jr ea/2(u\037

+ u\037)
.) (10.225))

Specialconformal transformations are also handled in the obvious way as the
two-particle extensionof the Ka operatorof equation (10.200).This completes
the descriptionof the conformal group in the two-particle spacetimealgebra
setting.

Conformal spacetimegeometry can be formulated in an entirely 'quantum'
language in terms of multiparticle states built from spinorrepresentationsof the
conformalgroup. This link between multiparticle quantum theory and confor-
mal geometry is quite remarkable, and is the basisfor the twistor programme.
But one obvious question remains-is this abstract quantum-mechanicalfor-
mulation necessary,if all one is interestedis the conformal geometric algebra
of spacetime? If the twistor programme is simply a highly convoluted way of
discussingconformalgeometric algebra,then the answer is no. The question is
whether there is anything more fundamental about the quantum framework of
the twistor approach.

Advocatesof the twistor program would argue that the route we have followed
here, which embedsa twistor within the spacetimealgebra,reverses the logic
which initially motivates twistors. The idea is that they exist at a pre-metric
level, so that the spacetimeinterval between pointsemergesfrom a particular
two-particlequantum inner product.This hints at a route to a quantum theory of
gravity, where distancebecomesa quantum observable.But much of the initial

promise of this work remains unfulfilled, and twistors are no longer the most
popular candidatefor a quantum theory of gravity. For classicalapplications
to real spacetimegeometry it doesappear that all twistor methodshave direct)
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counterparts in the geometric algebra9(2,4),and the latter approach avoids
much of the additional formal baggagerequiredwhen employing twistors.)

10.8Notes)

The authors would like to thank Joan Lasenbyfor her help in writing this chapter.
The subjectsdiscussedis this chapter range from the foundations of algebraic
geometry, dating back to the nineteenth century and before, through to some
very modern applications.An excellent introduction to geometry is the book
Geometryby Brannan, Esplen& Gray (1999).Projective geometry is described
in the classictext by Semple& Kneebone(1998),and Lie spheregeometry is de-
scribedby Cecil(1992).A valuable tool for studying two-dimensionalgeometry
is the softwarepackageCinderella,written by Richter-Gebertand Kortenkamp.
This packagewas usedto producea number of the illustrations in this chapter.

The geometric algebra formulation of projective geometry is describedin the
pair of important papers'Thedesignof linear algebraand geometry'by Hestenes
and 'Projectivegeometry with Clifford algebra'by Hestenes& Ziegler (both
1991).Thesepapersalsoincludepreliminary discussionsof conformalgeometry,
though the approachis different to that taken here. Projective geometry is
particularly relevant to the field of computer graphics,and some applications
of geometric algebrain this area are discussedin the papers by Stevenson &
Lasenby (1998)and Perwass& Lasenby (1998).

The systematicstudy of conformalgeometry with geometricalgebrawas only
initiated in the 1990sand is one of the fastest developingareas of current re-
search.Someof the earliestdevelopmentsare contained in Clifford Algebra to
Geometric Calculus by Hestenes& Sobczyk(1984),and in the paper 'Distance
geometry and geometric algebra'by Dress& Havel (1993),which emphasises
the role of the conformalmetric.Uncoveringthe rolesof the various geometric
primitives in conformalspacewas initiated by Hestenes(2001)in the paper 'Old
wine in new bottles:a new algebraicframework for computational geometry'
and is describedin detail in the papersby Hestenes,Li & Rockwood(1999a,b).
Applications to the study of surfaces are describedin the paper 'Surfaceevolu-
tion and representationusing geometricalgebra'by Lasenby& Lasenby (2000b),
and a range of further applicationsare discussedin the proceedingsof the 2001
conference Applications of Geometric Algebra in Computer Scienceand Engi-
neering (Dorst,Doran & Lasenby,2002).The rapiddevelopmentof the subject
has meant that a consistent notation is yet to be establishedby all authors.

The unification of Euclideanand non-Euclidean geometry in the conformal
framework is also describedin the seriesof papersby Hestenes,Li & Rockwood
(1999a,b)and in a separatepaper by Li (2001).The development in this chap-
ter goesfurther than thesepapers in giving a concreterealisation of traditional
methodswithin the geometric algebraframework. Twistor techniques are de-)
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scribedin volume IIof Spinorsand Space-timeby Penrose& Rindler (1986).A

preliminary discussionof how twistors are incorporatedinto spacetimealgebrais
contained in the paper '2-spinors,twistors and supersymmetry in the spacetime
algebra'by Lasenby, Doran & Gull (1993b).The multiparticle descriptionof
conformal vectors is discussedin the paper 'Applicationsof geometric algebra
in physicsand links with engineering'by Lasenby & Lasenby (2000a).Due to a
printing error all dot products in this paper appearas deltas, though once one
knows this the paper is readable!)

10.9Exercises)

10.1 Let A, B,C,D denotefour points on a line, and write their crossratio
as (ABCD). Given that (ABCD)== k, prove that)

(BACD)== (ABDC)== l/k)

and)

(ACBD)== (DBCA)== 1- k.)

10.2 Prove that the crossratio of four collinearpoints is a projective invariant,

regardlessof the sizeof the spacecontaining the line.
10.3 Given four pointsin a plane, no three of which are collinear,prove that

there existsa projective transformation that mapsthese to any second
set of four points,where again no three are collinear.

10.4 The vectors a, b, c,a',b',c'all belong to 9(3,0).From these we define
the bivectors)

A == b/\\c, B == c/\\a, C ==
a/\\b,)

with the samedefinitionsholding for A',B', C'.Prove that)

(A X A' BX B'CxC')== (a/\\b/\\c a'/\\b' /\\c') (a/\\a' b/\\ b' c/\\c').)

This proves Desargues'theorem for two triangles in a common plane.
Doesthe theorem still hold in three dimensionswhen the triangles lie
on different planes?

10.5 Given sixvectors aI,.. ., a6 representingpoints in the projective plane,
prove that)

as/\\a4 /\\a3 a6/\\a2 /\\al
as/\\al /\\a3 a6/\\a2 /\\a4)

AS43 A 621--
A S13A 624

')

where A ijk is the area of the triangle whosevertices are describedpro-
jectively by the vectorsai,aj,ak. How doesthis ratio ofareastransform
under a projective transformation?)
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10.6 A Mobius transformation in the complexplane is defined by

I az + b
ZI---+Z==

cz + d '
where a, b, c,d are complexnumbers. Prove that, viewed as a map of
the complexplane onto itself, a Mobius transformation is a conformal
transformation. Can all conformaltransformations in the planebe rep-
resentedas Mobiustransformations? If not, which operation is missing?

10.7 Find the general form of the rotor, in conformal space,for a rotation

through () in the aAb plane,about the point with positionvector a.
10.8 A specialconformaltransformation in Euclideanspacecorrespondsto a

combinationof an inversion in the origin, a translation by b and a further

inversion in the origin. Prove that the result of this can be written

1x 1---+== X .1+bx
Henceshow that the linear function f(a) == a.\\7x is given by

f(a) = (1+ bx)a(l+ xb)
(1+ 2b.x+ b2x2)2

.

Why doesthis transformation leave angles unchanged?
10.9 Given a conformal bivector B,with B2 > 0, why does this encodea

pair of Euclideanpoints? Prove that the midpoint of these two points
is describedby)

C == BnB.)

10.10Twocirclesin a Euclideanplane are describedby conformaltrivectors LI
and L2. By expressingthe dual vectors II and l2 in terms of the centre
and radius of the circles,confirm directly that the circlesintersect at

right angles if)

lI.l2== O.)

10.11The conformalvector X denotesa point lying on the circleL, LAX == 0,
where L is a trivector. Prove that the tangent vector T to the circleat
X can be written)

T == (X.L)An.)

10.12A non-Euclideantranslation alongthe line through X and Y is generated
by the bivector B == Le,where)

L == XAY Ae.)

Prove that the hyperbolic angle a which takesus from X to Y is given
by)

X.Y
cosh(a) == 1-

X Y
..e .e)
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10.13The line element over the Poincare discis definedby

ds2 = 1
(dr2 + r2

dB2)1- r2 '
where rand () are polarcoordinatesand r < 1.Prove that geodesicsin
this geometry all intersect the circler == 1at right angles.

10.14Supposethat
1.jJ

is an even element of the spacetimealgebra.This is
actedon by the following linear transformations:)

Ro(1.jJ)
== R1.jJ,

Ta(1.jJ)==
1.jJ

+ a1.jJI,3!(1+ 0\"3),

Dex (1.jJ)
==

1.jJe
D0\"3 /2,

Ka (1.jJ)
==

1.jJ

- a1.jJI13
\037
(1- 0\"3) ,)

where R is a spacetimerotor. Prove that this set of linear transfor-
mations generatea representationof the restrictedconformalgroup of
spacetime.)
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Further topicsin calculusand
group theory)

In this chapter we collect together a number of diversealgebraicideasand tech-
niques.The first part of the chapter dealswith someadvancedtopicsin calculus.
We introduce the multivector derivative, which is a valuable tool in Lagrangian
analysis.We alsoshow how the vector derivative can be adapted to provide a
compact notation for studying linear functions. We then extendthe multivector
derivative to the casewhere we differentiate with respectto a linear function.
Finally in this part we look briefly at Grassmann calculus, which is a major
ingredient in modern quanturn field theory.

The secondmajor topic covered in this chapter is the theory of Lie groups.
We provide a detailedanalysis of spingroupsover a real geometricalgebra.By
introducing invariant bivectorswe show how both the unitary and general linear
groupscan be representedin terms of spingroups. It then follows that all Lie
algebrascan be representedas bivector algebrasunder the commutator product.
Working in this way we construct the main Lie groupsas subgroupsof rotation
groups. This is a valuable alternative procedureto the more common method
of describingLie groupsin terms of matrices.Throughout this chapter we use
the tilde symbol for the reverse, R. This avoids confusionwith the Hermitian
conjugate, which is requiredin section11.4on complexstructures.)

11.1Multivectorcalculus)
Before extendingour analysis of linear functions in geometric algebra,we first

discussdifferentiationwith respectto a multivector. Supposethat the multivec-
tor F is an arbitrary function of somemultivector argument X, F == F(X).The
derivative of F with respectto X in the A direction is defined by)

A*oxF(X) = lirn F(X + TA) -F(X)
,

TI---+O T) (11.1))
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where A *B == (AB). The multivector derivative Ox is defined in terms of its
directional derivatives by)

a-== Ox ==

oX) L ei
1\\. ..I\\e j(eJ 1\\. ..I\\ ei) *Ox,i<...<j)

(11.2))

where the {ei}are a set of frame vectors for the spaceof interest.The definition
shows how the multivector derivative Ox inherits the multivector propertiesof
its argument X, as well as a calculus from equation (11.1).This is the natural
generalisation of the vector derivative \\7 to a general multivector.

Most of the propertiesof the multivector derivative follow from the result that)

Ox(XA) == Px(A),) (11.3))
where Px(A) is the projectionof A onto the gradescontained in X. Leibniz's
rule is then usedto build up resultsfor more complicatedfunctions. We employ
the samerules for the multivector derivative as for the vector derivative. The
derivative acts on objectsto its immediate right unlessbracketsare present.
If the Ox is intended to only act on B then this is written as 8xAB, where
the overdot denotesthe multivector on which the derivative acts.For example,
Leibniz'srule can be written as)

ox(AB)== 8xAB+ 8xAB.) (11.4))

As an example,supposethat 7jJ is a general even element. The derivative of the
scalarproduct (7jJ7jJ) is)

01/J (7jJ r(fi)
==

81/J (;p r(fi) + 81/J (7jJ r(fi)
== 2

r(fi
.) (11.5))

For the secondterm we usedthe result that)

81jJ (7jJ r(fi)
==

81jJ (;P;j;) ==
r(fi,) (11.6))

which follows from the fact that any scalarterm reversesto give itself. This result
for the derivative of (7jJ{J)can be verified rather more laboriously by expanding
out in a basis.)

11..1..1The vectorderivativeand multilinearalgebra)
The derivative with respectto a vector was first introduced in chapter 6 as an
essentialcomponent of field theory. Herewe exploit the propertiesof the vector
derivative in a rather different setting. Supposethat a denotesan arbitrary vec-
tor. We write the derivative with respecta as oa.Algebraically,this derivative
has the propertiesof a vector. It is essentially the sameobject as the vector
derivative, except that we are not differentiating with respect to the position
dependenceof a function. Instead we will use oa to differentiate avariety of)
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expressionsthat are linear in a. Introducing the toolsof calculus may appear
unnecessaryfor the analysis of linear algebra,but the notation doeshave some
practicaladvantages. Combinationsof a and oa can be usedto perform contrac-
tions and protractions without having to introduce a basisframe. For example,
the resultsof section4.3.2can be summarised in the compact formulae)

oaa.Ar == rAr,

oaai\\A r == (n - r)Ar,
oaAr a == (-I)r(n- 2r)Ar.)

(11.7))

Similarly, the vector derivativeallowsthe trace of a linear function to be written

simply as)

tr(f) == oa.f(a).) (11.8))
The traceis the first of a seriesof scalarinvariants that can be defined from

f. These are compactly handled using the vector derivative. Supposethat

{aI,a2, .. ., an}denote a set of n independentvectors. We define the multi-

vector variable)

a(r) == ali\\a2i\\. ..i\\a r) (11.9))

with the associatedderivative)

1
O(r) == ,Oar,i\\Oar_li\\...i\\Oal'r.) (11.10))

Since)

(Ari\\oa ai\\Br ) == (n - r)(ArBr),) (11.11))
it follows that)

n!
(

n

)O(r)a(r)=
( _ )' ,

= .
n r .r. r) (11.12))

We alsomake the further abbreviation)

f(a(r))== f(al)i\\f(a2)i\\\" 'i\\f(a r ) == f(r)') (11.13))
This notation allowsus to write)

0(1).f(l) == oal .f(aI)== tr(f)) (11.14))
and)

O(n)f(n) == o(n)a(n)det (f) == det (f).) (11.15))

Thesetwo invariants are clearly specialcasesof the range of invariants O(r).f(r)'
To understand the importance of the o(r).f(r) invariants, considerthe charac-

teristicpolynomial for f. This is formed by constructing the determinant of the)
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function G(a) == f(a) - Aa, which yields

det (G) == O(n)G(n)
== O(n)(f(a1)-AaI) /\\ (f(a2) - Aa2) /\\.../\\ (f(an ) - Aa n )
== 0(n) (f(n)

- nA f(n-1)/\\ an + . . .+ (-A)
n a(n )) . (11.16))

A general term in this expressiongoesas)

(_,\\)S (:) O(n).(f(n-s)/\\an-sH/\\. ../\\a n ) = (-,\\)S o(n-s).f(n-s).

It follows that the characteristicpolynomial is simply)

(11.17))

n)

C(A) == L(_A)n-8O(s).f(8)'
s=o)

(11.18))

where 0(0)'f(o) == 1.This expressionclearly demonstratesthe significanceof the
invariant quantities OCr)'f(r) .

The Cayley-Hamilton theorem states that)

n)

L(-1)n-80(8).f(8)fn-8(a)== 0,
8=0)

(11.19))

where fr (a) denotesthe r-fold application of f on a. This says that a linear
function satisfies its own characteristicequation. The theorem can be proved
quite generally without any assumptionsabout the form of f - it appliesfor
any linear function, in any linear spaceof any dimension and signature. An

immediate consequenceis that, if e is an eigenvectorof f,)

f(e)== Ae,) (11.20))
then A automatically satisfies the characteristicequation.)

11.1.2Calculusfor linearfunctions)
As well as the ability to differentiatewith respectto a multivector, it is alsovery
useful to build up resultsfor the derivativewith respectto a linear function. We
start by introducing a fixed frame {ei},and definethe scalarcoefficients)

f..\037 e..f(e.)'lJ
\037

'l J') (11.21))
Now considerthe derivative with respectto fij of the scalarf(b).c. This is

Of zJ f(b).c ==
Of\037J (flk bkcl

)
== c'ltJ1 .) (11.22))

Multiplying both sidesof this equation by a.ejei we obtain

a.e.e.of .f (b).c== a.beJ 'l
\037J

') (11.23))
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which assemblesa frame-independent vector on the right-hand side.It follows
that the operator a .ejeiOf\037J

must also be frame-independent. We therefore
define the vector-valueddifferential operatorOr(a) by)

Or(a) == a.ejeiof\037J'

The essentialproperty of Or(a) is)

(11.24))

Or (a)f (b) .c == a.b c,) (11.25))
which simply restatesequation (11.23).As with the vector derivative, Or(a) has
the algebraicpropertiesof a vector, which can be exploitedin analysing a range
of expressions.

Equation (11.25),together with Leibniz'srule, is sufficient to derive the main
resultsfor the or(a) operator.For example,supposethat B is a bivector, and we
construct)

Or (a)(f(b /\\ c)B) == 8r(a) (f(b)f(c)B)- 8r(a) (f(c)f (b)B)
== a.bf(c).B-a.cf(b).B
== f(a.(b/\\c)).B.) (11.26))

This extendsby linearity to give)

Or (a)(f(A )B) == f (a.A) .B ,) (11.27))
where A and B are both bivectors.Proceedingin this manner, we obtain the
general formula)

Or(a)(f(A)B)== L(f(a.Ar)Br)l') (11.28))
r)

For a fixed grade-rmultivector Ar, we can now write)

Or(a)f(A r ) == Or(a)(f(A r )Xr )8xr
== f(a.Ar).Xr8xr

== (n -r + l)f(a.Ar)') (11.29))

This is a very powerful result. For example,supposethat for Ar we take the
pseudoscalarI.We obtain)

Or(a)f(I) == Or(a)det (f)I == f(a.I).) (11.30))
It follows that)

- I
Or(a)det(f) == det (f)f- (a),) (11.31))

where we have usedequation (4.152)This derivation is considerablymore com-
pact than any availableto conventionalmatrix/tensormethods.)
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Equation (11.28)can be usedto derive formulae for the functional derivative
of the adjoint. The general result is)

Of (a)f(A r ) == Of (a) (f(Xr )Ar )8Xr

== f(a'Xr).Ar8Xr') (11.32))

When A is a vector, this admits the simplerform)

Of (a)f(b) == ba.) (11.33))

If f is a symmetric function then f == f. But this fact cannot be exploitedwhen

differentiating with respectto f, sincefij and fji must be treatedas independent
variables for the purposesof calculus.)

11.2Grassmanncalculus)

For most of his lifetime,Grassmann'swork on algebra and geometrywas largely
ignored by the wider mathematical community. Today, however, Grassmann
algebra is a fundamental ingredient in theoretical physics. Fermioniccreation
operatorsgenerate a Grassmannalgebra,and Grassmann (anticommuting) vari-
ablesare important components of path-integral quantisation, supersymmetry
and string theory. In this sectionwe describehow the main algebraic resultsof
Grassmann calculus can be formulated in a straightforward manner within ge-
ometric algebra.This reversesthe standardapproach,by which one progresses
from Grassmannto Cliffordalgebravia quantization.

Supposethat {(i}are a set of n Grassmannvariables, satisfying the anticom-
mutation relations)

{(i,(j}== O.) (11.34))

The Grassmannvariables{(i}are mappedinto geometricalgebraby introducing
a set of n linearly independentvectors {ei}.We do not need to specify any

propertiesfor their inner products,though somecalculationsare performedmore
easily if we assumethat the {ei}belong to a Euclideanalgebra.The role of the
product ofGrassmannvariablesis taken overby the exteriorproductin geometric
algebra, so we write)

(Z(J +--+ ei 1\\ ej.) (11.35))

Equation (11.34)is satisfied by virtue of the antisymmetry of the exterior prod-
uct. Any combinationof Grassmannvariablescan now bereplacedin the obvious
manner by a multivector.

In orderfor the above schemeto have computational power, we needa trans-
lation for the Grassmann calculus introduced by Berezin.In this calculus, dif-)
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ferentiation is defined by the rules)

8(j
a(i

= bij,

together with the gradedLeibnizrule,

\037 ( )
_ 8fI

(_ )[11] 8f2
a(i IIh -

a(ih + 1 IIa(i ')

f--8
(ja(i

= bil') (11.36))

(11.37))

where [fI] is the parity of fl.The parity of a Grassmannvariable is determined
by whether it contains an even or oddnumber of vectors.Berezindifferentiation
is handled within the algebrageneratedby the {ei}frame by introducing the
reciprocalframe {ei },and replacing)

f}

a(J <-t ei.f) (11.38))

so that)

8()' , ,
+-+ e'l.ej==5;.8(i)

(11.39))

The gradedLeibniz rule follows from the basicidentities of geometric algebra.
For example,if fl and f2 are grade-1and so are treated as vectors in geometric
algebra,then the rule (11.37)simply restatesthe familiar result)

ei .(flA f2) == ei .fl f2 - fl ei .f2.) (11.40))

Right action by a Grassmann derivativeoperatortranslatesin a similar manner:)

f-8 -

(1)a(i
<-t f .e'.) (11.41))

The standardresultsfor Grassmanncalculus follow simply from this basictrans-
lation scheme.

Grassmannintegration is definedto be essentiallythe sameoperation as right

differentiation:)
f-- f- f--

J
8 8 f}

f(()d(nd(n-I...d(I == f(()- ...-.
f}(n f}(n-I 8(1)

(11.42))

The equivalentoperation in geometricalgebra is therefore a right-sidedcontrac-
tion, as given in equation (11.38).The most important formula is that for the
total integral)

Jf(()d(nd(n-l...d(l<-t (...((F.en).en-1)...).e1 = (FEn),) (11.43))

whereF is the multivector equivalent of f(() and En is the pseudoscalarfor the

{ei }vectors,)
En == enAen-IA'\"Ae1

.) (11.44))
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Equation (11.43)does nothing more than pickout the coefficientof the pseu-
doscalarpart of F.

A 'changeof variables' is performed by a linear transformation f, with)

e\037

== f(ei) ,)
ei' == f-I(ei ).) (11.45))

It follows that)

E\037
== det (f) En,) Enl

== det (f)-l En,) (11.46))

sothat a changeofvariablesin a Grassmannmultiple integralpicksup a Jacobian
factor of det (f)-1.This contrastswith the factor of det (f) for a Riemannian
integral. In a similar manner all of the main resultsof Grassmanncalculus can
be derived in geometric algebra.Often thesederivations are simpler,as access
to the geometricproductoffersa quick route through the algebra.)

11.3Liegroups)

In earlier chapterswe saw that rotorsform a continuousgroup, in the sameway

that rotations do.Continuousgroupsof this type are calledLiegroups,after the
mathematician SophusLie,and they play an important role in a wide range of

subjectsin physics.Lie groupscontain an infinite number of elements but, like
vector spaces,the elementscan usually be written in terms of a finite number of
parameters.For example,three-dimensional rotations can be parameterisedin

terms of the three Euler angles.The reason is that the elementsof the group be-
long to a topologicalspace-the group manifold. In two-dimensionalEuclidean

spaceall rotorscorrespondto phasefactors, so the rotor group manifold is the
unit circle.Every point on the circlecorrespondsto a distinct rotor.

Similarly, in three dimensionsrotors are built from the spaceof scalarsand
bivectors.The only condition they have to satisfy is that RR == 1.Supposethat
we write)

R == Xo + xilel+ x2Ie2 + x3Ie3') (11.47))
Then)

RR
- 2 2 2 2 1== Xo + Xl + X2 + X3 ==

.) (11.48))

This definesa unit vector in the four-dimensionalspacespannedby {XO, Xi}.The
group manifold is therefore the setofunit vectors in four-dimensionalspace.This
is calleda 3-sphere83- it is the four-dimensionalanalogue of the surface of a
ball. In higher dimensionsthe rotor group manifoldsbecomeincreasinglymore

complicated.
Sinceall rotations are generatedby the double-sidedformula RaR, both Rand-R correspondto the same rotation. The group manifold for three-dimensional

rotations, rather than for the rotors themselves, is therefore more complicated)
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that 83. It involves taking a 3-sphereand projectively identifying opposite
points. The fact that the group manifold for rotors is somewhat simpler than
that for rotations has many applications.If the orientation of a rigid body is
describedby a rotor, the configurationspacefor the dynamics of the rigid body
is a 3-sphere.This is important when looking for best-fit rotations, or extrap-
olating between two rotations to find their midpoint. The group manifold is
also the appropriatesetting for a Lagrangian treatment. This has implications
for constructing conjugate momenta, which are essentialfor the transition to
a quantum theory. Applications of this include the rotational energy levels of

molecules,many of which can be viewedas rigid bodies.)

11.3.1Formaldefinitions
The fact that the elements of a Lie group belongto a manifold is sufficient to

provide an abstract definition of a general Lie group. A Lie group is defined
as a manifold, M, together with a product cj>(x,y). Points on the manifold

can be labelledwith vectors {x,y},which can be viewed as lying in a higher
dimensionalembeddingspace(aswith the 3-sphere).The productcj>(x,y) takes
as its argument two points in the manifold, and returns a third. This encodes
the group product. The final set of conditions apply to cj>( x,y) and ensure that
the producthas the correct group properties.Theseare)

(i) Closure.cj>(x,y) E M \\/x, y E M.
(ii) Identity. There existsan element e E M such that cj>(e,x) == cj>(x,e) == x,

\\/xEM.
(iii) Inverse.For every element x E M there existsa unique element x such

that cj>(x,x) == cj>(x,x) == e.
(iv) Associativity. cj>(cj>(x,y),z) == cj>(x,cj>(y,z)), \\/x,y,z EM.)

Any manifold with a product defined on it with the precedingpropertiesis
calleda Lie group manifold. Many of the group propertiesof the group can be
uncoveredby examining the propertiesnear the identity element.The product
then inducesa Lie bracket structure on elements of the tangent spaceat the
identity. The tangent space is a linear spaceand the vectors in this space,
together with their bracket,form a Lie algebra.)

11.3.2Spin groupsand the bivectoralgebra)

The general theory of Lie groupsis rather too abstract for our purposes. In-
stead,we will adopt a different approach to the subjectby concentrating on the
propertiesof rotors,and their associatedspingroups.The Lie algebraof a spin
group is defined by a set of bivectors.We will establishthat every Lie algebra)
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can be representedas a bivector algebra,and that every matrix Lie group can
be representedin terms of a spingroup.

Beforeproceeding,we needto clarify some of the terminology for the various
groupsdiscussedin this chapter. We let g(p,q) denotethe geometric algebra
of a spaceof signature p,q, and write V for the spaceof grade-lvectors. The
orthogonalgroup O(p,q) is the setof aU linear transformations f mapping V 1---+ V

that preservethe inner product. That is,)

ff(a) == a Va E V.) (11.49))

Orthogonal transformations can have determinant 1or -1.The specialorthog-
onal group SO(p,q) is the subgroupof O(p,q) of linear transformations with

determinant 1.Orthogonal transformations can be constructedfrom seriesof
reflections,each of which can be written as)

a 1---+ -mam-1,) (11.50))
where m is a non-null vector. Reflectionshave determinant -1,sodo not belong
to SO(p,q). If we restrictm to be a unit vector, m 2 == :::!:1,then the setof all unit

vectors form a group under the geometricproduct.This is calledthe pin group,
Pin(p,q). The pin group is a double-coverrepresentationofthe orthogonalgroup.
The elements of the pin group all satisfy)

-
MM ==::1::1VM E Pin(p,q).) (11.51))

The elements of the pin group split into those of even grade, and those of
odd grade. The even-grade elements form a subgroupcalledthe spin group,
Spin(p,q). The spingroup consistsof even-grademultivectors S E 9(p, q) satis-
fying)

SaS-I E V Va E V,) 58== ::1::1.) (11.52))
The transformations definedby 8 all have determinant +1,so the spingroup is
a double-coverrepresentationof the specialorthogonal group SO(p,q).

Rotors are elements of the spin group satisfying the further constraint that
RR == 1.Thesedefine the rotor group, sometimesdenotedSpin+(p,q). For
rotors we have R-I == R, and their action on multivectors is defined by the
familiar double-sidedformula)

M 1---+ RMR.) (11.53))
With the exceptionof rotors in g(l,1), the rotor group is a subgroupof the
spin group consistingof elements that are connected to the identity. That is,
all elements of the rotor group can be connectedto the identity by a single
unbroken path in the group manifold. It follows that rotors form a double-cover
representationof the connectedsubgroupof SO(p,q). For Euclideanspacesthe
specialorthogonalgroup isconnected,and for thesespacesthere isno distinction)
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between the spin group and rotor group. In mixed signature spacesthe spin

group differs from the rotor group by the directproduct with a discretegroup.
For example,the rotor group in spacetimeis a representationof the group of

properorthochronous transformations (seesection5.4).
In Euclideanspaceswe know that all rotations can be written as the exponen-

tial of a bivector. The natural question now is can any rotor be written as the

exponential of a bivector? To answer this question,considera family of rotors

R(A), which specifiesa path on the rotor group manifold. Differentiating the
normalisation condition RR == 1we find that

d - --
d)'\"

(RR) = 0 = R'R+ RR',) (11.54))

where the primesdenotedifferentiation with respectto A. Now define the set
vectors)

a(A) == R(A)aoR(A),) (11.55))

where ao is somefixed initial vector. Differentiatingthis expressionwe find that)

d\037
a()...)= R'aoR + RaoR' = (R'R)a()...)-a()...)(R'R).) (11.56))

The quantity R'R reversesto minus itself, so can only contain terms of grade
2, 6, 10etc.But the commutator of R'R with any vector must return another

vector, otherwise the derivative of a(A) would grow non-vector terms.It follows

that R'R can only contain a bivector component. We can therefore write

d 1
dA

R(A) == -2B(A)R(A).) (11.57))

Locally,around any rotor, we can write)

R(A+6A) == (1-\0376AB)R(A)
== exp(-6AB/2)R(A).) (11.58

))

In this way, bivectors capture all of the local information about the rotor group.
All 'nearby'rotors differ by a term that is the exponential of a bivector.

Now supposewe look for paths satisfying)

R(O)== 1,) R(A + tL)
== R(A)R(tL).) (11.59))

The set R(A) form a one-parameter subgroupof the rotor group. For the case
of three-dimensional rotations the interpretation of this subgroupis clear-it

is the group of all rotations in a fixedplane.For this path we find that

d
d)'\"

R ()...+ JL)
= -

\037

B()...+ JL) R()...+ JL)

d=
d)'\"

(R()\"')R(JL))

== -!B(A)R(A)R(tL).) (11.60))
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It follows that B is constant along this curve. We can therefore integrate equa-
tion (11.57)to get)

R(A) == e-)..B/2.) (11.61))
This confirms that all rotorsnear the origin can be written as the exponential of
a bivector. For Euclideanspaceit turns out that all rotors lie on a path described
by equation (11.59)and socan be written as the exponential of a bivector. This
is not the casein mixed signature spaces,though it does turn out that every
rotor can be written as)

R(A) == ::I::e-)\"B/2.) (11.62))
It is instructive to establishthe inverseresult that the exponentialofa bivector

always returns a rotor.To seethis, return to the one-parameter family ofvectors)

a(A) == e-AB/2aoeAB/2.) (11.63))
To establishthat these are the result of rotations we needonly establishthat
a is a vector, as the remaining propertiesfollow automatically. Differentiating
with respectto A, we find that

da
== e-AB/2a .BeAB/2

dA
0 ,

d2a = e->'B/2(aooB).Be->'B/2
dA 2)

(11.64))
etc.)

For every extraderivative we pickup a further inner productwith the bivector
B. It follows that every term in the Taylor seriesof a(A) is a vector, and the
overall operation is grade-preserving,as it must be. We have also proved the
following useful Taylor expansion:

e-B/2aeB/2 = a + a.B+ \037(aoB).B+
..00

2.) (11.65))

This seriesis convergent for all bivectors B.)

11.3.3Examplesofrotorgroups
The precedingdefinitions are illustrated neatly by the algebras9(1,1)and
9(1,2). First supposethat ,0and ,1are basisvectors for 9(1,1),with ,5== 1
and ,? == -1.The spin group consistsof even-gradeelements,which take the
form a + (3,1,0'The restrictionthat 1/J1/J

== ::I::1becomes)

a?- (32 == ::I::1,) (11.66))
which defines four unconnected hyperbolic curves. The rotor group consistsof
the subgroupfor which 02 - (32 == 1.This defines two unconnected branches
of a hyperbola,so the rotor group in 9(1,1)is not connected.For the case)
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of Euclideanspacesthe scalarproduct (\037\037)
is positive definite, so there is no

differencebetween the spinand rotor groups,which are always connected.
Now supposewe add a further vector ,2of negative signature, and write a

general even element as)

R == Ro + RI,l,O+ R2,2,0+ R3,1,2.) (11.67))
The rotor group is specifiedby the single extracondition that RR == 1,which

becomes)

(Ro)
2 - (R1)

2 - (R2)
2 + (R3)

2 == 1.) (11.68))
It follows that we can write)

R == cosh(a)(cos(8)+ sin(8),I,2)+ sinh(a)(cos(<jJ)+ sin(<jJ),1,2),1,0'(11.69))
This parameterisation confirms that the group must now be connected.Given
an arbitrary rotor we simply find the values of the parameters(a,8, <jJ), then

smoothly run them down to zero to establisha path in the group manifold that
connectsthe rotor to the identity. The reasonwe can do this in 9(1,2)but
could not in 9(1,1) is that the former contains a bivector generator of negative
signature.This ensuresthat -1isconnectedto the identity. Among all algebras
9(p,q), with p + q > 1,the algebra9(1,1)is unique in containing no bivector
with negative square.

While the rotor group in 9(1,2)is connected,it is straightforward to construct
examplesof rotors that cannot be written as the exponential of a bivector. For

example,considerthe rotor)

R == exp((,0+ '1)'2)== 1+ ('0+ '1)'2') (11.70))
While this rotor clearly is the exponential of a bivector, it is impossibleto write
the rotor -R in this way. This is why the strongeststatement that can be
made about rotors in a mixed signature spaceis that they can be written as
::I::exp(-B/2).)

11.3.4The bivectoralgebra)

The operation of commuting a multivector with a bivector is always grade-
preserving.In particular, the commutator of a bivector with a secondbivector
producesa third bivector. That is, the spaceof bivectorsisclosedunder the com-
mutator product. This closedalgebradefines the Lie algebra of the associated
rotor group.The group is formed from the algebra by the act of exponentiation.
The commutator of two bivectors expressesthe fact that rotations do not com-
mute. If we apply a pair of rotations, and then perform the back rotations in

the incorrect order,the result is the new rotation)

RaR == R2R1(R2R1aR1R2)RIR2') (11.71))
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Now supposethat we are working closeto the identity, so that we can write

R == e-B/2
== eB2/2eBl/2e-B2/2e-Bl/2. (11.72)

Expandingthe exponentialswe find that)

B == BlX B2 + higher orderterms.) (11.73
))

This is an exampleof a more general result known as the Baker-Campbell-
Hausdorff formula. This states that if)

eC == eAeB
,) (11.74))

then we have)

1
C==A+B+AxB+-(Ax(AxB)+Bx(BxA))+....

3) (11.75))

The seriesconverges for generatorsof rotors sufficiently closeto the identity.
(The precisedefinition of 'sufficiently close'was clarifiedby Hausdorff.)

Now supposethat we write)

Rl == exp(-.\\Bl/2),) Rl == exp(-.\\B2/2),) (11.76))
so that R(.\\) is a path in the group manifold. Equation (11.73)ensuresthat)

R(.\\) == 1- .\\2 BI x B2/2+ ...
.) (11.77))

In the tangent spaceat the identity the new generator is the commutator of the
two original bivectors.The bivector algebra must therefore be closedunder the
commutator product. This is the way in which the local structure of a rotor
group around the identity is passedto the bivector algebra. In the abstract
theory of Lie groups,the Lie algebraelements are actedon by the Lie bracket,
which is antisymmetric and satisfies the Jacobiidentity. For a rotor group the
Liebracketis simply the commutator productfor bivectors.The Jacobiidentity
for the Lie algebrathen reducesto the identity)

(AxB)xC+ (CxA)xB+ (BxC)xA == 0,) (11.78))
which holdsfor any three bivectors A, BandC.)

11.3.5Structureconstantsand the Killingform
Supposenow that we introduce a basissetof bivectors{Bi}.The commutator of
any pair of thesereturns a third bivector, which can alsobe expandedin terms
of the basisset.We can therefore write)

BjX Bk == CjkBi.) (11.79))
The C;k are calledthe structure constants of the Lie algebra. They provide
one of the most compact encodingsof the group properties,sinceknowledgeof)
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the bracket structure is sufficient to recovermost of the propertiesof the group.
The structure constantsalsoprovidea route to solving the problemof classifying
all possibleLie algebrasover the real and complexfields. The solution of this

problemwas a significant achievement, completedby the mathematician Elie
Cartan.

The adjoint representationof a Lie group is defined in terms of functions

mapping the Lie algebraonto itself. Every element of a Lie group inducesan

adjoint representationthrough its action on the Liealgebra.For the caseof rotor

groupsthe Lie algebrais the bivector algebra,and the adjoint representation
consistsof a map of the form)

B \037 RBR == AdR(B).) (11.80))

It is immediately clear that this representationsatisfies)

Ad R1 (Ad R2 (B)) == Ad R1R2 (B).) (11.81))

The adjoint representationof the group inducesan adjoint representationadA/2
of the Lie algebraas)

adA/2(B) == AxB.) (11.82))

The adjoint representationof an element of the Lie algebracan be consideredas
a linear map on the spaceof bivectors.The matrix correspondingto the adjoint
representationof the basisbivector Bjis definedby the structure coefficients)

- .
(adBJ)k== 2C;k') (11.83))

The Killing form for a Lie algebrais defined through the adjoint representation
as)

K(A,B) == tr(adAadB).) (11.84))

Up to an irrelevant normalisation, the Killing form for a bivector algebrais

simply the inner product)

K(A,B) == A.B,) (11.85))

which is the definition we shall adopt. It is immediatelyclearthat rotor groups
in Euclideanspacehave a negative-definite Killing form. An algebra with a

negative-definiteKilling form is said to be of compact type, and the associated
Lie group is compact.)

11.4Complexstructuresand unitary groups
Sofar we have only dealt with the propertiesof real rotation groups,but it turns

out that this is sufficient for us to uncover the propertiesof all Lie algebras.We

can start to seehow this works by studying how complexgroupsfit into our real)
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geometric algebra.The ideasdevelopedin this sectionare useful in a number of
areas,particularly Hamiltonian dynamics and geometric quantum mechanics.)

11.4.1Complexspaces)

The simplestalgebraicway to definea complexstructure is to introduce a com-
nluting scalarquantity j with the property j2== -1,and to add the assumption
that all linear superpositionsare now taken over the complexfield. A more at-
tractive, geometric alternative is to work in a real spaceof dimension 2n and
introduce a bivector in this spaceto play the role of the complexstructure.We

saw in section6.3that complexanalysis can be performed in the geometricalge-
bra of the real two-dimensionalplane with the role of the unit imaginary played
by the unit pseudoscalar.Herewe generalisethis ideato an n-dimensionalcom-
plexspace.

Our starting point is a real n-dimensionalvector space.Supposethat this has
somearbitrary basis {ek},which need not be orthonormal. Now introduce a
further set of n-vectors {fk}perpendicularto the {ek},with the properties)

fi .fj == ei'ej,) fi.eJ == 0,) (11.86))

which hold for all i,j == 1,. .. , n. From thesevectors we construct the bivector)

n

J == Lei/\\fi == ei /\\fi,

i=l)
(11.87))

where the {fk}are the reciprocalvectors to the {Ik}frame. For this and the
following sectionwe assumethat repeatedindicesare summed from 1,...,n.
The bivector J is independentof the initial choice of frame {ei}.To seethis,
introduce a secondpair of frames

{e\037}
and {II}related in the same manner as

the {ek},{fk}pair. For thesewe find that)

J'- I I,i - I j I,i - j' f j f
'z - f j - J- ei /\\ -ei'e ej/\\ - i' ej/\\ -ej/\\ -.) (11.88))

In particular, if the {ek}frame is chosen to be orthonormal, we find that)

J == elfI + e2f2+ . .. + enln == JI + J2 + .. . + In .) (11.89))

Each bivector bladeJi then provides the complexstructure for the ith plane.
To understandthe propertiesof the bivector J we first form the products)

ei'J == ei'ejIJ == Ii'IjIJ == fi) (11.90
))

and)

fi.J== -ejfi'fj == -ei.) (11.91))
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It follows that)

(ei.J) .J == Ii'J == -ei,

(Ii'J) .J == -ei .J == -fz,)
(11.92))

and hence that)

(a.J).J== -a,) (11.93))

for any vector a. We can now seehow J will take over the role of the unit

imaginary. For example,the analogue of phase rotations is generatedby the
bivector J, which describesa seriesof coupledrotations in each of the Ji planes.
A Taylor expansionthen yields)

-J\037 /2 J\037 /2 rjJ2

( )e '-P ae '-P == a + <p a.J + -a.J .J .. .
2!

== cos(<p)a+ sin( <p )a.J.) (11.94))

The map a 1---+ a.J is therefore a 7r /2 rotation. Settingcp
== 7r we also seethat)

aeJ7f /2 == _eJ7f
/2a,) (11.95))

so exp(J7r /2) anticommutes with every vector in the algebra.The only multi-

vector with this property is the pseudoscalar,sowe have)

eJ7f /2 - I- 2n,) (11.96))

where I2n is the pseudoscalarof the 2n-dimensionalalgebra.
N ext we need a means of distinguishing the real and imaginary parts of a

vector. As with the two-dimensionalcase,this requirespicking out a preferred
set of directionsto representthe real axes.As a matter of conventionwe choose
to identify these with the original {ek}vectors. A real vector a in the 2n-
dimensionalalgebra can now be mappedto a set of complexcoefficients{ai}as
follows:)

ai == a.ei + j a.Ii.) (11.97))

The complexinner producttherefore becomes)

(alb) == aib;== (a.ez + ja.fi)(b.ei-j b.Ii)
== a.ez b.ei+ a.Iib.Ii+ j(a.Iib.ei-a.ei b.Ii)
== a.b + j (a 1\\ b).J.) (11.98))

This showsthat the complexinner product combinestwo geometricallydistinct
terms.The real part is the usual vector inner product,and it follows immediately
that aia; == a2. The imaginary part is an antisymmetric product formed by

projectingthe bivector al\\b onto J. Antisymmetric productssuch as theseplay
an important role in symplecticgeometry and Hamiltonian mechanics.)
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11.4.2Unitary transformations)
We are freeto considerany linear function definedoverour 2n-dimensionalvector
space.However,only a subsetof thesecan be representedby complexmatrices- those that observe the complexstructure. Thesetransformations are linear
over the complexfield, so must satisfy)

f(aa + (3a.J)== af(a)+ {3f(a).J.) (11.99))

It follows that complexlinear transformations satisfy)

f (a .J) == f (a).J) (11.100))
for any vector a in the 2n-dimensionalvector space.

The study of complexlinear functions now reducesto the study of functions
satisfying the condition (11.100).For example,the matrix operation of Hermi-
tian conjugation has)

(a I
f(b)) == (ft (a) I b) .) (11.101))

By consideringthe various terms in this identity we seeimmediately that the
Hermitian adjoint is the same as the familiar adjoint function f. That is, ft == f.
This explainswhy it is Hermitian conjugation that is so important in analysing
complexmatrices.Similarly, supposethat a is a complexeigenvector of the
complexfunction f. This impliesthat)

f (a) == aa + (3a.J.) (11.102))
Clearly, if a satisfies this equation, then a.J satisfies)

f(a.J)== aa.J- {3a.) (11.103))
It follows that a/\\ (a.J) is an eigenbivector,with

f(al\\(a.J))== (a2 + (32)a/\\(a.J).) (11.104))
Next we needto establishthe invariancegroup of the Hermitian inner product.

This group must leave invariant both terms in equation (11.98).This includes
the inner product a.b, which tells us that the invariance group is built from
reflectionsand rotations. The fact that the linear transformations preserve the
complexstructure then ensuresthat the antisymmetric term is also invariant.
To seethis, supposethat f satisfies f == f-I,together with equation (11.100).It
follows that)

(f (a) /\\ f(b)) .J == f (a) . (f (b) .J) == f (a) .f (b.J) == (a /\\ b).J.) (11.105))
This result can be summarisedconciselyas)

f(J) == J.) (11.106))
Unitary groupsare therefore constructedfrom reflectionsand rotations which)
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leave J invariant. For a reflection to satisfy this constraint would require that
the vector generator m satisfies)

mJm-I == J.) (11.107))
But this implies that m.J == 0, and hence that (m.J) .J == -m== O. There are
therefore no vector generatorsof reflections, and hence all unitary transforma-
tions are generatedby elements of the spingroup. So far we have not specified
the underlying signature, soour descriptionappliesequallyto the unitary groups
U(n) and U(p, q).Thesegroupscan be representedin terms of evenmultivectors
in Q(2n,0) and Q(2p,2q) respectively.

To simplify matters, we now restrict to the Euclidean case,sowe seeka rotor
descriptionofthe unitary group U(n).The spingroup and rotor group in Q(2n,0)
are the same,so the unitary group has a double-coverrepresentationin terms of
rotors satisfying)

RJR == J.) (11.108))

Writing R == exp(-B/2), we seethat the bivector generatorsof the unitary

group must satisfy)

Bx J == O.) (11.109))
This definesa bivector representationof the Lie algebra u(n) of the unitary group
U(n).We can construct bivectors satisfying equation (11.109)by first using the
Jacobiidentity to prove that)

((a.J) A (b.J)) x J == -(a.J)A b + (b.J) Aa
== -(aAb)x J.) (11.110))

It follows that)

(aAb + (a.J)!\\(b.J))x J == O.) (11.111))
Any bivector of the form on the left-hand sidewill therefore commute with J.
Supposenow that the {ei}and {Ii}are orthonormal vectors. We can work

through all combinationsof theseto arrive at the bivector algebra in table 11.1.
Establishingthe closureof this algebraunder the commutator productisstraight-
forward. The bivector algebracontains J, which commutes with all other ele-
ments and is responsiblefor a global phaseterm.Removing this term defines
the Lie algebrasu(n) of the specialunitary group SU(n).The analysis can be
repeatedwith a different signature basespaceto construct a bivector represen-
tation of the Lie algebrau(p,q).)

11.5Thegenerallineargroup)

We have seenhow to representboth rotation groups and unitary groupsin terms
of spingroups.We will now seehow all matrix groupscan berepresentedby spin)
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EiJ
FijJi)

e\037eJ + f\037fj

eifj - fiej
eif\037)

(i<j=l,...,n)(i<j=l,...,n)
(i=l,...,n))

Table11.1TheLiealgebrau(n).Thebivectorsall belongto the geometric
algebraQ(2n,0), and the vectors{ei}and {fi}form an orthonormal basis
for this algebra. The complexstructure is generatedby the bivector 1=
JI + . . . + In.)

groups,and hence that all possibleLie algebrascan be representedas bivector
algebras. This is a significant motivation for the treatment adopted in this
chapter.Formulating general linear functions as rotors is achieved by working
in a balancedalgebra,generatedby equal numbers of vectors with positive and
negative square.Someof the algebraicconsiderationsfor thesetypesof algebra
wereencounteredin the discussionsof spacetimeand conformalgeometry.)

11.5.1The balancedalgebraQ(n,n)

Supposethat the vectors {ei}span a non-degeneratespaceof unspecifiedsig-
nature. We introduce a secondframe {fk},orthogonal to the first and with

oppositesignature, with the properties)

fi.fj== -ei.ej,) ei.fj == O.) (11.112))
The vectors {ei,fi} therefore generatethe algebra Q(n,n), regardlessof the
signature of the original {ei}space.We next introduce the balancedanalogue
of the complexbivector J by defining)

K == ei 1\\
f\037

.) (11.113))
This has the propertiesthat)

- .ei.K == ei'ejfJ == -fi.fjfJ == -
fi) (11.114))

and)

fi .K == -fi .fJ ej == -ei.) (11.115))
It follows that)

(a.K).K== K.(K.a)== a Va E V.) (11.116))
There is therefore a crucial sign differencecomparedwith the complexbivectorJ.
This means that K doesnot generate a complexstructure,but insteadgenerates
a null structure.To seethis, we first form)

(a.K)2== -((a.K).K).a== -a2
,) (11.117))

413)))



FURTHERTOPICSIN CALCULUSAND GROUPTHEORY)

so the vector a.Khas oppositesignature to a. Givena generalvector a E Q(n, n)
we can define two separatenull vectors by writing)

a ==
\037(a

+ a.K)+ \037(a

-a.K).) (11.118))
In this way the vector spaceV of Q(n, n) splitsinto two null spaces,V + and V_.
Vectors in V+ satsisfy)

a+.K==a+ Va+EV+,) (11.119))
with a similar expression(with a minus sign) holding for V_. Both of the spaces
V+ and V_ are entirely null, and they are dual spacesto one another. Working

entirely with vectors in V+ is a further way of formulating a Grassmannalgebra
within geometric algebra.)

11.5.2Lineartransformations
We will shortly demonstratethat every linear function acting on an n-dimen-
sional vector space,a 1---+ f(a), can be representedin V+ by a transformation of
the form)

a+ 1---+ Ma+M-I .) (11.120
))

HereM belongsto a subgroupof the spin group for Q(n, n), and a+ is the image
of a in V+ defined by)

a+==a+a.K.) (11.121))
In this sensewe form a double-coverrepresentation of the general linear group.
The relevant subgroupconsistsof transformations that map the subspacesV+
and V_entirely within themselves.For this to hold we require that)

(Ma+M-1).K== Ma+M-I ,) (11.122))

so we must have)

a+ == M-1(Ma+M-1).KM
== M-l\037(Ma+M-IK-KMa+M-1)M
== a+.(ltf-IKM).) (11.123))

It follows that we require M-IKM == K, or)

MK == KM.) (11.124))

As with the unitary case,M must belongto the spin group. The bivector
generatorsof this group must commute with K. The Jacobi identity ensures
that the commutator productof two bivectors that commute with K resultsin)
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EtJ
Fij
Kt)

etej - ftfJ
eifJ - fieJ
eifi)

(i <j= 1,...,n)(i<j=I,...,n)
(i=I,...,n))

Table11.2The Lie algebra gl(n). The bivectorsall belong to the geo-
metric algebraQ(n,n). The {ei}vectorsare orthonormal with positive
signature, and the {fi}are orthonormal with negative signature. Thealge-
bra contains the bivector K = Kl + . . . + Kn, which generatesthe Abelian
subgroup of global dilations. Factoring out this bivector producesthe al-
gebrasl(n).)

a third that alsocommutes with K.We proceedas with the unitary group and
construct)

((a.K)A(b.K))xK == aA(b.K)+ (a.K)Ab== (aAb) xK,) (11.125))
so t ha t)

(aAb - (a.K)A(b.K))xK == O.) (11.126))
We can again run through all combinations of the basisbivectors to obtain the
basis for the Lie algebraof the general linear group listed in table 11.2.The
difference in structure between the Lie algebrasof the linear group and the
unitary group is due solelyto the different signaturesof their underlying spaces.

The remaining step is to give an explicit construction of a representationof
a linear transformation as an element of the spingroup. The key to this is the
singular value decompositionofsection4.4.8.This decompositionshowsthat any
n x n matrix (with non-zero determinant) can be decomposedinto a positive-
definite diagonal matrix sandwichedbetween two orthogonal matrices.To find
a suitableencodingin terms of rotors,all we have to do is find representations
of orthogonal transformations and positive dilations.

Rotations are clearly presentas they are generatedby the Eij bivectors in the
Liealgebraof table 11.2.Thesebivectorsjointly rotate the {ei}and {Ii}vectors
by the sameamount. But the orthogonal group also includesreflections,so we
needto representtheseas well. Supposethe reflection in 9(p,q) is generatedby
the unit vector n, n2 == 1.We define)

fi == n.K
,)

-2 1n ==-
,) (11.127))

and considerthe multivector nfi. This satisfies)

nfiK == 2nfi.K+ nKfi == 2(n
2 + fi2) + Knfi == Knfi,) (11.128))

so the bivector doescommute with K.But since)

nfi(nfi)'V == -1) (11.129))
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this bivector isnot a rotor.It belongsto the spingroup, but not the rotor group.
The action of nn on vectors a+ E V+ resultsin the vector)

-nna+nn == -nnann - (nnann).K== -nan- (nan).K,) (11.130))

wherea is the originalvector, in the samespaceasn. Sincen is in the orthogonal
spacegeneratedby the {Ii}vectors, n anticommutes with a. Equation (11.130)
is the requiredresult for a reflection. The need to include reflectionsforces us
to work with elements of the full spingroup in Q(n,n).

The final step is to seehow dilations are formulated with rotors.Suppose
that we now require a positive dilation in the n direction. We again form the
bivector nn, which is constructedfrom the F'l,J and Ki Lie algebra generators.
With n+ == n + n the equivalent of the vector n in V +, we find that

e-).,nn/2n+e).,nn/2 == (cosh('x)- nn sinh('x))(n + n)
).,== e n+,) (11.131))

which is a pure dilation. Furthermore, any vector perpendicularto n has an

image in V+ that commutes with nn and so is unaffected by the action of the
rotor.Theseare preciselythe requiredpropertiesof the positive dilation, which

completesthe construction.
We now have an alternative means of representingevery matrix group within

geometricalgebra.Sinceall Liealgebrascan berepresentedby matrices,we have

proved that all Lie algebrascan be realisedas bivector algebras. The accom-

panying Lie group elements can then all be written as even productsof unit

vectors.This is potentially a very powerful idea.Oneimmediate construct one
can form this way is the tensorproduct of two linear functions. All one requires
for this is a separatecopyof the algebraQ(n,n) for each linear operator.As with

the multiparticle spacetimealgebra construction of chapter 9, the generatorsof
each spaceare orthogonal, so anticommute. It follows that even elements from

either spacecommute. Sorotors from either spacecan be multiplied commuta-
tively, forming a spinorrepresentationof the tensorproduct.The combinedrotor
generatesthe correct tensorproduct action on vectors in the combined space.
The tensorproductcan therefore be constructedfrom the geometricproduct.)

11.6Notes)

The multivector derivative and the use of the vector derivative in analysing
linear functions are describedin detail in the bookClifford Algebra to Geometric
Calculusby Hestenes& Sobczyk(1984).This bookalsocontainsan elegantproof
of the Cayley-Hamilton theorem, and detailsof the geometricalgebraapproach
to Lie group theory. Somefurther material is contained in the 'Lecturesin
geometricalgebra'by Doran et al. (1996a).)
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The basisof Grassmann calculus is describedin The Methodof SecondQuan-
tisation by Berezin(1966).A summary of the main resultsfrom this is contained
in the appendicesto the paper 'Particlespindynamicsas the Grassmann variant
of classicalmechanics'by Berezin and Marinov (1977).More recently, Grass-
mann calculus has beenextendedto the field of superanalysis,as describedin
the booksby Berezin(1987)and deWitt (1984).Similarthemes alsoreappearin
the subjectof non-commutativegeometry,as discussedby Connes& Lott (1990)
and Coquereaux,Jadczyk& Kastler (1991).The geometric algebratreatment
of Grassmanncalculuswas introduced in the papers'Grassmanncalculus,pseu-
doclassicalmechanicsand geometricalgebra'by Lasenby,Doran & Gull (1993c)
and 'Grassmannmechanics, multivector derivatives and geometric algebra'by
Doran, Lasenby& Gull (1993b).Someadditional material is contained in the
thesisby Doran (1994).Theseworks alsoshow how the super-Liebracket,and
super-Liealgebras,can be formulated within geometricalgebra.

The subjectof Lie groupsis covered in an enormousrange of textbooks.The
seriesentitled Group Theory in Physicsby Cornwell(1984a,1984b,1989)are par-
ticularly recommended,as are the booksby Georgi (1982)and Gilmore (1974).
The subjectof pin and spin groupshas alsobeendiscussedwidely. Thorough
treatments can be found in the booksAn Introduction to Spinorsand Geometry
by Benn& Tucker (1988)and Clifford Algebras and Spinorsby Lounesto (1997).
The construction of the general linear group in terms of rotors was first described
in the paper 'Liegroupsas spingroups'by Doran et al. (1993).The thesisby
Doran (1994)contains explicitconstructions of a number of further Lie algebras,
including symplecticand quaternionic algebras.)

11.7 Exercises)
11.1 The function f mapsvectors to vectors in the spacetimealgebraaccord-

ing to)

f(a) == a + aa'f+f+,)

where f+ is the null vector fa + f3. Find the characteristicequation
satisfied by f. What are the roots of the characteristic polynomial and
how many independenteigenvectorsare there? Verify that f satisfiesits
own characteristicequation.

11.2 Supposethat the vectors fa, fl form an orthogonal basisfor a spaceof
signature (1,1).Show that the linear function f1,)

fI(a)== -12a'fofO + 2a,'1ofl + 2a'fl'10+ a'flfl,)
has no symmetric squareroot.Similarly, show that the function f2 ,)

f2(a) == 8a''1ofa + a'fO '11+ a'flfa -a'flfI,)
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has two symmetric squareroots,and find them both.
11.3 The function q;(A) is definedby

q;(A) == det (exp(Af)))

where f is a linear function. The exponential function is defined by the

power serIes)
00

Ar
exp(Af)(a) == L,fr(a)r.

r=O)

where fr (a)denotesthe r-fold application of f and fO (a) == a. Prove that

4>(A) satisfies)

d4>

dA
== oa.f(a)rjJ(A),)

and hence prove that)

det (exp(f))== exp(oaof(a)).)
11.4 Prove the following resultsfor the functional derivative:

Of (a)Ob
.fr (b) == rf r-1

(a), r > 1,--1 --1 --I
Of(a)(f (Ar)Br) == -(f (a).Brf (Ar))1')

11.5 Given a non-singular function f in Euclidean space, the function E is
defined by)

E ==
\037 In(ff).) (Ell.l))

The logarithm can bedefinedeither by a powerseries,or by diagonalising
f f and taking the logarithm of the eigenvalues.Prove that)

--1
Of (a)Ob

0 E(b) == f (a) ,
2 - I

Of (a)Ob
.E (a) == f

-
E(a) .)

11.6 Prove that left and right-sidedGrassmannderivativescommute.
11.7 Supposethat x,y and e are unit vectors in g(4,0),with the pseudoscalar

denotedby I.Prove that the productq;(x,y), where)

q;(x,y) == (xey(1+ I))I ,)

satisfies all the axioms of a Lie group product,with e the identity ele-
ment. Which group doesthis product define?

11.8 The multivector R is defined by)

R == -1- (-Yo + ,1),2,)
where {,O,\"Y1,,2}are an orthonormal basisfor g(I,2).Prove that R is
a rotor, and that it is impossibleto find a bivector B such that R ==

exp(-B/2).)
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11.9 The vectors
{e\037, fi},i == 1,. .., n form an orthonormal basisfor Q(2n,0).

The Lie algebrau(n) is definedby the following bivectors:)

Eij == eiej+ fifj
Pij == eifj- fiej
Ji ==

eif\037.)

(i <j == 1,...,n),
(i<j==I,...,n),)

Prove that this algebrais closedunder the commutator product. Hence
find the structure constants of the unitary group.11.10Prove that the Lie algebrassu(4) and so(6)are isomorphic.Repeat the
analysis for the caseof su(2,2) and so(2,4). This latter isomorphismis
important in the theory of twistors.)
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Lagrangianand HamiZtonian
techniques)

The Lagrangian formulation of mechanics is popular in practically all modern
treatments of the subject.The ideasdate backto the pioneeringwork of Euler,
Lagrange and Hamilton, who showedhow the equations of Newtonian dynamics
could be derived from variational principles. In these, the evolution of a sys-
tem is viewedas a path in someparameter space.The path the systemfollows
is one which extremisesa quantity calledthe action, which is the integral of
the Lagrangian with respect to the evolution parameter (usually time). The
mathematics behind this approach was clear from the outset, but a thorough
physical understanding had to wait until the arrival of quantum theory. In the
path-integral formulation of quantum mechanicsa particleis viewedas simulta-
neously following all possiblepaths. By assigninga phasefactor to the action for
each path and summing these,one obtainsthe amplitude for a quantum process.
The classicallimit can then be understoodas resulting from trajectoriesthat
reinforce the amplitude. In this manner classicaltrajectoriesemerge as those
which make the action stationary.

A closelyrelatedideais the Hamiltonian formulation ofdynamics.The advan-
tage of this approachis that it producesa set of first-order equations, making
it well suited to numerical methods. The Hamiltonian approach also exposes
the appropriategeometry for classicaldynamical systems,which is a symplec-
tic manifold. The Lagrangian and Hamiltonian formulations are well suited to
studying the role of symmetry in physics. Any symmetry present in the La-
grangian will remain presentin the equations of motion, and will producea set
of possiblepaths all relatedby the appropriatesymmetry group. In this chapter
we will touch on many of theseideas,and provide a number of Lagrangians for

systemsof physical interest.We also show how the method can be extendedto
the caseof a multivector Lagrangian, which establishescontact with the systems
studiedin pseudoclassicalmechanics.)

420)))



12.1THE EULER-LAGRANGEEQUATIONS)

12.1TheEuler-Lagrangeequations
Supposethat a systemis describedby the multivector variablesXi, i == 1,.. ., n.
(The use of multivector variables makes this derivation slightly more general
than usually seen.)The Lagrangian L is a scalar-valuedfunction of Xi and Xi,
and possiblytime, where the dot denotesthe derivative with respect to time.
The action for the systemis)

lt2
B== dtL(Xi,Xi,t),

it)
(12.1))

and we seek the equations for a path for which the action is stationary. The
solution to this problemis standard application of variational calculus. We
wri te)

Xi(t) == Xf(t) + EYi(t),) (12.2))
where Yi is a multivector containing the same gradesas Xi and which vanishes
at the endpoints,E is a scalar,and X? representsthe extremal path. It follows
that the action must satisfy)

dB
dE

== 0,
f=O)

(12.3))

in order to ensurethat X? is a stationary solution. The chain rule now gives)

dB
dE)

f=O) lt2 n
=

tl
dt

\037(Y;*ox,L
+ Yi*ox,L)

lt2 n d= dtLY;*(ox,L-dt (Ox,L)),it 2=1)
(12.4))

where A*B == (AB).This integral must equal zero for all paths }Ii, from which
we can read off the Euler-Lagrangeequations in the form)

:\037i

-
\037 (:JJ=0,) Vi == 1,. .., n.) (12.5))

The multivector derivativeensuresthat there are as many equations as there are
gradespresent in the Xi, which implies we have preciselythe same number of
equations as there are degreesof freedom in the system.)

12.1\"1 Symmetriesand conservationlaws

Supposenow that we considera scalar-parameterisedtransformation of the dy-
namical variables, so that we have)

X; == X;(Xi,a).) (12.6))
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We further assumethat 0 == 0 correspondsto the identity transformation (this
restriction can be removed if necessary).The first-order change in Xi is denoted
by 5Xi , where)

ax\037
5Xi ==

z

aD 0:=0')
(12.7))

We definethe new Lagrangian

L'(Xi ,Xi) == L(X;,X;),) (12.8))
which is obtainedfrom L simply by replacingeach of the dynamical variablesby
their transformed equivalent. The chain rule now gives)

dL'
do)

n

=2:((JXz)*8x,L+ (JX;)*8x;L).0:=0 i=l)
(12.9))

If we now supposethat the Xi satisfy the Euler-Lagrangeequations, we can
rewrite the right-hand sideas a total derivative to obtain)

dL'
do)

d
n

=
dt 2:((JXi )*8x,L).0:=0 i=1)

(12.10))

This result appliesfor any transformation, and can be usedin a number of ways.
If the transformation is a symmetry of the Lagrangian, then L' is indepen-

dent of D. In this casewe immediately establishthat a conjugate quantity

is conserved.That is, symmetries of the Lagrangian produceconjugate con-
served quantities. This is N oether'stheorem, and it is valuable for extracting
conserved quantities from dynamical systems. The fact that the derivation of
equation (12.10)assumedthe equations of motion were satisfiedmeans that the
quantity is conserved'on-shell'.Somesymmetriescan alsobeextended'off-shell',
which becomesan important issuein quantum and supersymmetric systems.

An important application of equation (12.10)is to the caseof time translation,)

X:(t,D) == Xi(t + D),) (12.11))
so that)

ax\037 .
8D

Z == Xi.
0:=0)

(12.12))

If there is no explicit time dependencein the Lagrangian, then equation (12.10)
gIyes)

dL d
n- == - \037

(X *8.L) .dt dt \037 Z xt
i=l)

(12.13))

We therefore define the conservedHamiltonian by)

n)

H == 2:Xi*aXiL-L.
i=l)

(12.14))
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This is more often written in terms of the generalisedmomenta)

Pi == ax L,
\037) (12.15))

so that)
n)

H == :LXi*Pi-L.
i=I)

(12.16))

The Hamiltonian gives the total energy in the system, and IS conserved for
systemswith no explicittime dependence.)

12.1.2Pointparticleactions)
The simplestapplication of the Lagrangian framework is for a particlemoving in
three dimensionsin an external potential V (x).The Lagrangian is the difference
between the kinetic and potential energies,

mv 2
L == 2-

V(x),) (12.17))
where v == x. The Euler-Lagrangeequations give)

mv == -VV,) (12.18))
which identifies-VV with the forceon a particle.The Hamiltonian is)

2
H==L+v

2m ') (12.19))
wherep == mv. The Hamiltonian is conserved if V is independentof time.

The relativistic action for a free point particleraisessome new issues. We
begin with the simplestform of the action, which is)

S = -mJdt (1-X
2
)1/2,) (12.20))

where the overdot denotesthe derivative with respectto time t, and we work in
units with c == 1.The momentum is

8L mxp=
ax

=
(1-x2)1/2

') (12.21))

and the equations of motion state that p is constant.The Hamiltonian is)

H == p.x-L == (p2 + m2
)1/2,) (12.22))

and is alsoconserved.
The fact that the energy and momentum are dealt with differently is unsatis-

factory from the point of view of Lorentz invariance, so we seekan alternative)
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formulation which is manifestly covariant. This can be achievedfrom the obser-
vation that the action is equivalent to)

S = -mJd)\" (X'.X')1/2,) (12.23))

where x' == 8)..x(.\\).This integral is unchanged under a reparameterisation of
the trajectory.By identifying .\\ with t we recoverequation (12.20),and setting
.\\ equal to the proper time T we seethat the action is -m times the proper
time along the path. Variation with respectto the relativistic positionx now

produces)

d

(
mx'

)d)\" (x'.X')l/2
= o.) (12.24))

If we now set .\\ equal to the propertime the left-hand sidebecomesm times the
relativistic accelerationV, whereoverdotsnow denotethe derivativewith respect
to propertime.

Interaction with an electromagneticfield is included through a term in -qx'.A,
producingthe action)

S = Jd)\" (-m(x'.x')1/2-qx'.A(x)).) (12.25))

Variation with respectto x now produces)

d

(
X'

)-qV'A(x).x'+
d)\"

m (x'.x')l/2+qA(x) = O.) (12.26))

Setting.\\ equal to the propertime, we find that)

mv == q(VA(x).v-v.VA(x))
== qp.v,) (12.27))

where F == V I\\A. We therefore recover the Lorentz force law, as discussedin

section5.5.3.
The squareroot in the free-particle action of equation (12.23)is often incon-

venient, and can be removed by the inclusion of an einbein. This is a scalar
function e(.\\), which has the transformation property under reparameterisations
that)

d.\\
e(v) ==

dv e(.\\),) (12.28))

where v(.\\) denotesa new parameterisation for the trajectory. The action can
now be written in the equivalent form)

S =
-\037 Jd)\" (e-1x'.x'+ m 2

e).) (12.29))
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Variation of e produces)

(XI'X')I/2e== ,m) (12.30))

and substitution of this backinto the action recoversequation (12.23).A first-
order form of the action can also be developedby introducing the momentum p
and writing)

s =Jd)\" (-p.x'+ \037(p2

-m 2
)).) (12.31))

Variation of e producesthe constraint equation p2 == m 2 , and variation of p
producesx' == ep.This ensuresthat e is again given by equation (12.30).Finally,
the x variation determines)

p'=
d\037 CX':\037;1/2) = 0,

recoverIngthe desiredequation. In each of these cases interaction with an
electromagnetic field is included through a term in -qx' . A. Moving to a
reparameterisation-invariantformulation ensuresthat Lorentzcovarianceis man-
ifest, but it limits the use of Hamiltonian techniques.Hamiltonians deal with

energy, so picking out a Hamiltonian almost always implies breaking manifest
Lorentz covariance.)

(12.32))

12.1.3Rigid-body dynamics)
As a further application, considera rigid bodyas discussedin section3.4.3.The
configurationof the body is describedby the variablesxo(t)and R(t),where Xo
is the positionof the centre of mass,and R is a three-dimensionalrotor.We will

ignorethe motion of the centre of massand concentrate on the rotational degrees
of freedom. We alsoassumefor simplicity that the object is freely rotating, so
the Lagrangian is given by the rotational energy,)

L == -\037nB.T(nB).) (12.33))
HereT(B) is the inertia tensor,and

nB == -2RtR,) (12.34))
where the daggerdenotesthe reverse operation in three dimensions.

The fact that the degreesof freedomare describedby a rotor presentsa slight
problem.Rotors belongto a Lie group, and so form a group manifold. The La-
grangian is then a function definedfor pathson the group manifold, which makes
the Euler-Lagrangeequations slightly more difficult to write down. There are
two main methodsof proceeding.The first is to introduce an explicitparameter-
isation of R, such as the Euler angles,and to compute the Lagrangian in terms)
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of these. This has the disadvantage of introducing a fixed coordinate system,
making it difficult to assemblethe final equations into a coordinate-free form.
The structure of the rotor group providesa more elegant alternative. We replace
the rotor R by an arbitrary even element (a spinor)'lj;. The constraint 'lj;'lj;

t == 1
is enforced through the inclusion of a Lagrange multiplier. This method allows
us to use the coordinate-freeapparatusof multivector calculus in the variational

principleand leadsquickly to the full set of Euler equations.
Our Lagrangian is now)

L('lj;,\037) == -\037OB.T(OB)- A('lj;'lj;t
- 1),) (12.35))

where the dynamical variable is the spinor 'lj;, and A is a Lagrange multiplier.
The bivector OB is determinedfrom 'lj; by)

OB == -'lj;t \037 + \037

t
'lj;,) (12.36))

which is a bivector, as required. The Euler-Lagrangeequations reduceto the

single multivector equation)

d
8,pL- dt (8\037L)

= o.) (12.37))

The symmetry of the inertia tensorsimplifiesthe derivatives,and we obtain)

8w (
-!OB.I(OB))== -2I(OB)\037t,

8\037 (
-

\037OB .I(OB))== 2T(OB)'lj;t,)
(12.38))

where we have used the results of section11.1.After reversing, the Euler-
Lagrange equation for 'lj; is simply)

d .
d/1pI(rlB))+ 'ljJI( rl B)=

>..'IjJ.) (12.39))

Variation with respectto the Lagrange multiplier A enforcesthe constraint that

'lj;'lj;
t == 1,which means we can now replace'lj; with the rotor R. We therefore

arrive at the equation)

T(DB) -OBT(OB)== A.) (12.40))

The scalarpart of this equation determinesA and shows that, in the absence
of any appliedcouple,the rotational energy is a constant of the motion. The
bivector part of equation (12.40)recoversthe familiar equation)

T(DB)-OBXT(OB)== 0,) (12.41))

as found in section3.4.3.The Lagrange multiplier has avoided any need for

handling the rotor group manifold.)
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12.2Classicalmodelsfor spin-l/2particles
The use of non-relativistic spinorsin describingthe dynamics of a rigid body
demonstratesthat spinorsare not necessarilyrestrictedto applicationsin quan-
tum mechanics.This is significant in addressingthe question:what is the clas-
sicalanalogue of the Diracequation? That is, what classicaldynamical system
producesthe Diracequation on quantisation. There have beenmany attempts
to answer this question,and in the following sectionswe investigate two of them.)

12.2.1Rotordynamics)
For our first classicalmodel of a fermion, we start with the Lagrangian for the
Diracfield. Following the notation of section8.2this is)

LDzrac== (\\1'ljJI'3;j;-m'ljJ;j;).) (12.42))
The propertiesof this Lagrangian are studiedin detail in chapter 13.Focusing
on the first (kinetic)term, we can write this as)

(\\1 7jJ I'3;j;)== (\\1 'ljJ 10'3'ljJ

-1
'ljJ,o;j;) == (J\\!'ljJ]0'3'ljJ

-1
) ,) (12.43))

where J ==
7jJ,o'ljJ is the Diraccurrent. The streamlinesof J describehow the

probability density flows through spacetime.To reduceto a point-particlemodel,
we assumethat only the derivatives along a streamline are important and that
the density in concentratedentirely on one streamline.This streamline is then
identifiedwith the particleworldline,and the kinetic term becomes)

(J.\\!'ljJ]0'31/-;-I)==
('ljJ' I0'3'ljJ-l),) (12.44))

where the prime denotesthe derivative with respect to some parameter along
the worldline. Now recall from section8.2that a Diracspinordecomposesinto)

'ljJ
== pl/2eI/3/2 R,) (12.45))

where p and j3 are scalars,and R is a Lorentz rotor (a member of the connected
subgroupof the spingroup).The inverse, 'ljJ -1,is therefore)

1/-;-1== p-1/2e-I/3/2R.) (12.46))

Substitutingthis parameterisation into equation (12.44),we find that

('ljJ' 10'3'ljJ -1)== (R'10'3R).) (12.47))
The dynamics are now parameterisedby a Lorentz rotor, as opposedto a full

spinor.Given that the magnitude of a spinoris relatedto the quantum concept
of probability density, it is sensiblethat the classicalmodel should only depend
on the rotor component.

To completethe modelwe needto imposethe condition that the current 'ljJ,o'ljJ)
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defines the tangent to the worldline. This is achieved by including a Lagrange
multiplier to enforce the constraint that)

X' == eRroR,) (12.48))

where e is an einbein.Finally, the massterm m'l/J'l/J becomessimply em, where

again the einbein ensuresreparameterisation invariance. The full Lagrangian is
now)

L(x,x',R, R'
,p,e) == (R'I0'3R-p(X'-eRroR)- em),) (12.49))

and the action is formed by integrating this with respect to the evolution pa-
rameter A. The p equation returns the constraint of equation (12.48),and the
einbein e returns)

p'(RroR) == m.) (12.50))
After variation we can choosethe parameterisation such that e == 1,and x' is
replacedby X, with dots denoting the derivative with respect to proper time

along the worldline x(T). It follows that p . x == m. Clearly, then, we can

identify p with the momentum. The x variation then saysthat the momentum

is constant.
The final equation requiresvarying R, which lieson the group manifold of the

rotor group Spin+(I,3). This variation can be performed in a number of ways.
We could extend the technique employed for rigid-bodymechanics, and relax
the normalisation constraint so that R becomesa full spinor.The normalisation
is then enforced by a pair of Lagrange multipliers (one each for the scalarand

pseudoscalarterms). However,we can avoid this by returning to the original
form of the Lagrangian in terms of

'l/J
and replacing the relevant terms by)

(R
'I0'3R + epRroR) == ('l/J'I0'3'l/J-1+ ep'l/Jro{;/p),) (12.51))

where p == I'l/'ro'l/JI. This form ensuresthat L is only dependenton the rotor

component of 'l/J, but still allowsus to vary L with respectto 'l/J. This is easier
than constructing the derivative on the group manifold. To proceedwe needa

pair of additional results.The first is that)

8'1j; (M'l/J -1)== -
'l/J

-1
M'l/J

-I
,) (12.52))

which holdsfor any even multivector M. The secondis that

2p8'1j; p ==
8'1j; ('l/Jro{;'l/Jro{;)== 4'0;J;'l/',o;j;,) (12.53))

which implies that)

8'1j; p ==
2p'l/J

-1.

The 'l/' variation now produces(after setting A equal to propertime T)

-I . -1 e - -I - d -1
-'l/J 'l/'!0'3'l/'+ -(2,o'l/Jp- 2'l/J (p'l/Jro'l/J))

--
d (!0'3'l/J ) == O.

P T)

(12.54))

(12.55))
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On multiplying through by 'ljJ
we obtain)

S+ 2p!\\x == 0,) (12.56))
where)

-1 -
S ==

'ljJ[0\"3'ljJ
== R[0\"3R.) (12.57))

The rotor variation therefore producesan equation which states that the total
angular momentum is conserved.This shows that the classicalmodel has many
of the desiredfeatures. Linear momentum is conserved,and the spin-l/2nature
of the particleis capturedin the total angular momentum.

The simplestsolution to the equations of motion has mx == p, so that the
particle is at rest in the p frame. The spin bivector is also constant, as one
would expectin the absenceof interaction. There are a range of further solutions,
however,which are of interest. Supposethat we align )'0 with momentum, and
write)

m *p ==

h( )
)'0 == m )'0,cos a) (12.58))

which definesthe 'effectivemass'm*. The equations of motion are then solved
by)

R == e1u3m*T
eC'Ku 2/2,

sinh( a) 2/. *x == Tcosh(a))'o \037

2m* )'1e- u3m T.

The total angular momentum is

\037S
+ p!\\x ==

\037 cosh(a)[0\"3,)

(12.59))

(12.60))
which isconstant.This solutiondescribesa particlerotating at angular frequency
2m/cosh(a)(as measuredby the propertime), and with a radius of

1
ro == -sinh(a)cosh(a).2m) (12.61))

As a increases,the momentum goes 'off-shell', and the particlecan 'borrow'
energy to executea circular motion and feel out its surroundings.This model
therefore capturessome aspectsof fermionic quantum mechanics, exhibiting a
form of zitterbewegung, while still describinga point-particletrajectory.

For many applicationsthe model constructedhere is unnecessarily compli-
cated,and we insteadchooseto work with the somewhat simpler Lagrangian)

L(x,x','ljJ,'ljJ',p,e) == ('ljJ'I0\"3;j;
\037 p(x'\037 e'ljJ,o;j;)\037

em'ljJ;j;).) (12.62))
Globalphaseinvarianceof L ensuresthat ('ljJ;j;) is constant and can beset to 1.If
the initial conditionsare chosensuitably, one can also show that the 4-vectorpart
of'ljJ'ljJ remains zero, and the motion reducesto that of the previous model.An

openquestion is whether either of thesemodelsproducesthe Diracequation on)
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quantisation. The problenlis that a path-integral quanti8ation involves the group
manifold of Spin+(1,3),which is non-compact.In addition, the Lagrangian is
first order,which can give rise to complications in the path integral.

A deficiencyof the classicalmodel is exposedwhen we couplethe particleto
the electromagneticfield. If we considerthe phasetransformation)

R r--+ Re1u3cf;
,) (12.63))

then this introducesa term going as -8A cP
== -x'.(\\1 cP) into the Lagrangian.

Localphaseinvariance is therefore restoredby modifying the Lagrangian to)

L(x,x',R, R',p,e) == (R'Iu3R-p(x'- eR'foR)-qx'.A\037 em),) (12.64))

where A is the electromagneticvector potential.The qx'.A term is the natural

point-particleequivalent of the interaction term qJ.Ain the DiracLagrangian.
Variation now modifiesthe p equation in the expectedmanner to read)

p == qp.x.) (12.65))
But the spinequation is not affected-we do not naturally pickup the 9 == 2

behaviour for the gyromagneticratio ofa spin-1/2 particle.This isdisappointing,
given that the A term is all that is requiredto guarantee that 9 == 2 in Dirac

theory. The problemcan be rectified by introducing a further term into the

Lagrangian, going as)

/ q ---

)
/ q -I

)Lg ==

\\
-

2m
PRIu3R ==

\\
-

2m F1jJIu31jJ .

This modifiesboth the Rand p equations to give

S == 2x!\\p+!Lpxs,m

p == qp.;j;+ 2-\\1P(x)'S.2m

Theseequations have the expectedform for a particlewith 9 == 2, but the value
of the gyromagnetic ratio has beenput in by hand.)

(12.66))

(12.67))

12.2.2Pseudoclassicalmechanics)

A quite different approach to the classicalmechanics of a spin-1/2particle is

provided by pseudoclassicalmechanics, which introducesthe interesting new

conceptof a multivector-valuedLagrangian. We only considerthe simplestcase
of a non-relativistic model. The model is motivated by the idea that the spin
operatorssatisfy)

,,\" \"\" n?xSiSj+ SjSi== TUij.) (12.68))

The classicalanalogueof theserelations should have zeroon the right-hand side,
so the particle is describedby a set of anticommuting Grassmann variables.)
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This argument runs contrary to the viewpoint of this book,which is that there
is nothing at all quantum-mechanical about a Clifford algebra, but the model
itself is interesting.We introduce a set of three Grassmannvariables {(i}and
definethe Lagrangian)

1 . 1L ==
2(i(\037

- 2Ei jk Wi(j(k,) (12.69))
where the Wi are constants.Following the prescriptionof section11.2we replace
the Grassmannvariables with a set of three vectors {ei}under the exterior
product. The Lagrangian then becomes)

L 1 .
==

2e\037 Aei - W,) (12.70))
where)

W == !EijkWiejek == wl(e2Ae3)+w2(e3Ae l) +w3(elAe2).) (12.71))
The Lagrangian is now a bivector,and not simply a scalar.This raisesan imme-
diate question-how can the variational principlebe appliedto a multivector?
The answer is that all components of the Lagrangian must remain stationary
under variation. Supposethat we contract L with an arbitrary bivector B to
form the scalar(LB).Variation of this producesthe Euler-Lagrangeequation)

d
Ge\037 (LB)- dt (Gei(LB))== O.) (12.72))

Treating the {ei}as vector variables, we arrive at the equation)

(ei + EijkWjek)' B== O.) (12.73))
But we must demand that this vanishesfor all possibleB,from which we extract
the equation)

ei + EijkWj ek == O.) (12.74))
This is the general method for handling multivector Lagrangians.The contrac-
tion with any constant multivector must result in a scalar Lagrangian which
is stationary when the equations of motion are satisfied. Equation (12.73)il-
lustratesa further feature. For a fixed B,equation (12.73)is not sufficient to
extract the full set of equations.It is only by allowing B to vary, and hence treat
the Lagrangian as a bivector, that the full equations are extracted.

To solveequation (12.74)we first establishthat W is constant,)

w==O
,) (12.75))

which follows immediately from the equation of motion. Next we introduce the
reciprocalframe {ei }and write the equation of motion in the form)

.
1,ei == e .w.) (12.76))

431)))



LAGRANGIAN AND HAMILTONIAN TECHNIQUES)

Now supposethat we definethe symmetric function g by
3

g(a)== La.eiei,
i=l)

(12.77))

so that g(ei ) == ei.The function g is a form of metric for the non-orthonormal
frame ei.On differentiating g(a),holding a constant, we find that

3
d \"\"

(
' -

dt
g(a)= L a.(e'.w)ei+a.e,e'.w)=w.a+a.w=O.

i=I)
(12.78))

It follows that the function g is constant, even though the ei vectors vary in

time. The motion is found by introducing the squareroot of g, which satisfies)

hh(a) == g(a),) h == h.) (12.79))

This function is found by diagonalising g and taking the square root of the

eigenvalues.It follows that)

<sf
== ei'ej == g(ei

) .ej == h (ei
) .h (ej ).

The vectors h (ei
) are therefore orthonormal, so we write)

(12.80))

Ii == h (e2
),) Ii.Ij == 6ij.) (12.81))

Thesevectors satisfy)

Ii == Ii.0.,) (12.82))

where)

0.== wII2I3+ w2I3II+ w3III2.) (12.83))

Sinceh(n) == w, we seethat 0.is a constant bivector. It follows that the {Ii}
frame simply rotates at a constant frequency in the 0.plane. The solution for

the ei vectors is therefore)

ei(t)== h-1
(e-Ot/2Ii(O)eOt/2).) (12.84))

The only motion taking placein this systemis that a fixed set of orthonormal
vectors is rotating in a constant plane, and the resulting frame is then distorted
by a constant symmetric function. A simplepicture of this type is fairly typical
of pseudoclassicalsystemswhen analysed in this manner.)

12.3Hamiltoniantechniques)

The Hamiltonian formulation of mechanics is important in a range of applica-
tions, not least becauseof its superiorhandling of numerical issues. We start

by forming Hamilton'sequations in local coordinates,before placing Hamilto-
nian dynamics in a more geometric setting. Supposethat a dynamical system)
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is describedin terms of a Lagrangian L(qi,q2, t), where the {qi}are a set of n
coordinatesfor configurationspace.The Euler-Lagrangeequations are

\037 (;\037 ) =
;\037

.) (12.85))
Theseequations typically result in a set of n second-orderequations that re-
late the generalisedmomenta to the forces in the system.The Euler-Lagrange
equations are equivalent to the set of 2n first-order equations

. aH . aH
( )qi == \037, Pi == -\037. 12.86

UPi uqi

Theseare Hamilton'sequations.The Hamiltonian H(qi,P2,t) is given by)

n)

H(qi,Pi,t) == LPiqi-L(qi,qi, t)
i=l)

(12.87))

in which the qi are expressedin terms of the Pi by inverting the equations
aL

Pi ==

aqi
' (12.88)

The transformation from a Lagrangian to a Hamiltonian framework is calleda
Legendretransformation. We move from consideringdynamics in n-dimensional
configurationspaceto a 2n-dimensionalphasespace.

If the Hamiltonian is independentof time we can immediately seethat it is
conserved.That is, H gives the conservedenergy in the system. The proof is
straightforward:)

dH n

(
. aH . 8H

)dt =L qi 8q -
+ Pi ap . == O.

i=I Z Z)

(12.89))

Phasespaceprovides a very useful way of analysing the motion and stability of
complicatedsystems.As a simpleexample,considera pendulum consistingof a
massm attached to a rigid rod of length a. The configurationof the systemis
describedby a singleangle B, and the Lagrangian is

ma2iJ2
L ==

2 + mgacos(B).) (12.90))
The Hamiltonian is therefore)

2
H== Po -mgacos(B), (12.91)2ma2

and this is conserved.The trajectoriesof the systemcan be visualised in terms
of a phase-spaceportrait, which plots surfaces of constant H in

ph\037se space.
Sampletrajectoriesare shown in figure 12.1.The figure illustrateshow the
phaseportrait can captureglobal aspectsof the system,such as the behaviour
of the systemas the energy gets closeto value for which the pendulum can
completea full loop.)
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Figure 12.1A phaseportrait. The q coordinaterepresentsthe angle and

p is the canonicalmomentum. The Hamiltonian is p2 - cos(q). As H
approaches1a bifurcation appears,correspondingto the energy for which

the pendulum can completea loop. The system is periodic,so the phase
portrait can be thought of as wrapping up into a cylinder)

12.3.1Symplecticgeometry
The natural setting for Hamilton'sequations isprovidedby symplecticgeometry.
A symplecticmanifold (M,n) consistsof a 2n-dimensionalmanifold M together
with a closed,non-degenerate2-form n. We will assumethat n is finite so
as to avoid discussionof the technicalities of infinite-dimensionalspaces.We

can analyse this structure using the apparatusof vector manifolds, described
in section6.5.A symplecticmanifold doesnot have a metric structure,so we

must take carenot to employ the metric induced in the vector manifold by its

embedding.This means we must distinguish tangent and cotangent spaces,as
wecan only apply the inner productbetween tangent and cotangent vectors.We

denotethe tangent spaceat x by TxM,and the cotangent spaceT;M.
The covariant vector derivative is denotedby \\7, and always resultsin a mul-

tivector that is intrinsic to the manifold (in section6.5.3this derivative was

denotedD). The 2-formn is a bivector field evaluated in the cotangent space.
The statement that n is closedis simply)

\\7 An == o.) (12.92))

This is requiredin order that the Poissonbracket satisfies the Jacobi identity.)
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The condition that n is non-degenerateis simply that)

n(x).a#O,) Va =I- 0, a E TxM.) (12.93))

If we view n(x) . a as a linear map from TxM to T;M,then n being non-
degenerateimplies that the map has non-zerodeterminant, sois invertible. The
inverse map is generatedby a secondbivector, which we labelJ. This second
bivector lies in the tangent space,and can be viewed as the inverse of n. The
two bivectors are relatedby the pair of equations)

J.(n.a)== a, Va E TxM,

n.(J.a*)== a*, Va* E T;M.
The propertiesof nandJ can be understoodsimply by introducing a setof local
coordinates(pi,qi) over M. In termsof thesewe define the tangent vectors)

OX
ei ==

opi ')

and the cotangent vectors)
. -

e\037
==

'lp\037,)

We then set)
n

n == Lfi Ae\037 ,
i=I)

(12.94))

OXIi= 8qi ') (12.95))

- .
f\037

== '1
q\037

.) (12.96))

n

J == LeiAfi'
i=I)

(12.97))

SoJ and n both have a similar structure to the complexbivector introduced in

section11.4.By construction, n is clearly closed.It is also straightforward to
verify the relations)

n'ei== f\\

J.e\037 == -
f\037,)

n'fi==-e\\
J'f\037

== ei,)
(12.98))

which confirm that equations (12.94)are satisfied.
The Hamiltonian H(x,t) is a scalarfield definedover M, and the dynamicsof

the systemare governedby the equation)

x ==
(\\I H).J.) (12.99))

This is an identity between tangent vectors. In terms of local coordinatesthis

equation becomes)

.i 'if (
ioH i OH

)
8H 8H

p ei + q i == e \037 + f \037
.J == fi \037

- ei \037 '
up\037 uq\037 up\037 uq\037)

(12.100))

where repeatedindicesare summed over 1,. . .,n. We therefore recoverHamil-
ton'sequations in local coordinates.)
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12.3.2Conservationtheoremsand the Poissonbracket)

We now restrict to the casewhere H is independentof time t. Supposethat a
scalarfunction f(x) is defined over phasespace.The evolution of this along a

phasespacetrajectory x(t) is determinedby)

j == X.\\1f == (V'11\\ V'H).J.) (12.101))

It follows immediately that H == O. A further consequencefollows if H is invari-

ant along somedirection a in phasespace.If we form the directional derivative
of H we obtain)

a.V'H == (J.(O.a)).V'H== (O.a).x.) (12.102))

So if H is unchanged in the a direction we have)

(O.a).x== 0,) (12.103))

so all flows are perpendicularto the cotangent vector O.a.
The equation for the evolution of 1 leadsnaturally to the definition of the

Poissonbracket of a Hamiltonian system. Given two scalarfields 1and 9 the
Poissonbracketis defined by)

{I(x),9(x)} == (V'11\\ V'9) .J.) (12.104))

In termsof local coordinatesthis takesthe more familiar form)

\"'\"'

(
818g 8189

){f(x),g(x)}== Li \037\037
-

\037\037
.

. uqz upz upz uqz
z)

(12.105))

The geometric form neatly brings out the antisymmetry of the Poissonbracket.
It follows,for example,that the Poissonbracket with the Hamiltonian returns
the time developmentof a scalarfield:)

{/,H}== (V'fl\\V'H).J== j.) (12.106))

Poissonbracketsand the Hamiltonian formulation of dynamicsprovidea natural

route through to quantum mechanics, where Poissonbracketsare replacedby

operatorcommutation relations.
An important property satisfied by the Poissonbracket is the Jacobiidentity)

{{/,g},h}+ {{g,h},I}+ {{h,I},g}== 0,) (12.107))

which is easily confirmed in terms of local coordinates.This identity links the
Poissonbracketstructure to a Lie algebrastructure.The identity is satisfiedby

any symplecticmanifold, as we now establish.We first write)

{/,g}== (\\1I\\(fV'g)).J== (J'V')'(/V'g),) (12.108))
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.)

which follows from the identity that \\7 A \\7 == 0 (everyexact form is closed).The
Jacobiidentity now reducesto)

(J.\\7). ((\\7 fA \\7g).J \\7 h + cyclicpermutations) == O.) (12.109))
If we define)

T == \\7fA \\7g/\\ \\7h,) (12.110))
then equation (12.109)simplifiesto)

(J.
\\7)

. (J.T) == o.) (12.111))
To simplify this equation further we employ the identity)

(BAB).a== 2BA(B.a),) (12.112))
which holdsfor any bivector Band vector a. We can now write).. 1(J.\\7).(J.T)== (J.\\7).(J.T)+ 2(JAJ).(\\7AT)) (12.113))

and the final term here vanishesasT is exact.It follows that the Jacobiidentity
reducesto the condition)

(J.\\7)AJ == O.) (12.114))

The final task is to demonstratethat this identity for J is equivalent to the
statement that 0 is closed.Equation (12.114)is evaluated entirely in tangent
space.If we use0 to map each term into the cotangent spacewe arrive at the
equivalent expression)

eO:Ae J3 /\\ V (j(O.eo:)A (n.eJ3))== 0,) (12.115))

where Greekindicesare summed from 1to 2n, with the first n covering the
ei frame, and the secondn coveringthe Ii frame. This identity is equivalent to)

\\7 A (eO:Ae J3 (J(O'eo:)A(O.eJ3)))- eO:Ae J3 A \\7(l(O.eo:)A(O.eJ3))== 0, (12.116))
where the checkdenotesthat J is not differentiated in the secondexpression.
The frame derivatives in this expressioncan all be shown to vanish, which leaves)

2\\7 An -eO:Ae J3 A V(J(O.eo:)A(O.eJ3)+ J(n.eo:)A(O.eJ3))== O.) (12.117))

This is equivalent to)

-2\\7An == 0,) (12.118))
which provesthe main result.Any symplecticmanifold admits a Poissonbracket
structure that satisfiesthe Jacobiidentity. As such, any symplecticmanifold can
form the basisfor a Hamiltonian system.)
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12.3.3The cotangentbundle)

In practice,the phase space for a Hamiltonian systemis often the cotangent
bundle of configuration space.This works as follows. Supposethat Q denotes

configuration space.It is a manifold with potentially non-trivial topology. At

each point q in the manifold we definethe cotangent spaceT;Q.If qi form a set
of local coordinatesin configurationspace,then \\7qi definea set of basisvectors

for T;Q.An arbitrary cotangent vector can be written as Pi\\7qi, so the Pi can

be usedas coordinatesfor T;Q.Now considerthe bundle of all tangent spaces,
T*Q.This is a manifold, and a general point in T*Q is specifiedby the set of

2n coordinates(qi,Pi). The first n of theselocatethe positionover Q, and the

secondn locatea point within the cotangent space.The cotangent bundleT*Q
is a symplecticmanifold, with the symplecticstructure defined by)

n)

o == L\\7qi!\\ \\7Pi'

i=l)
(12.119))

The reasonthis structure often arisesis that, while there may be constraints

placedon configuration space,there are usually no restrictionsin momentum

space.Returning to the caseof the simplependulum, Q is a circle since() is a

periodiccoordinate.But there are no such constraints on (), so the cotangent

space is a line. The manifold T*Q can therefore be visualised as a cylinder,
which is the phasespacefor the pendulum.)

12.3.4Canonicaltransformations

Supposethat (MI,OI)and (M2,02)are two symplectic manifolds. We let f
denotea map from M1 to M2, which we write as)

x' == f(x), x E MI , x' E M2.) (12.120))

This map is canonical if it respectsthe symplectic structure. That is, we must

have)

f(02)== 01,) f(J1) == J2.) (12.121))

Here)

f(a) == a.\\7 f(x)) (12.122))

is a map from TxMI to Tx,M2. The fact that 0 is non-degeneratemeans that

we can define a volume form on either manifold by)

v =
\037((n)n)2n

=
\037(nl\\nl\\\" .I\\nhn'n. n.)

(12.123))

The map f must preserve this volume form, so has non-zero determinant. It

follows that f is invertible for a canonical transformation, and hence so too is f.)
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As a check,the Poissonbracket structure remains intact as)

--IJ1.(\\1 f 1\\ \\1g) == J2 .f (\\1 11\\ \\1g) == J2.(\\7 211\\ \\12g),) (12.124
))

where \\12 == f-I(\\1) is the vector derivative on M2 . It follows that the dynam-
icscan be formulated on either MI or M2 , and the physical resultswill remain
unchanged. This is potentially a very powerful result. The set of all possible
symplectictransformations is large, and there may well by a suitabletransforma-
tion which can dramatically simplify the dynamics.This is particularly evident
when one noticesthat symplectictransformations can mix up the positionand
momentum coordinatesin one space.These transformations are richer than

simply convertingbetween configurationspaces.
In someapplications,phasespaceissimply R2n, and the bivectorJ isconstant.

In this casewe can considercanonical transformations which map phasespace
onto itself. For thesethe map f is canonical if and only if)

f(J) == J.) (12.125))

Linear transformations satisfying this identity definethe symplecticgroup. This
can be analysed using the spingroup approach developedin section11.4.)

12.4Lagrangianfield theory
The Lagrangian approach to classicaldynamics extendsto field theory, which

can be viewedas the dynamics of systemswith an infinite number of degreesof
freedom. Thereare sometechnical issuesconnectedwith the infinite sizeof the
configurationspace,but we will not discussthesehere.Supposethat the system
of interest dependson a field 1jJ(x), where for simplicity we will assumethat x
is a spacetimevector. This doesnot restrictus to relativistic theories,as there
is no needto restrict the Lagrangian to be Lorentz-invariant. The action is now

definedas an integral over a region of spacetimeby)

s =Jd4x.c('Ij;,a{''Ij;,x) ,) (12.126))

where .cis the Lagrangian density and xJ-L are a set of fixedorthonormal coordi-
nates for spacetime.More general coordinatesystemsare easily accommodated
with the inclusionof suitablefactors of the Jacobian.

The derivation of the Euler-Lagrangeequations proceedspreciselyas in sec-
tion 12.1.We assumethat 1jJo (x) representsthe extremal path, satisfying the
desiredboundary conditions,and look for variations of the form)

1jJ(x) == 1jJo(x) + Er/J(X).) (12.127))

Herer/J( x) is a field of the sameform as 1jJ (x),which vanishesover the boundary.)
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The first-order variation in the action is (summation convention in force))

dB J 4
(

8\302\243 8cP 8\302\243

)--;];E=O

= d x cp(x)*
a'IjJ

+
ax!\"

*
a(a!\" 'IjJ)

.) (12.128))

The final term is integrated by parts, and the boundary term vanishes. We

therefore find that)

dB J 4
(

8\302\243 8
(

8\302\243

))--;];E=O

= d xcp(x)*
a'IjJ

-
ax!\" a(a!\" 'IjJ)

,) (12.129))

from which we can read off the variational equations as)

8\302\243 8
(

8\302\243

)a'IjJ

-
ax!\" a(a!\"'IjJ)

= o.) (12.130))

If more fieldsare presentwe obtain an equation of this form for each field. Our.
main applicationsof these equations are in the following chapters,where we

discussgauge theoriesand gravitation. Herewe illustrate the equations with a

pair of examplesconcernedwith elasticand fluid materials.)

12.4.1Hyperelasticmaterials)

The equations of continuum mechanics,which govern an elasticbody, were de-
rived in section6.6.For certain elasticmaterials it is possibleto obtain these
equations from a variational principle.We follow the notation of section6.6,so

f is the displacementfield, f(a) is the directional derivative of I, and C == ff is

the Cauchy-Greentensor.The materials of interest here are calledhyperelastic.
Theseare defined by the property that, in the absenceof external fields, their

internal energy U is a function of C only. A suitableaction for this system is)

s = Jdtd3x (p\037)
P -U(ad))

,) (12.131))

from which we can read off \302\243. Overdots denotethe derivative with respectto
time, and the integral runs over the spaceof the referencecopy of the body.

The Euler-Lagrangeequations are found entirely from the variation of the
action with respectto the displacementfield I. Sincethe Lagrangian depends
on I through only its time and spacederivatives, the Euler-Lagrangeequations
are)

\037

(
8\302\243

) + \037

(
8\302\243

) == 0
8t 8j axi 8(8i f)

.) (12.132))

Thesesimplify to)

. 8
(

8U
)pv ==

8Xi 8(ail) ,) (12.133
))
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where v ==
if is the local velocityof the body.Comparisonwith equation (6.319)

tells us that we must have)
. oU

T(e')= 8(8d),) (12.134))

where {ei}is the (fixed) coordinateframe defined by the xi coordinates.To
simplify the right-hand sidewe employ the derivative with respectto a linear
function, as defined in section11.1.2.From the definition of equation (11.24)we
have)

o 8
8f(ei )

== ejofji
.) (12.135))

.)
The scalarsfji are defined by)

fji == ej.f(ez) == eJ
.(oil).) (12.136))

Theseare the components of the vector oil,so we can write)

8 0 8-e -
8(oil)

- jofji
-

of(ei )
.) (12.137))

The notation for the derivative with respectto f(ei
) is slightly misleading,as f

is never evaluated on ei. Instead,we have)

T(a) == Of (a)U(C).) (12.138))
The fact that U is a function of C == ff ensuresthat the secondPiola-Kirchoff
stressT == f-1T is a symmetric function.

Tomake further progresswe must specifythe preciseform of U,which amounts
to specifyingthe constitutive propertiesof the system.The simplesthyperelastic
materials to considerare isotropicand homogeneous.For these the internal
energy can only dependon the principal stretches:)

W == W('\\l, '\\2, '\\3).) (12.139))
Even within this classthere are a large variety of modelsone can consider.To
obtain a linear model the energy should be quadratic in the strains,where linear
in this context refers to the relationship between the stressand strain tensors,
and not to the underlying dynamics.A natural model to consideris to define
the strain by)

\302\243(a)
== C1/2(a)- a,) (12.140))

and set)

U(E)==
Gtr(\302\2432) + (B/2- G/3)tr(\302\243)2

== G(tr(C)- 2tr(C1/2
) + 3) + (B/2-G/3)(tr(C

1/2
) - 3)2,) (12.141))

where BandG are respectively the (constant) bulk and the shear moduli. To)

441)))



LAGRANGIAN AND HAMILTONIAN TECHNIQUES)

find the stresstensorwe need the derivative of tr( Cff)1/2).To evaluate this we

first write)

Cff)1/2== exp(\037 In(C)) == exp([In),) (12.142))

where)

[In ==
\037 In(C).) (12.143))

We can now make useof the result)

area)tr( [{\037)
== nf\037l

[I\037\037l (a)) (12.144))

to prove that) .)

ar(a)tr((ff)1/2)== f\037l(ff)1/2(a).) (12.145))

The stresstensorT therefore evaluates to)

T == 2G(f - f\037l(ff)1/2) + (B- 2G/3)tr([)f\037l(ff)1/2
== f-1

(ff)1/2(2G[+ (B-2G/3)tr([)I),) (12.146))

where I is the identity transformation. The bracketedterm is the expressionwe

would expectto seein a linear theory. The extrapre-factor can be understood
in terms of a singular-valuedecompositionof f. We write)

f == RC1/2
,) (12.147))

where R is a rotation. We then find that)

f\037ICI/2 == RC-1/2(1/2== R
,) (12.148))

which recoversthe rotation. We can now write)

T(a) == R((2G[(a)+ (B-2G/3)tr([)a).) (12.149))

This can be understoodas a linear function of [,followedby a rotation to align
the principal axesin the referenceconfigurationwith those in the body.

The definition of [In raisesthe interesting prospectthat this could be usedas
an alternative definition of the strain. For an isotropic,homogeneousmedia this

amounts to choosingan energy density of)

U1n = G((In Ad
2 + (In A2)2 + (In A3)2) + (B/2-G/3)(In(AIA2A3) ( (12.150))

This definition has the same behaviour under small deflectionas the potential
energy of equation (12.141),but differencesemerge as the stressesbuild up. In

essence,the logarithmic definition of energy definesa material which retains its

elasticpropertiesno matter what shape it is stretchedinto. This limits the

application of Uln for modellingphysical objects,though it may well be of use
in computer graphicssimulations, as routines built on Uln will not breakdown

when forcesbecomelarge.)
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12.4.2Relativisticfluid dynamics
The field equations for a relativistic fluid can be formulated in a number of
different ways. Here we give a fairly direct derivation, albeit from a slightly

surprisingstarting point. We start with the action integral)

.) s=jd
4X(-S+J'('VA)-JiJ'V7]),) (12.151))

where J(x) is a spacetimecurrent, E is the total energy density and 1] is the

entropy. The current can be written as)

J == pv,) v2
== 1,) (12.152))

and we assumethat E is a function of p and 7] only, which we write as)

E == p(l + e(p,1])).) (12.153))

The remaining terms A and
/-L

are Lagrange multipliers enforcingthe two con-
straints)

V.J== 0,) v. \\11] == O.) (12.154))

Theseare two of the four equations of motion. The first constraint is that the
current is conserved,so the total number of particlesin the system is constant.
The secondconstraint saysthat entropy isconstant alongthe field linesofJ. The
various constraintsand assumptionsensurethat we are describinga relativistic
idealfluid.

Variation with respectto 7] yieldsthe equation

oe
87]

= v. 'V JL,) (12.155))

and variation with respectto J produces)

oe
v(l + e) + vp

8p
= 'VA -

JL'V7].) (12.156))

In the derivation of this equation we have employedthe result that)

of8Jf(p) = v
8p

') (12.157))

Next, we define the pressureP by)

p _ 2 oe- p
op')

(12.158))

so that equation (12.156)becomes)

V(E + P) == p(VA -
J-L\\l7]).) (12.159))
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The final step is to removethe Lagrangemultipliers by employing the constraint

equations.First we contract equation (12.159)with v to obtain)

e+ P == pv, V)'\" == J.(V )...) .) (12.160))
Next we differentiate equation (12.159)to obtain

J.V(V)'\" -
f-LV7])

== v.V(v(e+ P)) + V(e + P)J.V(p-l)
== V.V(V(e + P)) + V(e + P)V.v.) (12.161))

The left-hand sideis manipulated as follows:
. . oe . .J .'V ('V)\"

-
p,'VT)) = 'V (J.'V )..)- 'VJ . 'V)\" - p

aT)
'VT)+ P,'VJ.'VT)

= 'V(E' + P) - p
ae

'VT)
- '9j.v(E' + P)

07] p

_ \"p \"Oe (e + P)\"-v +vp-- vp
Op P

== V P. (12.162))
We therefore arrive at the equation)

V.V(V(e+P))+V(e+P)V.V== VP,) (12.163))
which describesa relativistic ideal fluid. This ismore clearlyseenif we introduce
the relativistic stress-energytensorT(a),which is defined by)

T(a)== (e+ P)a.vv-Pa.) (12.164))
The rest frame of the fluid is defined locally by v. We find that T(v) == eV,

so that e is the local energy density, as required. In any spacelikedirection n

perpendicularto v we have T(n) == -Pn, which shows that the local stress is

governedby an isotropicpressureP.Theseare the relativistic definitionsof the
stress-energytensor for an ideal fluid. The field equations reduceto the single
conservationequation)

T(V) == 0,) (12.165))
which expressesrelativistic conservationof the stress-energytensor.Electromag-
netic coupling is included simply with the addition of the term -qJ.A to the

Lagrangian density.)

12.5Notes)

The Lagrangian formulation of mechanicsis describedin a wide range of books.
Analytical Mechanicsby Hand& Finch (1998)contains a detailedintroduction
and, despiteits name, Introduction to Mechanicsand Symmetry by Marsden&
Ratiu (1994)contains a moredetaileddescriptionofLagrangianand Hamiltonian)
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methodsand symplectic geometry. Further applications,including relativistic
fluid dynamics, are contained in The Variational Principlesof Dynamics by

Kupershmidt (1992).
Pseudoclassicalmechanicswas introduced by Berezin& Marinov (1977).Fur-

ther referencesare contained in the notes to chapter11.Similar ideasto those
developedin this chapter have been appliedin the supersymmetric setting by
Heumann & Manton (2000).The sectionon spinormodelsof relativisticspin-1/2
point particleswas motivated by the initial work of Barut & Zanghi (1984).The
descriptiongiven here contains a number of refinements,many of which are also
discussedin Doran (1994).A detaileddiscussionof the complexitiesinvolved

in performing a path-integral quantisation of such systemsis given by Barut &
Duru (1989).)

12.6Exercises)

12.1 A relativistic action for a point particleis defined by)

s=
JdA(\037P'X+\037(p2-m2)-qX/'A(X)),)

where A is an external field representingthe electromagneticvector po-
tential. Vary S with respectto x,p and e to obtain the Lorentz force
law.

12.2 Prove that)

8'1j; (M1jJ-1)== -1jJ-IM1jJ
-1

,)

where 1jJ and M are even multivectors.
12.3 The configurationof a rigid body is describedby a rotor R. If we relax

the normalisation of R and replaceit by 1jJ, explain why we can write

OB as)

fl B == -2RR== _1jJ-1rJ;+ \037t1jJt-1.)

N ow define the Lagrangian)
. 1

L(1jJ,1jJ)== -2flB.T(flB),)

where T is the inertia tensor. Find the Euler-Lagrangeequation for
variation with respectto 1jJ. Prove that this producesthe equation of
motion J == 0, whereJ is the angular momentum. Why doesthis method
work?

12.4 One classicalmodel for a spin-l/2particledescribesthe motion in terms
of a rotor R and a momentum p.The rotor determinesthe quantities)

-
x == RroR,) S == R1u3R)
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and the equations of motion are)

p == 0, p'x== m, S + 2x/\\p == O.

Verify that theseare solvedby
m * R == e1u3m*reau2/2.p ==

h( )
ro == m ro,cos a

Integrate x to find the trajectory of the particleand comment on its

properties.
12.5 Find the equations of motion for the Lagrangian

L == (7jJ'Iu3{;-p(x'- e7jJro;j;)- em7jJ;j;- qx'.A),)

where 7jJ is a spinor and A(x) is an external electromagneticvector po-
tential. Comment on the form of the solutions.

12.6 A set of vectors satisfy the equations)

e1,+ tijkWjek == 0,)

where the Wi are constant.Prove that the volume elementE isconstant,
where)

E == el/\\e2 /\\e3')

12.7 The relativistic Hamiltonian for a charged particlein three dimensions
is defined by)

H(p,x,t) == ((p- qA)2 + m 2)1/2+ qcP,)

where cP + A == Aro and the vector potential A is a function of x and
t. Find Hamilton'sequations and prove that theserecover the Lorentz
force law.

12.8 Fill in the missing stepsin the proof that a closednon-degenerate2-form
in a symplecticmanifold guarantees that the Poissonbracket satisfiesthe
Jacobiidentity.

12.9 A systemis describedby the Hamiltonian)

1
(

1 2 4
)H(p,q) =

2\" q2
+ P q .)

Find a canonical transformation which maps this onto the Hamiltonian
for a simple harmonic oscillator.

12.10The total energy in a hyperelasticmedium is given by)

E = Jd3
X (p\037)

P + u) .)

Prove that the energy flow per unit area perpendicularto n is given by

j.T(n), where n is a vector in the referenceconfiguration.)
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12.11An incompressibleelasticmaterial is one for which det f == 1. The
Mooney-Rivlin model for rubberis as an incompressiblematerial with

internal energy)

U == a('\\i+,\\\037 +,\\\037
- 3) + }3(('\\2'\\3)2 + ('\\3'\\1)2 + ('\\1'\\2)2

- 3),)

where the Ai denotethe principal strains. Analyse the propertiesof this
material under uniform pressure.What happenswhen two of the Ai

pass through 41/37

12.12A hyperelasticmaterial is defined with an energy density

U1n == G({lnAI)2+ {lnA2)2 + (In'\\3)2) + (B/2-G/3)(In('\\1'\\2'\\3)) 2.)

Prove that when this systemis placedunder isotropicpressureP we
have)

-3BlnA== P.)
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Symmetryand gauge theory)

The fundamental forces of nature can all be describedin terms of gauge the-
ories.Not long after the advent of quantum theory, physicistsrealisedthat

electromagnetic interactions arisefrom demanding invarianceof quantum wave

equations under local changes of phase.This ideawas later extendedby Yang
and Mills,who showed how to construct theories basedon more complicated,
non-commutative Lie groups. This is the basis for the standard model of the
electroweak and strong interactions. Around this time physicistsalso turned
their attention to gravitation, and discoveredthat general relativity could also
be formulated as a gauge theory. But this time there was a priceto pay. The
existenceof spinorfields means that the simple geometric structure of general
relativity has to be modified by the inclusion of a torsion field, leading to an
Einstein-Cartantheory. For clarity, we use the term general relativity to refer
to the theory definedby Einstein,with zero torsion and the connectiongiven by
the Christoffelsymbol.The extendedtheory, with torsion present,is referred to
as Einstein-Cartantheory.

While gauge theory is the dominant method in particlephysics,it is less
popular as a means of analysing gravitational interactions. This is, in part,
due to the perceptionthat the gauge theory equations are more complicated
than their geometric counterparts. In this and the following chapter we argue
that this apparent complexity is a reflectionof the inappropriatemathematical
techniquestypically employedwhen analysing the gauge theory equations.The
spacetimealgebra provides the appropriatesetting for a gauge formulation of
gravity and, appliedcarefully, this approach is often easierto compute with

than the metric formulation. We demonstratethat, in the absenceof torsion
and highly esoterictopology,the gaugeand metric approachesproducethe same
physical predictions.

We begin with a discussionof symmetry in the Maxwelland Diractheories.
Our starting point is the field Lagrangian, which we analyse using Noether's)
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theorem.In particular, we use this to extract the canonical energy-momentum
tensor,which is conservedin the absenceof external fields. We then turn to the
wider subjectof gauge theories,beforederiving the propertiesof the gauge fields
for gravitation. This chapter concludeswith a derivation of the gravitational
field equations,and a discussionof the observablequantities in the theory. For

the sourcematter, observablesare contained in the functional energy-momentum
tensor,which is closelyrelatedto the canonical tensor.Applications of the field

equations are contained in chapter 14.Throughout the presentchapter various
resultsand notation from chapter 11are assumedwithout comment.)

13.1Conservationlaws in field theory
In section12.4we derived the Euler-Lagrangeequations for field theory, and
demonstratedhow to apply these to the casesof elasticity and relativistic fluid

dynamics. In this sectionwe concentrate on conservation theorems for La-

grangian field theory. As all of the applicationsthat will concern us are to
relativistic field theory, we assumefrom the outset that the we are describing
field theory in a (flat) spacetime.Given a Lagrangian density \302\243('l/Ji, 0J-L'l/Ji), where

'l/Ji, i == 1,. .., n are a set of multivector fields,the Euler-Lagrangeequations gov-
erning the evolution of the systemare)

o\302\243 _ \037
(

o\302\243

)
== 0

O'l/Ji oxJ-L o(0J-L 'l/Ji)
,) (13.1))

where xJ-L == {J-L.x are a setof fixedorthonormal coordinates.For the applications
of interest here the final equations can always be assembledinto a frame-free
form. Curvilinearcoordinatescan then be introduced to analyse theseequations,
if desired.

To obtain a versionof Noether'stheorem appropriatefor field theory we follow

the derivation of section12.1.1.For simplicity we assumethat only one field is

present. The resultsare easily extendedto the caseof more fields by summing
over all of the fields present.Supposethat 'l/J'(x) is a new field obtained from

'l/J(x) by a scalar-parameterisedtransformation of the form)

'l/J'(x)== f ('l/J (x),a) ,) (13.2))

with a == 0 correspondingto the identity. We again define)

61jJ= EN'
oa) (13.3))

a=O)

With \302\243' denoting the original Lagrangian evaluated on the transformed fields)
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we find that)

[)\302\243'

[)a)
0:-=0)

[)\302\243 [)\302\243=
(r51jJ)

*
01jJ

+ 011- (r51jJ)
*

0(011-1jJ)

[)

(
[)\302\243

)
=

OXI1-
(r51jJ)

*
0(011-1jJ)

.) (13.4))

This equation relates the change in the Lagrangian to the divergence of the
current J, where)

[)\302\243J =
\"/11- (r51jJ) *

0(011-1jJ)
') (13.5))

If the transformation is a symmetry of the systemthen \302\243' is independentof Q.
In this casewe immediately establishthat the conjugate current is conserved,
that is,)

V.J== o.) (13.6))
Symmetriesof a field Lagrangiantherefore give riseto conservedcurrents.These
in turn defineLorentz-invariantconstants via

Q =Jd3xJO, (13.7)

where JO == J ''Y
0 is the density measuredin the

'\"Yo
frame. The fact that this is

constant follows from)

dQ
== Jd3X

oJo=Jd3XV.J == 0 (13.8)dt [)t '
wherewe assumethat the current J falls off sufficiently fast at infinity. The value
of Q is constant, and independentof the spatialhyper surface usedto definethe
integral.

If the transformation involves a change in the spacetimedependence,Noether's
theorem doesapply, but we have to be careful in defining the transformation law

for \302\243. Supposethat we define)

1jJ'(X) == 7jJ(X'),) (13.9))
where)

X' == f(x).) (13.10))
The differential is defined in the usual way as)

f(a) == a.V f(x).) (13.11))
The transformed action is

s=
Jd\037\302\243(1jJ(X'))

=Jd\037' det (f)
-1

\302\243( 1jJ(x'))) (13.12))
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from which we seethat the correct definition of the transformed Lagrangian is)

\302\243'(7jJ'(x))
== det (f)-I\302\243(7jJ(x')).) (13.13))

This transformation law demonstratesthat \302\243 is indeeda Lagrangian density.)

13.1.1Spacetimesymmetries)

One of the most important spacetimesymmetries is translational invariance.
All fundamental theoriesare assumedto give rise to the same physical predic-
tions, independentof the positionof the fields in (flat) spacetime.That is, the
background spaceis assumedto be homogeneous.A more careful discussionof
this principle,and its relation to gravitation, is contained in section13.4.1.In
terms of the Lagrangian, this principle is encodedin the statement that all x
dependenceenters \302\243 through the fields. In this casewe can apply Noether'sthe-
orem to extracta conserved quantity, though we could proceedequally simply

by differentiating \302\243 directly to obtain

8\302\243 8\302\243a.\\l I:= (a.\\l'l/J) *
8'l/J

+ (a.\\l (811-'l/J))* 8(811-'l/J)

8
(

8\302\243

)=
8xl1-

(a.\\l'l/J) *
8(811-'l/J)

,) (13.14))

where the field equations have beenassumed.We can therefore define the con-
servedcurrent conjugate to translations by)

8\302\243

T(a) = '/11- (a.\\l'l/J) *
8(811-'l/J)

-al:.) (13.15))

This definesa linear function of a, calledthe canonicalenergy-momentum tensor.
This is a conservedtensorif the systemis invariant under translations, so)

V.T(a)== 0, \\f constant a.) (13.16))
The canonical energy-momentumtensorneednot be symmetric, and its adjoint
is found to be)

- ./ .
8\302\243

)T(a)= \037(T(b)a) = a''/11-\\l \\
'l/J*

8(811-'l/J)
-al:.) (13.17))

The conservationequation for the adjoint tensor is)

T(V) == O.) (13.18))
If more than one field is present,the energy-momentumtensoris the sum of the
individual contributions from each field.

One can similarly definea conservedtensor conjugate to rotations.This time
the assumption is that spacetimeis isotropic,sodoesnot contain any preferred
directionsexceptthosedefinedby the fieldsthemselves. The derivation is slightly)
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more complicatednow, as the fields transform in different ways dependingon
their spins.For all caseswe have)

X' == RxR,) R == eaB/2
,) (13.19))

and in general we can write)

61jJ == -B.(x/\\V')'ljJ + 6B'ljJ,) (13.20))

where'ljJ is a general field,and the preciseform of 6B'ljJ dependson the spin. The
transformation x' == RxR has unit Jacobian,soNoether'stheorem gives)

8
(

8\302\243

)-B.(x/\\ V)\302\243
=

8x\" (
-B.(x/\\ V)'l/J + 8B'l/J)

* 8(8,,'l/J)
.) (13.21))

We can therefore readoff the canonical angular momentum tensorJ(B),where)

8\302\243

J(B)= ,,,(-B.(x/\\ V)'l/J + 8B'l/J)* 8(8,,'l/J)
+ B.x\302\243:

8\302\243= T(x.B)+ (8B'l/J) *
8(8,,'l/J)

') (13.22))

This is a vector-valuedlinear function of the bivector B,which is conservedfor
all constant B.

The adjoint function J (a) is often easierto work with. This evaluates to)

J(a) == 8B(J(B)a)== t(a)/\\x+ S(a),) (13.23))

which is a bivector-valued linear function of the vector a. The form of J(a)
generalisesthe point-particledefinition of angular momentum to the field theory
setting.The term S(a)is the canonical spin tensor,)

Sea)= a.,,,8B
\\

(8B'l/J)
8(\037\037'l/J) ) .) (13.24))

The conservationequation for J states that)

J(V)== 0 == T(V)/\\x + t(\037)/\\x + S(V).) (13.25))

Sincethe energy-momentumtensor is also conserved, conservation of angular
momentum reducesto the equation)

t(8a) /\\a + S(\037)== o.) (13.26))

So, in any homogeneous, isotropic,relativistic field theory, the antisymmetric
part of the canonical energy-momentumtensoris a total divergence.)
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13.2Electromagnetism
As a first application of the precedingresults we considerelectromagnetism.
The dynamical variable in electromagnetism is the vector potential A, and the
electromagneticLagrangian density is)

.c== !p.p-A.J2 ,) (13.27))
where F == \\7 !\\A, and A couplesto an external current J. An electromagnetic
gauge transformation is defined by)

A r-+ A + \\7cp(x),) (13.28))
where cp(x) is a scalarfield. Gauge invariance of the Lagrangian is ensuredby
requiring that the current J is conserved.The field equation is)

8
(
1 8

)
8-J-

ax\" 2.a(a\"A)
(FF) = -J-

ax\" (\\7 AA)-I'''= 0,

which simplifiesto the familiar equation)

(13.29))

\\7 .F == J.) (13.30))
The remaining Maxwellequation, \\7!\\P == 0, follows from the definition of F in

terms of A.)

13.2.1The electromagneticenergy-momentumtensor
To calculate the free-fieldenergy-momentumtensor,we set J == 0 and work with

the Lagrangian density)

.co==
\037 (p2).

Equation (13.15)yieldsthe energy-momentumtensor)

(13.31))

T(a)== (a.\\7A).F - !a(F2).) (13.32))
This expressionis somewhat unsatisfactory as it stands, as it is not gauge-
invariant. In order to find a gauge-invariant form of the energy-momentum
tensor we write)

a.\\7 A == a.F+ \037(A'a).) (13.33))
If we now employ the field equations we can write)

T(a)== P.(F.a)- \037aF.F + \\7.(A.aP).) (13.34))

The first two terms are gauge-invariant,and the final term is a total divergence.
In most classicalapplicationsthe total divergencecan be ignored, as its integral
over any finite volume results in a boundary term which can be set to zero.
In quantum field theory the issueof how to handle gauge invariance is more)
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complicated. Typically, manifest gauge invariance is lost at the level of the

quantum field equations, and only recovered in the physical predictionsof the

theory. With the boundary term removed, the remaining terms recover the
familiar classicalfree-fieldelectromagneticenergy-momentumtensor,)

Tem(a) == F.(F.a)- !aF.F
I -

== 2FaF
,) (13.35))

as found in section7.2.3.This tensor is gauge-invariant, tracelessand sym-
metric.It is alsoequal to the functional energy-momentumtensor,defined in

section13.5.4.)

13.2.2Angularmomentumin electromagnetism)
The canonical angular momentum is found by consideringthe symmetry trans-
formation)

A'(x)== RA(x')R,) (13.36))
with R and x' as defined in equation (13.19).The transformation law for x
implies that)

'\\7x' == R'\\7 R,) (13.37))
so that the new field satisfies)

'\\7 /\\A' == R '\\7x' /\\A(x') R == RF(x')R.) (13.38))
It follows that the transformed free-fieldLagrangian only dependson a through

the transformed positiondependence,as requiredfor isotropy. We also find that)

bA == B.A- (B.x).'\\7A,) (13.39))
so equation (13.22)gives

J(B) == (B.A - (B.x).'\\7A).F+ !B,x(F2).) (13.40))

As with the canonicalenergy-momentumtensor,the angular momentum tensor
is not manifestly gauge-invariant. This time we write)

(B.x).'\\7A == (B.x).('\\7/\\A) + V(B.x).A
== (B.x).F+ '\\7((B.x).A)+ B.A,) (13.41))

so that)

J(B) == -((B.x).F).F+ \037B.x(F2)
- '\\7. ((B.x).AF).) (13.42))

The final term is again a total divergencewhich can be ignored.We therefore
define)

Jem(B)== -((B.x).F).F+ !B.x(F2)== Tem(x.B),) (13.43))
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which is now manifestly gauge-invariant. The adjoint is simply)

]em(a) == Tem(a) !\\x.) (13.44))

Conservationof angular momentum implies that)

V.Tem(x.B)== 8a'Tem(a.B)== (Tem(8a)!\\a).B== o.) (13.45))

This holdsbecauseTem(a) is symmetric.
The redefinitionof the energy-momentumand angular momentum tensorsfor

electromagnetismremovesthe spin term and absorbsit directly into Tem(a)!\\x.
This guarantees that the fields are gauge-invariant, but suppressesthe spin-l
nature of the electromagnetic field. For gravitational interactions the canonical
energy-momentum and spin tensors are not as important as their functional
equivalents. In the caseof electromagnetism, the latter are guaranteed to be
(electromagnetic) gauge-invariant, and the spin contribution does turn out to
vanish.)

13.2.3Conformalinvarianceoffree-fieldelectromagnetism)
In addition to in variance under Poincare transformations, free-fieldelectromag-
netism is invariant under the full conformal group of spacetime.Conformal
geometry is discussedin detail in chapter 10.Herewe are interestedin the field
theory manifestation of conformalinvariance. We start by consideringan arbi-
trary displacement,x' == f(x). Gauge invariance tellsus that A must transform
in the same manner as V (it is a I-form), sowe define)

A'(x)== f(A(x')).) (13.46))
The electromagnetic field strength therefore transforms to)

V !\\A'(x) == f(f-I(V)!\\A(x'))== f(F(x')),) (13.47))
where we have made useof the results)

V!\\f(a) == 0 (13.48)
and

--I
(13.49)V x' == f (V).)

Theseformulaeare derived in section6.5.6.The transformed Lagrangiandensity
IS now)

\302\243'
== !det(f)-I (f(F(x'))f(F(x'))).) (13.50))

We therefore define a symmetry of the action integral if f satisfies)

f (A) .f(B) == det (f) A. B) (13.51))
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for any pair of bivectors A and B. This is clearly satisfied by any orthogonal
transformation, but it is also satisfied by dilations. The Lagrangian for the
free electromagnetic field is therefore symmetric under any displacementwhose
derivative is a local orthogonal transformation coupledwith a dilation. This
definesthe conformalgroup.

As a simpleexample,considerthe dilation x' == exp(a)x. For this transforma-
tion Noether'stheorem gives)

x.\\1\302\243
= -4\302\243 + \\1.

(\"il'
(A + x.\\1 A)*

8(\037\037A) )
,) (13.52))

from which we extract the conservedcurrent)

J == T(x)+ A.F == Tem(x)+ \\7 .(A. X F).) (13.53))

The final term is the divergence of a bivector so is automatically conserved.
Dilation invariancetherefore tellsus that)

\\7 .Tem(x) == 0,) (13.54))

which holds becauseTem is conserved and traceless.The latter property is

typical of scale-invarianttheories.
Similarly, a specialconformaltransformation maps the positionvector X to x',

where)

X' == f (x) == (x-I + aa)-1== X (1+ aax)-I.) (13.55))

The derivative transformation is)

f(b) == b.\\7f(x) == (1+ axa)-lb(1+ aax)-l,) (13.56))

which is a local rotation and dilation. The determinant is)

det (f) == (1+ 2aa.x+ a2a2x2
)-4.) (13.57))

We also find that)

ax'- == -xaxaa a=O)
(13.58))

and)

a
8adet (f)-l = 8x.a.

a:=O)

(13.59))

Noether'stheorem for specialconformaltransformations can then be shown to

producethe conserved tensor Tem(xax).Conservation again follows from the

propertiesof Tem')
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13.3Diractheory
The free-fieldDiracLagrangian is)

- -
\302\243.

==
('\\17/J I137/J - m7/J7/J),) (13.60))

where 7/J is a spinor field. Variation with respect to 7/J producesthe Euler-
Lagrange equation)

- 0 -
(\\l7/J I13)rv- 2m7/J + -;:;-(I137/J11L) == 0,ux lL

which reversesto recoverthe Dirac equation in the form)

(13.61))

\\l7/JI13 ==
m7/J.) (13.62))

This derivationdepartsfrom that given in many textbooks,aswe do not consider
7/J and 7/J as independentvariables. Insteadwe view \302\243. as a real scalarfunction of
a single field 7/J. An immediate consequenceof the field equations is that \302\243.

== 0
when the Dirac equation is satisfied. This behaviour is typical of first-order
systems.)

13.3.1Spacetimetransformations
The canonical energy-momentumtensorfor the Diracfield is easily found,)

TD(a) == 1IL (a .V 7/J 1137/J1
1L) - a\302\243.

== (a.\\l7/J 1137/J) I.) (13.63))
This energy-momentumtensoris not symmetric. Its adjoint is)

tD(a) == t\\7 (\037I13;j;a),) (13.64))
and the antisymmetric term is governedby the bivector)

oaATD(a) == t\\7A(\037I13;j;)I') (13.65))
This bivector can be written as)

t\\7 A (\037
I13;j;)1 == ((\\l7/J I13;j;- t\\7 (\037

I13;j;)3)2
I -

== -
'2\\l .(7/J 1137/J ) .) (13.66))

So, as stated in section13.1.1,the antisymmetric component of the energy-
momentum tensoris a total divergence.In this casewe can write)

oaATD(a) ==
-\037\\l.S,) (13.67))

where S is the spin trivector)

S ==
7/JI137/J.) (13.68))
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Rotational invariancefollows from the transformation)

7jJ'(x) == R7jJ(x')) (13.69))

with R and x' as defined in equation (13.19).The wavefunction 7jJ is subjectto
the single-sidedtransformation law appropriatefor spinors.Onecan easily show

that the rotors cancel out of the transformed Lagrangian, and the conjugate
angular momentum is)

- 1 -
J (B) == ((-B.x).\\l7jJ 1137jJ) I + '2B.(7jJ1137jJ).) (13.70))

The adjoint gives)

J(a) == t(a)!\\x+ \037a'S,) (13.71))

which neatly exposesthe spincontribution to the angular momentum. Compar-
ison with equation (12.56)confirms that the point-particle modelsdiscussedin

section12.2.1docorrectlycapturethe propertiesof the field angular momentum.

The mass term in the free-fieldDiracLagrangian is the soleterm breaking
conformal invariance. Spacetimespinorshave a conformal weight of 3/2,so
dilations are defined by)

7jJ'(x) == e3
CY./27jJ(eCY. x).) (13.72))

For this transformation, N oether'stheorem gives rise to the canonical vector
TD(x), which satisfies the partial conservation law)

\\I. TD(X) ==
(m7jJ7jJ).) (13.73))

Specialconformal transformations are also interesting to consider. With the
transformation as defined in equation (13.55),we write the derivative transfor-
mation as)

1 -a.\\Ix' == f(a) == -RaR,
p)

(13.74))

where)

p == 1+ 2aa.x+ a2a2x2
,)

1+ aax
R ==

1/2 '
P)

(13.75))

We define the transformed spinorby

7jJ'(x) = ;/2.R7jJ(x') = (1+ aax)-2(1+ axa)-l7jJ(x').
p

This transformation of 1jJ defines a symmetry of the action becauseof the re-
markable result that)

(13.76))

\\I ((1+ aax)-2(1+ axa)-I)== O.) (13.77))

It follows that)

'l7jJ'(x)= ;/2.R'lxl7jJ(x'),
p)

(13.78))
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which is preciselythe transformation requiredin the Dirac action.More gener-
ally, a specialconformaltransformation can be appliedto any spacetimemono-
genic to obtain a new monogenicfunction. Equation (13.77)is an exampleof
the general result that

't7

(
1+ axa

)
-_ 0v (13.79)(1+ 2ax.a+ a2a2x2)nj2

'
which holdsin an n-dimensionalspaceof arbitrary signature.

The conserved tensor conjugate to specialconformal transformations, Tc, is
found from Noether'stheorem to be)

Tc(a)== TD(xax)+ (al\\x).S.) (13.80))
The partial conservation law for this is)

\\7 .Tc(a) == 2m a.x(7/J7/J).) (13.81))
For both dilations and specialconformal transformations we recover a genuine
conservation law if the massm is set to zero.This is the basisfor an important
technique in quantum field theory. In high-energy experimentsit is often a
reasonableapproximation to treat the particlesas massless.One can then take
advantage of the conformal symmetry to compute a range of consequencesfor
the outcome of experiment.Typically,thesepredictionswill be valid up to order
m/E, where E is the energy.)

13.3.2Internalsymmetriesand phaseinvariance)

As well as spacetimesymmetries there are a number of internal symmetries of
the Diracaction we can consider.The first of theseis the duality transformation)

7/J'
==

7/Je
IQ.

Equation (13.4)producesthe relation)

(13.82))

- \037

\\7 .(7/J137/J)
== 2(mI7/J7/J ) .) (13.83))

So the spinvector definesa conservedcurrent in the masslesslimit. This is the
partially-conservedaxial current, which is important in scattering calculations.

Further transformations to considerare internal rotations of the form)

1jJ'
==

7/Je
QB

,

where B is a bivector. In this caseequation (13.4)reducesto)

(13.84))

\\7 .(1jJ B.(I13);j;) == 0,) (13.85))
where we have appliedthe Diracequation. This yields conservedcurrents for

any component of Bwhich commuteswith 13.This spaceis spannedby 0'1,0'2)
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and 10'3.Of these,only 10'3has the additional property of leaving invariant the
observable current 1/Jro1/J. This is the caseof a phase transformation, and the
conjugate conservedquantity is preciselythe current J, so)

V.J== 0
,)

-J == 1);ro1);.) (13.86))
This is an exampleof the general result in quantum theory that phase invari-

ance ensuresthat probability density is conserved, and wavefunction evolution
is unitary.

The phasetransformation law)

1); r--+ 1);'== 1);eq;ICT 3) (13.87))
is a global symmetry of the Lagrangian, becausecp is a constant. If 1); satisfies
the Diracequation, then so to does1);'.We arrive at a gauge theory if we convert
this global symmetry to a local one.There are a number of reasonsfor believing
that this is a sensibleway to construct interactions in field theory. One moti-
vation is from the structure of the physical statements that can be extracted
from Diractheory. Quantum theory makes predictionsabout the values of ob-
servables,which are formed from inner productsbetween spinors,(1);lcp).These
inner productsare invariant under local changes of phase. Similarly, quantum

theory can make statementsabout the equality of two spinor expressions,for

example)

1); == 1);1+ 1);2.) (13.88))
This might decompose1); into two orthogonal eigenstatesof some operator.
Again, if all spinorspickup the samelocally-varyingphasefactor then the physi-
cal predictionsare unchanged. In addition, a globalchangeof phasecorresponds
to simultaneouslychanging the phaseof the wavefunction everywherein the uni-
verse.While this can be conceivedof mathematically, it doesnot make a great
deal of physical sense.The ultimate motivation, however,comesfrom the fact
that gauge theories are spectacularlysuccessful.All of the known fundamental
forces can be describedby the procedureof turning a global symmetry into a
local symmetry.)

13.3.3Covariantderivativesand minimalcoupling
Now that we are clearon the motivation, we must find how to modify the Dirac
equation in order that phase changes becomea local symmetry. This is the
prototype gauge theory. We start by writing)

1);'== 1);R,) (13.89))

where R is a position-dependentrotor.We will later set R == exp(IO'3cp(x)).This
slightly more general formulation easesthe transition to the more complicated)
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casesof electroweak and gravitational interactions. The equation for 'ljJ' now

includesthe term)

\\1 'ljJ'
==

rJ-L (0J-L 'ljJ
R + 'ljJoJ-L R) .) (13.90))

We need to modify the \\1 operator to be able to cancel out the term in the
derivative of R. We therefore define a new, covariant derivative operatorD,
where)

D'ljJ == ,J-L D
J-L 'ljJ

.) (13.91))
The directional covariant derivativesD

J-L
contain an extraterm going as)

D
J-L 'ljJ

== 0
J-L 'ljJ +

\037
'ljJ

rl
J-L ,) (13.92))

where
rlJ-L

is a multivector field whose nature and transformation propertieswe
have to determine. (The factor of 1/2is insertedfor later convenience.) The
index indicatesthat

rlJ-L
is a linear function. We can therefore write)

rlJ-L
== rl(rJ-L) == rl('J-L;x),) (13.93))

which definesthe linear function rl (a) == rl (a;x).The x dependencerecordsthe
fact that the field will in general be a function of position.This labelis usually
suppressed.In later applicationswe will make strong useof the index-freeform

fl(a).
The behaviour we require is that under a local rotation, D should transform

in such a way that 'ljJR is still a solution of the modifiedequation. So,with D
transforming to D',we require that)

D'('ljJR) == (D'ljJ)R) (13.94))

for any R. We expectthat D'should have the samefunctional form as D,sowe
also have)

D'
'ljJ

== ,J-L(oJ-L'ljJ +
\037'ljJrl\037).

Equation (13.94)therefore gives

D'('ljJR) == ,J-L(oJ-L'ljJR + 'ljJoJ-LR +
\037'ljJRD\037)

== ,J-L(0J-L'ljJ
+

\037
'ljJrl J-L)

R.)

(13.95))

(13.96))
From this we can read off that)

oJ-LR +
\037 RD\037

==
\037DJ-LR,

which establishesthe transformation law)

(13.97))

rl\037
== RDJ-LR

-
2RoJ-LR.) (13.98))

Now R is a rotor, so2RoJ-LR is a member of the Lie algebraof the rotor group.It
follows that this term is a pure bivector, so

DJ-L
must also contain a bivector term)
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if it is to cancela term in 2RoJ-LR. We assumethat this is the only term present
the

OJ-L
field. This is the minimal assumption, and is referred to as defining

minimal coupling.
The important point in this derivation is that we have used the form of the

term -2RoJ-LR_to say what type of objectOJ-L is.We are not assertingthat OJ-L

is equal to -2Ro
J-L
R. On the contrary, as will becomeapparent later, if 0

J-L
was

given by the gradient of a rotor in this manner it would give rise to a vanishing
field strength and thereforebe of no physicalinterest.This step,of taking a term
arising from a derivative (like -2R8J-LRhere),and generalizingit to a field not in

generalderivablefrom a derivative, is the essenceof the gauging process.The
OJ-L

term in the covariant derivative is calleda connection. In general, connections
take their values in the Lie algebra of the associatedsymmetry group. Many of
the symmetry groupswe considerare rotor groups,so for these the connections
are bivector fields.)

13.3.4The minimallycoupledDiracequation)

Returning to electromagnetism, we are concernedwith the restrictedclassof
rotations that take placeentirely in the r2rI plane. In this case,writing R ==

exp(Il73cP),we have)

-2R/3J-LR== -2e-Iu3cf;oj.LcPelu3cPIl73== -2/J-L.(VcP)Il73') (13.99))

In generalizingto 0
J-L'

we seethat this must take the form)

OJ.L
== -Ar j.L

.A Il73) (13.100))

or, in frame-freenotation,)

O(a) == -Aa.A1l73.) (13.101))

HereA is a spacetimevector field, and A is some coupling constant. We now

reassembleour full, covariant Diracequation to obtain)

D1/JIr3 ==
rJ-L (OJ-L 1/J

-
\037

A1/J rJ-L

.A I(73)Ir3 == m1/J.) (13.102))

This simplifiesto give)

\\l1/JI'3 -
\037

AA1/Jro == m1/J,) (13.103))

and we seethat the contraction between the rJ-L frame and the connection in

equation (13.102)assemblesto give a vector multiplying 1/J from the left. It is
clearthat for an electron we require A == 2e,so the minimally coupledDirac
equation is)

\\!1/JIl73
-eA1/J == m1/Jro,) (13.104))
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as studied in section8.3.A local phase transformation of 1/; now inducesthe
transformation)

eA \037 eA -
\\lcp,) (13.105))

which we recogniseas an electromagnetic change of gauge.By adding an in-
teraction term solely in A we are making the simplestpossiblemodification to
the original equation, which is the essenceof minimal coupling. We could,for

example,add further terms in P,or p2multiplying 1/;, and the equation would
still be gauge-invariant. It appears,however,that this possibilityis not required
for describingthe fundamental forces.Why this should be so is unknown.)

13.3.5Thegaugefieldstrength)

Now that we have introduced the gauge fieldsthe next step is to construct the
observable (gauge-invariant) quantities associatedwith them. For electromag-
netism we know that theseare the E and B fields,which form part of the field
strength tensor. This is found in general by commuting covariant derivatives.
We form)

[D,oDv]1jJ == DfL(8v1/;+ \0371jJDv)
-

Dv(8fL1/;+ \0371/;rlJ-L)

==
\0371/; (8fLrl v

- 8V rl
fL
-

rlfL x rlv).) (13.106))

Despitethe fact that we formed commutators of derivatives on 1/;, all of the
derivativesof 1/; have cancelled,and we are left with a singleobject)

F
fLV

== F(!fLI\\!v) ==
8fLrl v - 8V D

fL
-

rlJ-L
x rlv.) (13.107))

This is a bivector-valuedlinear function of the bivector argument !fLl\\!V' The
construction of this objectguarantees that under a change of gauge)

F
fLV

\037
F\037v

== ElF
fL vR .) (13.108))

This transformation tellsus that the field strength transforms covariantly under

changesof gauge.
Specialisingto the caseof electromagnetism, where rlfL

== -2e!fL'A 1U3,we
find that the term multiplying 1/; contains

(-2e)-IF
fLv

==
8J-L (!v.A 1U3)- 8V(!fL'A 1u3)- !fL'A!v'A IU3X 1U3

== (!vl\\!fL).(\\lI\\A) Iu3
== (!vl\\!J-L)'PIU3' (13.109))

This is a function that maps the bivector !V I\\!J-L linearly onto a pure phase
term. For most applicationsof electromagnetism it is sensibleto losethe map-
ping nature of the field strength and insteadwork directly with the bivector
P. For more complicatedgauge fields this is not appropriate. In forming the)
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commutator of covariantderivativeswehave extractedthe correct field strength,
F == \\7 I\\A, which encodesthe physicallymeasurable content of the electromag-
netic field. The electromagnetic field strength is invariant under a change of

gauge, as opposedto covariant. This is becausethe underlying gauge group,
U(I),is a commutativegroup, so the rotorscancelout in equation (13.108).The

pictureis lesssimplefor non-commutativeLie groups.)

13.3.6Electroweaksymmetry

A full treatment of electroweakgauge theory requiresthe apparatusof quantum
field theory, which is beyond the scopeof this book. Herewe give a simplified
treatment, concentrating entirely on the fermionicsectorfor an electron and a
neutrino. The left-handed particlesin this sectorare assembledinto a doublet)

Le ==

(
IT/e)

)lel))
(13.110))

and the right-handed particlesconsistof a singlet state
I
er ). The kets denote

Diracspinors,projectedinto their left-handed or right-handed states.The left-
hand doublet is acted on by SU(2)matrices,which transform the upper and
lower components into linear superpositionsof IT/e) and lel)' To construct an

equivalentgroup action in spacetimealgebra,we introduce the spinor 'l/Jl, where)

C:;D
+-+ 7/il

=
7/ie\037(1- 0\"3) -7/i.J0\"2\037(1 + 0\"3).) (13.111))

Here'l/Jeand 'l/JI/ are the spacetimealgebra equivalentsof the lel) and IT/e) spinors,
as defined by the map of equation (8.69).This map ensuresthat the action of
the generatorsof the SU(2)group become)

(fk Le f-7
'l/Jl 0'k,) (13.112))

and hence)

iLe f-7 -'l/JlI.) (13.113))

Soall transformations are now carriedout on the right-hand sideof 'l/Jl, and are
of the classdiscussedin section13.3.2.

The kinetic term in the Lagrangian for the left-handed doublet is usually
written as)

LeilJJLe== (DelilJJlT/e) + (ellilJJlel),) (13.114))

which has the multivector equivalent)

1 - I -
Ll == (\\7'l/JI/2(l-0'3)I13'l/JI/+ \\7'l/Je2(1-0'3)I13'l/Je)') (13.115))
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Now)

1 \037 I \037

2(1-0'3)I,3'l/Je== -2(1- 0'3)I,o'l/Jz,
I \037 I \037

2(1- 0'3)I,3'l/JI/== 10'22(1+ 0'3)I,0'l/Jz,)
(13.116))

so)

(
1 1

)
\037

LZ == -(V 'l/Je 2'(1-0'3)- 'l/JI/I0'2 2(1+ 0'3)I,o'l/Jz)
== -(V 'l/Jz I,o'l/Jz).) (13.117))

The left-handed fermionicsectorof the electroweakLagrangian is similar to the
Dirac Lagrangian, but with ,3replacedby ,0'The internal symmetry group is
therefore defined by transformations of the form)

'l/J
1---+

'l/J eM,) (13.118))

where M is any even multivector that satisfies)

exp(M),oexp(M)== ,0.) (13.119))

This picksout the set of bivectors that commute with ,0,and the pseudoscalar.
The former define an SU(2)group, and the latter is a U(I) phaseterm.The
Lagrangian therefore has the expectedSU(2)xU(l)symmetry of electroweak
theory, encodedin a very natural way in the spacetimealgebra.

The right-handed sectorof the electroweaktheory involves a singlet state)

'l/Jr
==

'l/Je\037(1 + 0'3).) (13.120))

The kinetic term for this is)

\037 I \037

(V'l/Jr I,3'l/Jr) == -(V'l/Je2('0+ ,3)I'l/Je)') (13.121))

Massterms are introducedvia interaction with the Higgsfield,which can bemod-
elledstraightforwardly as an interaction between left-handed and right-handed
particles.A global SU(2)transformation is describedby)

'l/J Z
1---+

'l/J z R ,) (13.122))

where R is a rotor satisfying R,oR== ,0'This is converted to a local symmetry
following the procedureof section13.3.2,which tells us that the connection
consistsof bivectors which commute with ,0'The U(I)connection is a multiple
of the pseudoscalar.The field strength is defined similarly, and one can proceed
to model spontaneoussymmetry breaking using this scheme.At some point,
however,it is necessaryto adopt a quantum field theory perspective,and replace
the wavefunctionsdescribedhere by operatorsacting on the quantum vacuum.)
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13.4Gaugeprinciplesfor gravitation
We have so far describedelectromagnetism and electroweakforces in terms of

gauge theories.We now turn our attention to gravity. Our aim is to model

gravitational interactions in terms of gauge fields defined in the spacetimeal-

gebra.This initially appearsto be a radical departurefrom general relativity,

but in fact the two approachesconverge in a manner that sheds light on the

physical structure of the theory. Spacetimealgebrais the geometric algebraof

fiat spacetime,and the introduction of fields cannot alter this basicproperty.
What then are we to make of the standardarguments that spacetimeis curved?
The answer is that all of thesearguments involve light paths,or measuring rods,
or similar devices,and all of theseprocessesare alsomodelledby fields. Sinceall

physicalquantities correspondto fields,the absoluteposition and orientation of

particlesor fields in our background spacetimeis not measurable.It dropsout

of all physical calculations.The only predictionsthat can be extractedare rel-
ative relations between fields. Ensuring that this property is true locally means
there is no conflictwith any of the principlesby which one is traditionally led to

general relativity, and naturally guidesus in the direction of a gauge theory.
To illustrate theseconsiderations,considerpossiblerelations betweenquantum

fields. Supposethat 'l/Jl (x) and 'l/J2 (x) are spinor fields. A physical statement
could be a simplerelation of equality:)

'l/JI (x)==
'l/J2(X).) (13.123))

But all this statement says is that at a point where one field has a particular
value, then the secondfield has the same value. This statement is completely
independentof where we chooseto place the fields in the spacetimealgebra.
And, more importantly, it is totally independent of where we chooseto locate
other values of the fields. We could equally well introduce two new fields)

'l/J\037 (x)== 'l/Jl (x'), 'l/J\037 (x)==
'l/J2 (x'),) (13.124))

where x' is an arbitrary function of position x. The statement
'l/J\037(x)

==
'l/J\037(x)

contains preciselythe samephysical content as the original equation.
The samepicture emergesif both fields are acted on by a spacetimerotor,

giving riseto new fields)

'l/J\037

== R'l/Jl, 'l/Jb
== R'l/J2.) (13.125))

Again, the statement
'l/J\037

==
'l/J\037

has the samephysical content as the original
equation. Similar considerationsapply to the observablesformed from 'l/J, such
as the vector J ==

'l/JJio'l/J. Replacing 'l/J by 'l/J' producesthe new vector J' ==

RJR. Invariance of the equations under this transformation ensuresthat the
absolutedirection of vectors in the spacetimealgebrais not measurable,only
the relative orientation of two physical vectors is measurable.We now have a)
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clear mathematical statement of the invariancepropertieswe want to establish.
The next task is to study the form of the gauge fields neededto enforce this). .
Invariance.)

13.4.1Displacements
We write x' == f(x) for an arbitrary (differentiable) map between spacetime
positionvectors.The transformation we are interestedin is where the field 'ljJ( x)is transformed to the new field)

'ljJ'(X) == 'ljJ(x
'
).) (13.126))

The map f(x) should not be thought of as a map between manifolds, or as
moving pointsaround. The function f(x) is just a rule for relating one position
vector to another within a single vector space.It is the fields that are trans-
formed in this space.We needa goodname for this operation of moving fields
around. One possibilityis translation, but this suggestsa rigid map where all
fieldsare translatedby the same amount. Mathematicians favour the term dif-
feomorphism,but this usually refers to a map between distinct manifolds. We
prefer to use the term displacement,which doessuggestthe conceptof movinga field around from one point to another in an arbitrary manner.

The next step is to considerthe behaviour of the derivative of 'ljJ. With the
displacementdenotedby x' == f(x),and the derivativedefined by)

f(a) == a'Vf(x),) (13.127))
we know that the vector derivative satisfies)

v x == f(V x' ).) (13.128))
So,for example,if 'ljJ(x) is a spinor,and 'ljJ'(X) == 'ljJ(X'), we have)

V 'ljJ' (x)== f (V x' )'ljJ (x').) (13.129))
To formulate a verSIonof the Dirac action that is invariant under arbitrary
displacements,we must introduce a gauge field that removes the effect of the
f function. This field will then assemblewith the vector derivative to form an
object which, under displacements,simply reevaluates to the derivative with
respectto the new positionvector. We construct such an objectby replacing V
with a new derivative h(V), where)

h(a) == h(a;x)) (13.130))
is a position-dependentlinear function of a. We again suppressthis position
iependencewhere clarity permits.

Underdisplacementsthe gauge field h must transform such that)

h' (V Xl) == h(V' x) == hf(V' Xl).) (13.131))
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Explicitly, the transformation law for h under displacementsmust be)

h/(a;x)== h(f-I(a);x'),) (13.132))

or, suppressingthe positiondependence,)

h' (a) == hf- 1
(a).) (13.133))

This must hold for any arbitrary vector a. This transformation law is different

to that encountered in the gauge theoriesdiscussedpreviously,as the gauge field

acts directly on V'. The h field is therefore not a connection in the conventional

Yang-Millssense. It is clear,however, that the h field embodiesthe idea of

ensuring that a symmetry is local, socan sensiblybe calleda gauge field. Since
h (a) is an arbitrary, position-dependentlinear function of a, it has 4 x 4 == 16
degreesof freedom.

We can now systematically replaceevery occurrenceof V' with h(V'), and all

our equations will be invariant under arbitrary displacements.In particular, the
DiracLagrangian density is now modifiedto read)

.[= det (h)-l \\h(V)7/Jh3;j;
-

m7/J;j;)
0) (13.134))

This now transforms covariantly under arbitrary displacementsof the fields.

Similarly, we can considerthe proper time or distancealong a trajectory X(A).

In the absenceof gravitational fields this is

J
ox ax 1/2

S == dA
{)A

.
0A

.

Under a displacementthe path transforms to f(x(A)),
transforms to)

(13.135))

so the tangent vector)

oAf(x(A)) == f(OAX).) (13.136))

We can therefore construct a gauge-invariant interval by setting

S = Jd)\" Ih-
1(x')oh-1(x')1

1/2
,) (13.137))

where)

I ax(A)x ==

OA
.) (13.138))

This distanceis now invariant under displacements,so is a physically-observable
quantity.

We now seethat tangent vectorspickup a factor of h-1 and cotangent vectors
a factor of h. Spinorsare not acted on by the h function. Next we establish
contact with more familiar constructionsof general relativity. Supposethat xJ-L

denotean arbitrary coordinatesystem,with frame vectors denotedby)

ax
e

J-L

==

oxJ-L
')

eJ-L == V' xJ-L .) (13.139))
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In terms of this coordinatesystem,equation (13.137)involves the term)

h-1(x').h-1(x')= 0;;0;;h-1(efl).h-1(ev ).) (13.140))

If we define the vectors)

gJ1
== h-1

(eJ1),) gJ1 == h(gJ1),) (13.141))

then we can write the precedingterm as

-1
(

I -I I fJx J1 fJx J1

h X ).h (x) ==

0:\\ 0:\\ gJ1'gv.) (13.142))

Equation (13.137)is therefore equivalent to the line interval in general relativity
if we set the metric equal to)

9J1V
== 9J1

.gv == h
-1(eJ1)

.h
-I(ev ).) (13.143))

The gauge field h is therefore a form of squareroot of the metric, which allowsus
to replacethe metric inner productwith the inner productin the spacetimealge-
bra.In this sense,h is closelyrelatedto the conceptof a spacetimeorthonormal
tetrad or vierbein. A vierbein is obtainedfrom the h field by defining)

. .
\037 \037

eJ1 == gJ1'[,
eJ1 i == gJ1.[i,)

(13.144))

where both i and
f-L

run from 0 to 4. The advantage of working directly with

the h field is that it frees us from any coordinate frame. Coordinateframes are
best introducedat a later date, when the geometry of a given problem usually
dictatesthe appropriatecoordinatesystem.

Now that we have recovered the metric, the obvious question is what has
happenedto the original flat space?It has not gone away, as all fieldstake their
values over this space.In fact, there are now three distinct spacesof objectswe
can discuss.We refer to theseas the tangent, cotangent and covariant spaces.
Tangent vectors are of the form eJ1'Inner productsbetween theseare not gauge-
invariant, and hence not physicallymeaningful. Similarly, cotangent vectors are
of the form of eJ1 , and the inner productof cotangent vectors is alsoan unphysical
quantity. The inner productbetweentangent and cotangent vectorsdoesproduce
a gauge-invariantquantity, so can correspondto a physicalobservable.Tangent
and cotangent vectors can be interchangedvia the metric, which mapsone space
into the other.In frame-freeform, we can write)

a* == h-1h-1(a) == g(a).) (13.145))

The tangent and cotangent spaces,and the metric map between them, are the
traditional elements of general relativity. Our third space,of covariant objects,)
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\037/ h

g

\037)/A)
-1

g)

8)..x)

Figure 13.1Gauge fields for gravitation. There are three vector spaces
involved, consisting of tangent vectorsB)..x,cotangent vectors\\l cp and co-
variant fields A. The h field maps between these.The metric tensor maps
between tangent and cotangent vectors,so is given by g == h-1h-1.Gauge-
invariant quantities are formed from the scalarproduct of a tangent and

cotangent vector,or from a pair of covariant vectors.)

is unique to the gauge theory formulation. This spaceconsistsof objectswhose
transformation law under displacementsis)

4/(x)==
rjJ (x').) (13.146))

This defineswhat it means to transform covariantly under displacements.These
include velocityvectors of the form h-I(8A x),gradients of the form h(\\7)rjJ, and

spinorfields. Inner productsbetweencovariantvectorsproducecovariantscalars,
which can be physicallyobservable.

The various fieldsand spacesinvolved are depictedin figure 13.1.The advan-

tage of the gauge theory viewpoint, coupledwith the application of spacetime
algebra,is that we can now take full advantage of the spaceof covariant objects
when analysing the gravitational field equations.This turns out to have many

advantages, both conceptually and computationally. The possibilitiesafforded

by this spacehave beenoverlookedin most treatments of gauge theory gravity.

One immediate question posedby figure 13.1is whether the insistenceon the
existenceof a map from a curved spacetimeonto a flat one has any topologi-
cal consequences.The answer is yes, though the restrictionsare not as severe
as one might expect.Many apparently topological constructions,such as cos-
mic stringsand closeduniverse models,are easily handled in the gauge theory
framework. Others, such as wormholesconnecting multiple universes, do not

fit so easily becausethey require a modificationof the initial assumption that

the background spaceis topologically flat. Modelsincorporating these effects)
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can be constructed,though their motivation is lessclear from the gauge theory
perspective,as aspectsof the theory have to be put in by hand initially.)

13..4..2Rotations)
Now that we have discoveredthe metric tensor within the gauge approach we
couldimmediatelywrite down the familiar equationsofgeneralrelativity. But we
seeka theory formulated entirely in terms of covariantvectors, and this requires
the existenceof a secondgauge field. As well as invarianceunder displacements,
we require that our wave equation be invariant under the transformation)

1/J \037 1/J' ==
R1/J,) (13.147))

where R is an arbitrary, position-dependentspacetimerotor.We are now back
in the territory of section13.3.3,with the differencethat the rotor multiplies 1/J

from the left, insteadof the right. To convert
OM into a covariant derivative, we

add a bivector connection DM and define)

DM1/J
==

OM + !DM 1/J.) (13.148))
The connection DM is a position-dependentbivector, subjectto the transforma-
tion law)

DM \037 D/(a)== RDMR
-2oM RR.) (13.149))

SinceR is an arbitrary rotor there is no constraint on the bladesthat DM can
contain, so DM has 6 x 4 == 24 degreesof freedom.

With the rotation gauge field included,the fully covariant Dirac action now

reads,with the electromagnetic term included,)

s= Jd4xdet (h)
-1

\\
h (rJL)(f)JL'IjJ +

\037 nJL 'IjJ )h3{;-eh(A )'IjJ,o{;-m'IjJ{;)
.

(13.150)
The value of this action shouldbe unchangedunder localdisplacementsand rota-
tions. To establishthis we needto completethe set of transformation properties
for the gravitational gauge fields. First, we need to define how D

M transforms
under displacements.For this it is easierto use the notation D(a; x) for the lin-
ear argument and positiondependenceof the connection. SinceD(a) picksup a
term in a.\\7 RR under local rotations, we seethat the appropriatetransformation
law under displacementsis)

D'
(a;x) == D(f(a);x').) (13.151))

The connection in the action of equation (13.150)in contracted to form the
object)

h(rM)DM == h(oa)D(a).) (13.152))
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Sounder a displacementthis transforms to)

h/(Oa)O/(a)== h(f-I(Oa);x')O(f(a);x') == h(oa;x')O(a;x'),) (13.153))

which is preciselythe behaviour we require.
Similarly, we can establishthe behaviourof the h field under rotations from the

kinetic term in the covariantDiracaction.Undera localrotation this transforms
to)

(h'hlL)(aIL'ljJ' +
\037 n\037 'ljJ')h3;j;')=

(Rh'hlL)R(aIL 'ljJ +
\037 nIL 'ljJ )h3;j;). (13.154)

Sounder rotations we must have)

h(a) \037 h/(a) == Rh(a)R.) (13.155))

The sametransformation law isobeyedby vectorsof the form h -1(a),wherea isa

tangent vector. This guarantees that inner productsbetween tangent and cotan-

gent vectors are gauge-invariant, as required. The action of equation (13.150)
now contains all of the local symmetrieswe require.The couplingof the electro-
magnetic vector potential A follows from the fact that A generalisesthe gradient
of a scalar,sois a cotangent vector. This is actedon by h to establisha covariant
vector.)

13.4.3The Diracequationin a gravitationalbackground

We have so far establishedinvarianceat the levelof the Diracaction, which led
us to the action of equation (13.150).We now vary this action with respectto 'ljJ,

treating all other fieldsas external, to obtain the full, minimally-coupledDirac

equation.After reversing,variation with respectto 'ljJ producesthe equation)

h (V)'ljJ1,3+ \037

h (,{L)O{L 'ljJ 1'3+ \037 O{L h (,{L)'ljJ1,3
-2eh(A )'ljJ1'o

- 2m'ljJ = -
\037

a
(det (h)

-1
h hlL)'ljJ h3)det (h). (13.156)

ux{L)

This simplifiesto

h(,{L)(o{L'ljJ+ \0370{L'ljJ)I'3
- eh(A)'ljJ,o == m'ljJ + \037t'ljJI'3'

where the vector t is defined by)

(13.157))

t == det (h) 0{L (det (h)
-1

h (,{L))+ 0
{L

.h (,{L).) (13.158))

Herewe encounter an initial surprise.The minimally-coupledDirac action only

producesthe expectedDirac equation if the vector t is zero.We will establish
the circumstanceswhen this holdsonce we have discoveredthe full gravitational
field equations.With t assumedto equal zero, we obtain the expectedequation,
which we write as)

D'ljJI'3- eA'ljJ,o == m'ljJ.) (13.159))
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Herewe introduce the notation)
- - 1

D'lj; == h(1M)DM 'lj;
== h(1M ) (OM'lj; + 2rlM'lj;)) (13.160))

and)

h(A) == A.) (13.161))
In this latter definition we beginto introduce the useful notation of writing fully

covariant multivectors in calligraphic font.)

13.4.4Covariantderivativesforobservables)

Having establishedthe form of the gravitational covariantderivativefor a spinor,
it is a simplematter to establishthe form of the derivatives of the observables
formed from a spinor.In general, theseobservableshave the form)

M == 'lj;r'lj;,) (13.162))
where r is a constant multivector formed from combinationsof 10,13and 10\"3.
The observableM inherits its transformation propertiesfrom the spinor'lj;, so
under displacementsM transforms as)

M(x) \037 M'(x)== M(x')) (13.163))
and under rotations M transforms as)

M \037 M'== RMR.) (13.164))
Multivectorswith thesetransformation propertiesare saidto be (fully) covariant.
Scalarsformed from inner productsof thesequantities account for the physical
observablesin the theory.

If we now form the partial derivative of M we obtain)

0MM ==
(OM'lj; )f'lj; + 'lj;f(aM'lj;)

f'V
.) (13.165))

There is no needto restrictto orthonormal coordinates,sowe can take aM as the
derivative with respectto an arbitrary coordinate system,with coordinate frame

{eM}'We immediately seehow to construct a covariant derivative for M. We

simply replacespinordirectional derivatives with their covariant versions and
form)

(DM'lj;)r;j; + 'lj;r(DM'lj;)CV == 0M('lj;f;j;) + !rlM'lj;r;j;- !'lj;f\037DM- -
==

OM ('lj;f'lj;) + rl
M

x (\037r\037), (13.166))
where)

rl
M

== D(eM ).) (13.167))
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We therefore define the covariant derivative V p, by)

Vp,M == 8p,M+ Op,xM.) (13.168))

This is the form appropriatefor acting on covariant multi vectors, including ob-
servablesformed from spinors.The commutator with the bivector Op, has two

important properties.The first is that it is grade-preserving,so the full V p,

operatorpreservesgrade.The secondis that)

Dp, x (AB) == (Op,x A)B+ A(Dp, x B),) (13.169))

which holdsfor any multivectors A and B.This ensuresthat Va is a derivation.
That is, it satisfiesLeibniz'srule)

Vp,(AB) == (Vp,A)B + A(Vp,B).) (13.170))

Thesepropertiesof preserving gradeand satisfying Leibniz'srule are necessary
for V p, to be a suitablegeneralisationof a directional derivative.

We can assemblea full, covariant versionof the vector derivative by writing)

V == h (eP,)V p, == gP,V p,,) (13.171))

where gP, == h(eP,). This acts on covariant multivectors to raiseand lower the

gradeby one.We can also write)

VM == V.M+ VAM,) (13.172))

where M is a homogeneous-grademultivector, and)

V.M== gP,.(Vp,M),
VAM == gP,A(Vp,M).)

(13.173))

It is also sometimesconvenient to write the directional covariant derivative as
a'V,where)

a.VM == a.gP,Vp,M.) (13.174))

We are now beginning to assemblea very powerful, compact notation for the
main operatorsin gauge theory gravitation.)

13.5Thegravitationalfield equations)

The price we pay for ensuring that the Dirac action is invariant under local
rotations is the introduction of two gauge fields: the vector-valuedfunction h(a)
and the bivector-valuedD(a).Thesein total have 40 degreesof freedom. Our
next task is to construct suitable equations for these gauge fields. As with

the Dirac equation, our ultimate goal is to formulate the equations in terms
of covariant objects,where the physical content of the theory is clearest.The
alternative approach is to work entirely in terms of the metric gp,v' This is)
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invariant under rotations, so all referenceto the rotation gauge is removed. The
end result isa setof second-orderequations that are notoriouslydifficult to solve.
The gauge theory approach,with its focus on gauge-covariantobjects,provides
a number of new solution strategies,both for analytical and numerical work.

Our method for constructing covariant field equations is to find a covariant
Lagrangian and vary this. The resulting equations are then guaranteed to be
covariant. Our first task, then, is to find covariant forms of the field strengths
for the gravitational gauge fields. From thesewe can construct covariant scalar
quantities, which can act as a Lagrangian density.)

13.5.1The rotation-gaugefieldstrength
The field strength for the O(a) connection is found in the standard way by

consideringcommutators of covariant derivatives. We define)

[DfL,Dv]1/'==
!RfLv1/',) (13.175))

so that)

RfLV
==

OfLOV
-

OVOfL + 0fL x Ov,

A frame-freenotation is introduced by first writing)

(13.176))

RfLV
== R(efL!\\e V )') (13.177))

where the {efL}vectors are the coordinateframe defined by the xfL . We can
therefore write)

R(a!\\b) == a.\\70(b) - b.\\70(a)+ O(a)x O(b).) (13.178))
Whenever we adopt this notation we assumethat the vector arguments a and
b are constant. Sincethe right-hand sideis antisymmetric on a and b, the field
strength dependsonly on the bivector a!\\b. This linear action on bivector blades
is extendedto general bivectors by defining)

R(a!\\b + c!\\d) == R(a!\\b) + R(c!\\d).) (13.179))
This means that we can write the field strength as)

R(B)== R(B;x),) (13.180))
which is a position-dependent,linear function of the bivector B. The field
strength is a general bivector, as there are no restrictionson the form of O(a).
This means that R (a!\\b) has 36 degreesof freedom, as opposedto the rather
simplersixof electromagnetism.

Unlike the electromagnetic caseof equation (13.109),the commutator term

O(a)x O(b) has not cancelledout. This has an important consequencefor the
field equations-they are no longer linear. If we add together two configurations)
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of O(a), the field strength of the resultant O(a) is not the sameas that from the

superpositionof the original field strengths. This makesthe gravitational field

equations much more difficult to solve than thoseof electromagnetism.
The definition of R(B) in terms of commutators makes it easyto establishits

transformation propertiesunder rotation gauge transformations. We seethat)

[D\037,D\037,]1/J'
==

\037R'(efL!\\ev)R1/J
== R[DfL,Dv]1/J==

\037RR(efL!\\eV)1/J,) (13.181))

from which we can read off that)

R'(B)== RR(B)R.) (13.182))

Unlike electromagnetism, the field strength now transforms under gauge trans-
formations, albeit in a straightforward way.

Under displacements,O(a) transforms as defined in equation (13.153).It
follows that the field strength transforms to)

R'(efL!\\eV ) == ofLO'(eV ) - oVO'(efL)+ O'(ev ) xO'(efL)
== f(efL)'\037Xln(f(ev);x')- f(ev)'\037xln(f(efL);x')+ O'(efL)xO'(ev )

+ O(ofLf(ev ) - oVf(efL);x')
== R(f(efL!\\e V );x')+ o(ofLf(ev)

-
oVf(efL);x'). (13.183))

But we know that)

0fLf(ev ) - ovf(efL ) == ofLovf(x)- ovofLf(x)== 0,) (13.184))

so the field strength has the simple displacementtransformation law)

R(B) \037 R'(B)== R(f(B);x').) (13.185))
We seethat seethat R'(B)picksup a term in f(B) under displacements,so is
not fully covariant. To form a covariant tensor we insert a term in h(a) into

R(B)and define the covariant field strength)

R(B) == R(h(B)).) (13.186))
The factor of h (B) in this definition alters the transformation propertiesun-
der rotations. Sinceh transforms according to equation (13.155),the adjoint
transforms as)

h(a) \037 h'(a)== ob(aRh(b)R) == h(RaR).) (13.187))
The transformation propertiesof R(B) are therefore summarised by:)

displacements:
rotations:)

R'(B,x) == R(B,x'),
R'(B) == RR(RBR)R.)

(13.188))

Theseare preciselythe propertieswe require, and they definea covariant tensor.
The rotation law may look complicated,but it is quite natural. For example,)
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supposethat R(B) simply amounts to the instruction 'dilateall fields by the
factor a'. This is a physical statement, so ought to be true in all gauges.The

original statement correspondsto)

R(B) == aB.) (13.189))

The transformed field is then)

R'(B) == RR(RBR)R== R(aRBR)R== aB,) (13.190))

so does contain to the same physical information. The function R(B) plays
the samerole in the gauge theory approach as the curvature tensor in general
relativity, so we refer to R(B) as the Riemann tensor. We continue to employ
the notational deviceof writing covariant tensorsin calligraphicsymbolsto help
keeptrack of which objectsare gauge-invariant.)

13.5.2The displacement-gaugefieldstrength
The displacementgauge field couplesto the vector derivativeto form the object
h (\\7). This coupling is different to that of the connection for the rotation gauge
field, and we cannot use the commutator of covariant derivatives to obtain the
field strength. Indeed,the precisedefinition and meaning of the field strength
for the displacementgauge are unclear.Herewe motivate a definition that has
the desiredpropertiesand is physicallyplausible.

The main propertywe require of a field strength is that it should vanish if the
field is obtainedby a pure gauge transformation. If we start with the identity

and apply a displacement,the inducedh field is given by)

h(a) == r-I(a).) (13.191))

Oneof the propertiessatisfied by a pure displacementis that)

\\7 !\\f(a) == O.) (13.192))

So h will define a pure gauge transformation if it satisfies)

\\7 !\\h-I(a)== 0,) (13.193))

where we temporarily ignore the rotation gauge.The left-hand sideis our can-
didateobject for the field strength.The task now is to make it covariant.

We know that the vector derivative \\7 picksup a factor of h to convert it to
covariant form. Sinceh-I transforms in the same way as \\7, we can define a

displacement-gaugecovariant objectH(a) as)

H(a) == -i1(\\7!\\h-
I
(a)) == h(\037)!\\hh-I(a).) (13.194))

This is a bivector-valued function of its vector argument. The final step is to)
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convert the derivative to one that is covariant under rotations.This is straight-
forward sinceh transforms as a vector under rotations.We therefore define)

1i(a) = il (Ob ) 1\\ (b.\037 h il-1(a)+ D(b) .a) ,) (13.195))

or, in termsof a coordinateframe,)

'H(gM) == gOt 1\\ (Vag M ) == V I\\gM,) (13.196))
where we have appliedthat result that \\7l\\eJ.L == O.

The tensorH(a)is covariant under displacementsand rotations, so transforms
covariantly as)

displacements:
rotations:)

H'(a,x) == H(a,x'),
'H'(a) == R'H(RaR)R.)

(13.197))

As we will soonsee,the objectwe have defined is in fact the torsion tensor,a
bivector-valued function of a vector with 6 x 4 == 24 degreesof freedom. This
is the appropriatenumber for the field strength of the displacementgauge, as a
displacementis specifiedby four degreesof freedom. In the simplestformulation

of the field equations, the torsion is equatedwith the spin of the matter. It
is therefore a pure contact term, and usually extremely small. One can justify
this on dimensional grounds. The two field strengthswe have defined, H(a)
and R(B), differ in dimensionsby a factor of length. This is becauseO(a) has
dimensionsof (length)-I, whereas h (a) is dimensionless.The only fundamental

length scalethat could relate theseis the Planck length, lp,which is tiny. The
natural scalefor S(a)is therefore lp times R(B),making it negligiblecompared
to the Riemann tensor.)

13.5.3The gravitationalaction)

We have now defined two covariant tensorsfrom the gravitational gauge fields-the Riemann and torsion tensors.We next require a scalarterm to act as the
Lagrangian density for gravitation. There are a number of quadratic scalarswe
can derive from the gaugefields,but only onescalaris linear in the field strength.
This is important, as one can again argue on dimensionalgrounds that higher
orderterms should be reducedby factors of the Planck length.

We first define the contractions of the Riemann tensor.The first is the Ricci
tensor:)

R(b) == 8a .R(al\\b).) (13.198))

By construction, this is a tensor.The Ricci tensorcan be contracted further to
definedthe Ricci scalar)

R == 8a.R(a).) (13.199))
We use the samesymbol to denotethe Riemann tensor,Ricci tensor and Ricci)
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scalar,and distinguish between theseby their argument. The Ricci scalaris a
covariant scalarfield,so is invariant under rotations and transforms covariantly
under displacements.The Ricci scalar is the first scalar observable we have
constructedfrom the gravitational fields, and is the simplestcandidatefor the

Lagrangian density. We therefore supposethat the overall action integral is of
the form)

s=Jld
4

X
1
det (h)-l(\037R+A-K:Lm)') (13.200))

where .emdescribesthe matter content and Ii == 87rG.We have also includedthe

cosmologicalconstant A, though for most applicationswe set this to zero.The

independentdynamicalvariablesare h(a) and O(a),and we assumethat .emcon-
tains no second-orderderivatives,so that h(a) and O(a)appearundifferentiated
in the matter Lagrangian.

The h field is undifferentiated in the entire action, as we have not included

any terms in H(a).The Euler-Lagrangeequation for h is simply)

Ot1(a) (det (h)
-1(R/2+ A -K:.em)) == o.) (13.201))

Employing the resultsof section11.1.2we find that)

Oil(a)det(h)-I == -det(h)-1h-1
(a)) (13.202))

and)

Oil(a)R == Oil(a) \\h (0c1\\ Ob)R(b 1\\ c))
== 2h (Ob ) .R (b 1\\ a) .) (13.203))

It follows that)

Ofi(a) (Rdet (h)\037l)
= 2Q(h-

1
(a))det (h)-I,) (13.204))

where Q is the Einsteintensor,)

Q(a)== R(a)- \037aR.) (13.205))

We now define the functional matter energy-momentumtensorT(a) by)

det (h )Ofi(a)(Lmdet (h)-1)= T
(h

-1
(a)).) (13.206))

We therefore arrive at the first of our field equations,)

Q(a)-Aa == K:T(a).) (13.207))

This is the gauge theory statement of Einstein'sequation. The sourceterm
in the Einsteinequations in the functional energy-momentumtensor, not the
canonical one.The form of this is discussedonce we have found the remaining
field equationsfor the rotation gauge field.)
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The Euler-Lagrangefield equation from O(a)is, after multiplying through by

det (h),
oR 0

(
oR -1

)
O\302\243m

80(a)
- det (h)

8xJ.L 8(8J.LO(a))
det (h) = 2Ko

80(a)') (13.208))

where we have employed the assumption that O(a) doesnot contain any cou-
pling to matter through its derivatives, and have temporarily reverted to an
orthonormal coordinatesystem. The right-hand side defines the matter spin
tensor)

O\302\243m

S(a)= 80(a)
') (13.209))

This has the covariant form)

S(a) == S(h-1(a)),) (13.210))
which is a covariant tensor.For the left-hand sidewe use the results)

OO(a)(h(Od/\\Oc)O(c)x O(d))== 20(b)x h(ob/\\a))

and)

8(8J.L\037( a)) (h( 8d1\\8 c)(c.V'O(d) -d.V'O(c))) = 2h(al\\l'J.L).) (13.211))

Combiningtheseresults,equation (13.208)becomes)

h(\037)l\\h(a) + det (h)8J.L(h(!'J.L)det(h)-I) I\\h(a)

+ 0(b) x h (Ob /\\a) ==
t\302\243S (a) .) (13.212))

Recalling the definitions of H(a) and t, from equations (13.195)and (13.158)
respectively,the secondfield equation has the covariant form)

H(a)+ t/\\a ==
t\302\243S(a).) (13.213))

So,as stated, H is governedby the matter spin density.
The secondfield equation (13.213)simplifiesfurther once we form the con-

traction of the torsion tensorH(a). This is)

oa.H(a)==
Vf-Lh('Yf-L)

- h(tr) h-1
('Yf-L).h(,f-L).) (13.214))

But we can now use)

h
-I

('Yf-L)

. (Ov h ('Yf-L))
== ((Ov h ('Yo)) /\\ h ('Y1/\\ 'Y2/\\ 'Y3)1-1det (h)

-1
) + .. .

== det (h)-10vdet(h), (13.215))
to write)

Oa.H(a)== det (h)Vf-L(det (h)-lh(,f-L))== t.) (13.216))
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So the vector t which appearedin the Diracequation is the contraction of the
torsion tensor.On contracting equation (13.213)we find that)

-2t==
t\302\2438 a .S(a),) (13.217))

which directly relates t to the matter spin density. The secondfield equation
can now be written as)

1i(a) ==
t\302\243S (a) +

\037

t\302\243 (8b.S(b)) A a.) (13.218))

This equation directly relatesthe torsion to the matter spindensity.)

13.5.4The matter content)

To illustrate the structure of the sourceterms we return to the covariantMaxwell
and DiracLagrangian densities.First considerfree-fieldelectromagnetism.Un-
der displacements,the vector potential A transforms as a cotangent vector (1-
form) :)

A(x) \037 A'(x)== f(A(x')),) (13.219))

and the field strength F transforms as a 2-form:)

F \037 F'(x)== \\7 AA'(x) == f(F(x')).) (13.220))
The covariant field strength is therefore defined by)

F == h(F) ==
h(\\7 AA),) (13.221))

and the covariant Lagrangian density for the electromagneticfield is

Lem == \037F.F.

The functional energy-momentumtensoris definedby

T\"m(h-I(a))= det (h)oji(a) (\037FFdet (h)-I)- -I
== h(a.P).F- h (a).)

(13.222))

(13.223))
Sowe obtain)

\037m(a) == (a.F).F- a == -\037FaF.) (13.224))

This is preciselythe form we would expectfor the covariant generalisation of
the electromagnetic field strength. Unlike the canonical definition, there is no

issueabout the tensorbeingelectromagneticgauge-invariant,and the tensoris

automatically symmetric. Furthermore, there is no coupling to O(a),so the

electromagnetic spin density is zero.We will discover in section13.6that, if

the spin tensor is zero, the functional energy-momentum tensor must also be
symmetric.

As an exampleof a field with non-vanishing spindensity we next considerthe)
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Diractheory. With the electromagneticcouplingincluded,the covariantaction is
definedby equation (13.150).The functional energy-momentumtensoris simply)

TD(a) = (a0
gI\" D

J.t 'l/Jh3-0\\
-ea-A 'l/Jio -0-) (13.225))

This is manifestly a covariant tensor, though it is not necessarilysymmetric.
The spindensity is)

SD(a) =
\037h(a)

0 ('l/Jh3-0)) (13.226))

or, covariantly,)

I
(

-
)

1SD(a)== 2a .
'ljJIry3'ljJ

== 'la'S,) (13.227))

where S is the spin trivector. In the limit where gravitational interactions are
turned off, the functional definitionsagree with the canonicalenergy-momentum
and angular momentum tensors.

The form of the Diracspin has an important consequence.If we form the
contraction we find that)

20a .S(a)== oa'(a.S)== 0,) (13.228))

so the torsion vector t vanishes. This is reassuring,as it implies that the
minimally-coupledDiracaction producesthe minimally-coupledDirac equation
on variation. Equation (13.228)is satisfied by scalar, Dirac and Yang-Mills
fields. An exceptionis provided by a vector field that is often introduced to
ensurelocal dilation in variance. There are goodreasonsfor introducing such a
field, though any interactions it might generate are likely to be on the scaleof
quantum gravity and are not discussedhere.

As a further exampleof a sourcefield for gravitation, we considerthe case
of an ideal fluid. This is the simplestform of matter energy-momentumtensor
one can consider,and generatesan important classof models.The action for an
ideal fluid was introduced in section12.4.2,and the only modificationrequiredto
convert to a covariantaction is multiplication of the energydensity by det (h)-I:)

s=Jd
4
X(-det(h)-lc+J-(V'A)-P,JOV'1J).) (13.229))

The Lagrange multiplier terms are both unaffectedby the presenceof a gravita-
tional field. The covariant current density is)

:J== det (h) h
-I(J) == pv,) (13.230))

where v2 == 1(seesection13.5.6).The energy density c therefore dependson
the h field through its dependenceon p. We find that)

f%(a)p2
= 2p2(h-1(a)-

h-1(a)-vv),) (13.231))
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so the functional stress-energytensor is)

OE
T(a)= -pea-a.vv)

8p
+ as.

Recallingthe definition of the pressurefrom equation (12.158),we are left with)

(13.232))

T(a) == -(a- a.vv)(c + P) + ac
== (E + P)a.vv -Pa.) (13.233))

This ispreciselythe form weexpect,with v now a covariantvector satisfying the
constraint v2 == 1.The actual form of v isgauge-dependent,a fact we can exploit
to our advantage in applicationsby choosinga gaugewhere v has a simple form.)

13.5.5The torsion-freeequationsand generalrelativity)

For many applicationsthe matter spin density is negligible.It is a quantum

effect, and the macroscopicspinof an objectis usually extremely small as all of
the individual constituents cancelout. In the casewhere the spincan be ignored
the secondfield equation becomes)

H(a)== O.) (13.234))

If we replacea by a general cotangent vector A, this equation can be written)

Vl\\h(A) ==
h(\\7I\\A),) (13.235))

which is extremely useful in practice.This equation saysthat antisymmetrised
partial and covariant derivativesproducethe same result.We will now establish
that the spinlessgauge field equations are (locally)equivalent to thoseof general
relativity. Many of the relevant equations for Riemanniangeometrywerederived
in section6.5.5.

To begin,we define the connection by)

V Ji-gv
==

r\037vgQ') (13.236))
so that)

r\037v
== gA. (V Ji-gv ).) (13.237))

It follows that the directional covariant derivative of a vector A ==
AJi-gJi- has

components)

VJi-A == VJi-(AQgQ)
== (oJi-AQ)gQ+

AQr\037Qgj3

== (oJi-AQ + r\037j3Aj3)gQ') (13.238))
which recoversthe general relativistic expression.)
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If we recall from equation (13.143)that the metric is given by 9/Lv
== 9/L'9v,we

can now write)

0/L9VA
== (V/Lgv)' 9A + 9v' (V/L9A)') (13.239))

so that)

0/L9VA
==

r\037V9QA
+ r\037A9Qv') (13.240))

This is the metric compatibility condition for the connection. The secondim-

portant condition on the connection,for pure general relativity, is antisymmetry.
This follows from the torsion-freecondition, since)

o == (9/L/\\9v)'(V/\\9
Q

) == 9/L(Vv9Q
) - 9v(V/L9

Q
)

== gQ.(V/L9v
-V v 9/L)') (13.241))

We can therefore read off that)

V/L9v
-V v 9/L

== O.

It follows that, in the absenceof torsion,)

(13.242))

r\037v

-
r\037/L

== O.) (13.243))

This equation and equation (13.240)together define the Christoffelconnection.
The equations can be inverted to recoverthe connection in terms of derivatives
of the metric.Rather than reproducethe standardderivation at this point, we

will insteaddemonstratehow to invert equation (13.234)to find O(a) in terms
of the h field.

Returning to the definition of the H(a)and H(a)tensorsof equations (13.194)
and (13.195),the absenceof torsion tellsus that)

-H(a) == h (Ob ) /\\ (n (b).a) .) (13.244))

At this point it is useful to introduce the displacement-gauge-covariantconnec-
tion)

w(a) == n(h(a)).) (13.245))

Underdisplacementsthis transforms covariantly,)

w'(a;x) == w (a; x').) (13.246))

Underrotations the transformation law for w(a) is somewhat more complicated
than that for n(a), so it is usually preferable to dealwith the latter when dis-
cussingrotation-gauge transformations. Equation (13.244)now becomes)

Ob /\\ (w (b).a) == -H(a) ,) (13.247))

which givesw(a) in terms of h and its derivatives. To solvethis we first compute)

Oa/\\Ob/\\ (w(b) .a) == 2ob /\\w(b)
== -ob/\\H(b).) (13.248))

484)))



13.5THE GRAVITATIONAL FIELDEQUATIONS)

Now, taking the inner productwith a again, we obtain)

w (a) - Db /\\ (a .w (b)) == -
\037

a.(Db /\\H(b)) .) (13.249))

We can therefore write)

w (a) == H(a) -
\037

a.(Db /\\H(b)) ,) (13.250))

which enablesus to compute w(a) directly. In the presenceof spinan additional
term built from the spin tensor is added to the right-hand side.One can now

convert the solution for w(a) into a set of Christoffelcoefficients,if desired.One
disadvantageof the latter is that they mix up gauge terms with terms inducedby
a choiceof curvilinear coordinates.From the manifold viewpoint this is sensible,
but it is lessnatural in the gauge theory context.

Next we turn to the form of the Riemann tensorin general relativity. In terms
of the connection, this is)

Rf-LVp

(j
==

Df-Lr\037p

-
Dvr\037p

+
r\037Qr\037p

-
r\037Qr\037p

==
8f-L(g(j

.(IJvgp)) - 8v(g(j.(IJf-Lgp))
- (IJf-Lg(j).(IJvgp) + (IJvg(j),(Vf-Lgp)

== g(j .(IJf-LIJ vgp -IJv IJf-Lgp), (13.251))

from which we can read off that)

Rf-Lvp(j
== R(gf-L/\\gv).(gp/\\g(j).) (13.252))

This convertsdirectly between the gaugetheory and tensorformulations of grav-
ity. One can alsocheckthat the contractions definedearlier are all equivalent to
their general relativistic counterparts,so the gauge theory equation (13.207),in

the torsion-freecase,has the samecontent as the Einsteinequations.The main
differencesbetween the two theoriesare topologicalin nature, and one can argue
that such considerationsare beyond the scopeof the (local) theory of general
relativity anyway.)

13.5.6Currentsand Killingvectors)

The gauge theory we have constructedis foundedon an action principlein a flat

spacetime.It follows that Noether'stheorem still holds,and that symmetries
of the action result in a conserved vector current J. Every such vector has a
correspondingcovariant equivalent. To find this we first write)

V'.J== IV' /\\(IJ)== 0,) (13.253))

so, assuming no torsion is present,we have)

fl((V' /\\(1J))== IJ/\\h(IJ)== O.) (13.254))

485)))



SYMMETRY AND GAUGE THEORY)

We can therefore write)

I:J== h(IJ) == Ih-I(J)det (h),) (13.255))
which defines the covariant current :J in terms of J. The covariant vector :J
then satisfies)

1)':J==0.) (13.256))
There is a vector :Jconjugate to each continuous symmetry of the action.If we

attempt to find conservedvectors conjugate to translations and rotations, how-

ever, we do not discoverany new information. In both casesthe conjugate tensor
turns out to be zero once the field equations are employed.This is due to the
manner of the couplingof the h field. Variation with respectto h can beviewedas
defining the total energy-momentumtensor,and this is zero becausethere is no
derivative term for the h field in the action.It is traditional, of course,to single
out (minus) the gravitational contribution to the total energy-momentumten-
sor (the Einsteintensor),and then equate this to the matter energy-momentum
tensor.

A covariantly-conservedvector :Jgives rise to a conserved scalarbecauseit

can always beconvertedbackto a non-covariantvector J satisfying V.J== O.The
sameis not true of covariantconservationof a tensor,such as9(a). Tensorsonly

give riseto useful conservedquantities in the presenceofadditional symmetriesof
the Lagrangian. This is the casewhen the h field is independentof the derivative

along a global vector field. In this caseone can construct a coordinatesystem
such that the metric gJi,l/

is independentof one of the coordinates.If we call this
xO , we have

o
oxog/1V

==
gJ-L

.(go'Vg v ) + gv' (go.1)g/1)== O. (13.257)

But, for a coordinateframe in the absenceof torsion, equation (13.242)holds
and we have)

g/1'(gv .1)K)+ gv. (g/1 .1)K)== 0,) (13.258))
where K == go is the covariant Killing vector. In coordinate-free form we can
wri te)

a.(b.1)K)+ b.(a.1)K)== 0) (13.259))
for any two vector fieldsa and b. This can be usedas an alternative definition
for a Killing vector. Contracting with oa'Ob immediately tells us that K is
divergenceless.)

13.5.7Pointparticlemotion
Generalrelativity typically modelsobserversaspoint particlesfollowing geodesic
paths, as defined by the geodesicequation. But the gauge approach has dealt)
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solelywith the propertiesof classicaland quantum fields. To completethe proof
of the equivalenceof the gauge approach and general relativity, we must recover
the geodesicequation from the minimally-coupledDiracequation. In coordinate
form, the geodesicequation is)

i;P + va v;3rP == 0a;3 ,) (13.260))
where vP == j;P and the overdots denotethe derivative with respectto proper
time. This is defined such that)

P v 1gpvv v ==
.) (13.261))

To convert to covariant form we introduce the vector)

v == vpg
P == h-1(x),) v2

== 1.) (13.262))
This is a covariant vector, though for aestheticreasonswe do not write this in a
calligraphic font. The derivative with respectto proper time is)

8T == xP8p == v.h(\\7).) (13.263))
The geodesicequation (13.260)can be now be written

8Tv - vP8Tgp + vQ
v;3(TJa9;3) == V + w(v).v == o.) (13.264))

The gauge theory form of the the geodesicequation is therefore)

v.TJv == v + w (v ) .v == o.) (13.265))
This equation is also recovered by finding the paths that minimise the proper
time interval)

s =Jd)..,1h
-1(X').h-1

(X'W/
2

.) (13.266))

Geodesicsare classifiedinto timelike, lightlike or spacelikeaccordingto the value
of v2, which can be +1,0 or -1respectively. Point particleswith mass follow

timelike geodesics.
The processby which classicalpaths are recovered from Diractheory is dis-

cussedin section12.2.1.The essentialterm in the action is the kinetic one, which

we manipulate in the sameway to write)

det (h)-1(D'l/;I'3;J;)== det (h)-I(JD'l/;Iu3'l/;-1),) (13.267))
where J == 'l/;,o'l/;. Equation (13.255)relates the covariant current J to the
divergencelesscurrent J. The classicallimit is formedby concentrating the den-
sity onto a singlestreamline of J and ignoring terms in the action perpendicular
to the flow. The action therefore contains the term)

det (h)-I (J.gPDp'l/;Iu3'l/;-1)== (('l/;'+ \037n(x')'l/;)Iu3'l/;-1).) (13.268))
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Separatingout the rotor dependence,as before, and converting to proper time

derivatives, the equations of motion are)

v.VS+ 2pAv == 0) (13.269))
and)

v.V p == O. (13.270)
Herev == h-1(x') == R10Rand S == RI0'3R.Classicalpoint-particlemotion is

recovered by setting the spin to zero, so that p and v are aligned, and fixing

p.v == m. In this casewe recoverpreciselythe geodesicequation.
This derivation is unusual, but it is important for two reasons.The geodesic

equation tells us that point particlesfollow the samepaths regardlessof their
massand soimpliesthe equivalenceofgravitational and inertial mass.This is the
weak equivalenceprinciple,a fundamental ingredient in general relativity. From

the gauge theory perspective,the weakequivalenceprincipleis derived from the
classicallimit of the Diracequation. The only principle invoked in constructing
the covariant Diracequation was minimal coupling,so at one level this has the

consequenceof enforcing the weak equivalenceprinciple. One can also argue
that minimal coupling is the essenceof the full equivalenceprinciple,which tells
us how physicsshould appear locally to a freely-fallingobserver. The second
important feature of this derivation is that it points out the limitations of the
weak equivalenceprinciple.Both the wave nature of matter and the existence
of quantum spin ensure that the geodesicequation is an approximation, and
there are many quantum effectsin gravitational backgrounds(such as blackhole

absorption)where the particlemassis important.
If a Killing vector is present,equation (13.259)tellsus that)

v.(v.VlC)== O.) (13.271))

So,for a particlesatisfying the geodesicequation, we find that)

OT(v.lC) == v.V(v. lC) == lC.(v.Vv) + v. (v.VlC) == O.) (13.272))
It follows that the quantity v. lC is conserved along the worldline of a freely-
falling particle.For stationary matter configurations,this can be usedto define
the conservedenergy of the particle.)

13.5.8Electromagnetismin a gravitationalbackground
The electromagnetic vector potential A ensuresthat the Dirac equation is co-
variant under local phasetransformations. In equation (13.222)we found that

the covariantaction integral for the electromagneticfield in a gravitational back-
ground is given by)

s =J Id
4xl(deth)-l \037F-F,) (13.273))
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where)

F == h(F).) (13.274))

The field strength F is covariant under local translations and rotations, as well
as beingphase-invariant.

We can include a sourceterm by adding an A.J term, whereJ is a covariant
vector. For example,when couplingto a fermion J isgiven by the Dirac current
'l/Jryo'l/J. The full action integral is therefore)

s =J It:fxl(deth)-l (!FF+ A..J).) (13.275))

To find the field equations for electromagnetismwe vary this integral with respect
to the underlying dynamical variable A, with hand J treatedas external fields.
The result is the equation)

\\7 .(h h (\\7 !\\A) det (h)-I) == J,) (13.276))

where)

J == det (h)
-I

h (J) .) (13.277))

Equation (13.276)combineswith the identity \\7!\\ F == 0 to form the full set
of Maxwell equations in a gravitational background.Someinsight into these
equations is provided by performing a spacetimesplit and writing)

E + cIB == F,
D + IH/c== Eohh(F)det (h)-I,)

(13.278))

where we have temporarily included the factors of c and EO. In terms of these
variables Maxwell'sequations can be written in the familiar forms)

V.B== 0,
aB

V !\\E + I
at

== 0,)

V.D== p,
an-+ V .(IH) ==-J
at ')

(13.279))

where Jryo == p+J.Theseforms of the equations illustrate how the det (h)-Ihh
is a generalizedpermittivity/permeability tensor,defining the propertiesof the
space through which the electromagnetic field propagates. For example,the
bendingof light by the sun can be easily understoodin terms of the properties
of the dielectricdefined by the h field exterior to it.

So far, however, we have failed to achieve a covariant form of the Maxwell
equations.We have, furthermore, failed to unite the separateequations into a
singleequation. To find a covariant equation, we simplify matters by ignoring

torsion effects,so that we can write)

1)!\\F== h (\\7 !\\F) == O.) (13.280))
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Next, we usea double-dualitytransformation to write the left-hand sideof equa-
tion (13.276)as)

\\7. (h(F)det(h)-I) == 1\\7 J\\ (Ih(F)det(h) -1)
== 1\\7 J\\(h-I(IF))
== Ih-I (1JJ\\ (IF)).) (13.281))

Equation (13.276)now becomes)

1J.F== J,) (13.282))

and equations (13.280)and (13.282)combine into the singlecovariant equation)

1JF== J.) (13.283))

This achievesour objective.Equation (13.283)is manifestly covariant and gen-
eralisesthe free-fieldJ\\lIaxwell equations to a gravitational background in an ob-
vious and natural manner. In the presenceof torsion an additional term appears
in the covariant expressionof the Maxwellequations.But in such circumstances
the spin fields generating the torsion are likely to interact strongly with the

electromagneticfield and swamp most interesting gravitational effects.)

13.6Thestructureof the Riemanntensor)

The Riemann tensorR(B)contains a remarkable amount of algebraicstructure,
much of which is hidden in the tensorcalculusapproach.Again, we assumethat

there is no torsion present,so that the secondfield equation reducesto (13.234).
Writing A == h(A) we have)

1JJ\\A == h (\\7 J\\A),) (13.284))

so)

1JJ\\(1JJ\\A) == h(\\7J\\\\7J\\A) == O.) (13.285))

It follows that)

gJ-L J\\ (1JJ-L (gV J\\ (1Jv A) )) ==
gJ-L J\\gv J\\ (1JJ-L VvA)

==
!gJ-LJ\\gv J\\ ([1JJ-L'1Jv ]A)

==
gJ-L J\\gv (RJ-Lv x A) == O.) (13.286))

So,for any multivector M,)

oa J\\ Ob J\\ (R(a J\\ b) x M) == 0,) (13.287))

which is a covariant equation.)
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To analyse equation (13.287)further we set M equal to the vector c, and
protract with octoform)

oc/\\0a /\\ Ob /\\ (R(a /\\ b) xc) == -20a /\\ Ob /\\R(a /\\ b) == O.) (13.288))
Now forming the inner productwith c we obtain)

20a /\\R(a /\\c) + 0a /\\ Ob /\\ (R(a /\\ b) xc) == 0,) (13.289))
so that we are are left with the compact identity)

Oa/\\R(a/\\b) == O.) (13.290))

This summarisesall of the symmetries of R(B) in the caseof zero torsion.
Equation (13.290)saysthat the trivector oa /\\ R(a /\\ b) vanishes for all valuesof
the vector b, so gives a set of 4 x 4 == 16equations.Thesereducethe number
of independentdegreesof freedom in R(B) from 36 to 20, the expectednumber
for general relativity. Contracting equation (13.290)we obtain)

Ob
. (0a /\\R(a /\\ b)) == 0a /\\R(a) == 0,) (13.291))

which shows that the Ricci tensor R(a) is symmetric. The same is therefore
true of the Einstein tensor. In the absenceof any spin-torsioninteractions,
the matter energy-momentum tensor must also be symmetric, as is the case
for electromagnetism and the relativistic fluid. The covariant Riemann tensor
satisfies the further useful identities,)

oc/\\(a.R(c/\\b))== R(a/\\b),
(B,oa).R(a/\\b)== -oaB.R(a/\\b).)

(13.292))

It follows that)

Ob /\\ ((B.0a) .R(a /\\ b)) == -2R(B) == -
Ob /\\0a(BR(a /\\ b)) .) (13.293))

The Riemann tensoris therefore also symmetric,)

BI .R(B2) == B2.R(BI ).) (13.294))

That is, R(B) == R(B).)

13.6.1The Weyl tensor)

The structureof the Riemann tensoris more clearly seenby separatingout the
matter content, ascontained in the Riccitensor.Sincethe contraction ofR(a/\\b)
results in the Ricci tensorR(a), we expectthat R(a/\\ b) will contain a term in

R(a)/\\b.This must be matched with a term in a/\\R(b), sinceit is only the sum
of thesethat is a function of a/\\b. Contracting this sum we obtain)

Oa'(R(a)/\\b + a/\\ R(b))== bR -R(b)+ 4R(b)-R(b)
== 2R(b) + bR,) (13.295))
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and it follows that

8a .(HR(a)Ab+ aAR(b))- iaAbR) =R(b).) (13.296))

We can therefore write)

R(a/\\b) == W(a/\\b) +
\037 (R(a)/\\b+ a/\\R(b))- \037a/\\bR,

where W(B) is the Weyl tensor.
From its definition the Weyl tensormust satisfy)

(13.297))

Oa'W( a/\\b) == O.) (13.298))
As the Ricci tensoris symmetric, we also have)

Oa/\\(\037 (R(a)/\\b+ a/\\R(b)) -
t;a/\\bR)

== 0,) (13.299))
so the Weyl tensoralso satisfies)

Oa/\\W(a) == o.) (13.300))

Equations (13.298)and (13.300)combine into the single equation)

oaW(a/\\b) == O.) (13.301))

This compact equation is unique to the geometric algebraformulation, as it

involves the geometricproduct. To study the consequencesof equation (13.301)
it isuseful to introduce the {1'/-L} frame and write the four equations for b equalling
each of the l'/-L vectors as)

lY1W(lYl) + lY2W(lY2) + lY3W(lY3) == 0,

lYi W(lYI) - IlY2W(IlY2) - IlY3W(IlY3) == 0,-IlYi W(IlYI) + lY2 W( lY2)
- IlY3 W(IlY3) == 0,-IlYi W(IlYl) - IlY2 W( IlY 2) + lY3 W(lY3) == O.)

(13.302))

Summing the final three equations,and employing the first, produces)

IlYk W(IlYk) == O.) (13.303))

Substitutingthis into each of the final three equations produces)

W(IlYk) == IW( lYk),) (13.304))

and it follows that the Weyl tensor satisfies)

W(IB)== IW(B).) (13.305))
This says that the Weyl tensor is self-dual. In the two-spinor formalism of
Penroseand Rindler the duality of the Weyl tensor is expressedin terms of a
complexformulation. The spacetimealgebrashows that this complexstructure
arisesgeometricallythrough the propertiesof the pseudoscalar.)
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Given the self-duality of the Weyl tensor, the remaining content of equa-
tion (13.302)is summarisedby)

UkW(Uk) == o.) (13.306))

This equation saysthat, viewedas a three-dimensionalcomplexlinear function,

W(B) is symmetric and traceless.This gives W(B) five complex,or ten real

degreesof freedom. The gauge-invariant information is held in the complex
eigenvaluesof W(B),sincethese are invariant under rotations. As thesemust

sum to zero, only two are independent.This leaves a set of four real intrinsic

scalarquantities.
Overall, R(B) has 20 degreesof freedom, six of which are contained in the

freedom to perform arbitrary local rotations. Of the remaining 14physical de-
greesof freedom, four are contained in the two complexeigenvaluesof W(B),
and a further four in the real eigenvaluesof the matter stress-energytensor.
The six remaining physical degreesof freedom determine the rotation between
the frame that diagonalisesQ(a) and the frame that diagonalisesW(B). This
identificationof the physical degreesof freedomcontained in R(B) is physically
very revealingand extremely useful in guiding solution strategies.)

13.6.2The Bianchiidentities)

Further information about the Riemann tensoris contained in the Bianchi iden-
tities.Thesefollow immediately from the Jacobiidentity in the form)

[Va, [Vj'3, V,JJA + cyclicpermutations == O.) (13.307))

It follows that)

Va Rj'3')' + cyclicpermutations == 0,) (13.308))

which we needto expressas a fully covariant relation. We start by forming the

adjoint relation,)

oa /\\ Ob /\\0c((a .\\7R (b /\\ c) + n (a) x R(b /\\c))B) == 0,) (13.309))

which simplifiesto)

\\7/\\R(B)
- oa/\\R(O(a) x B) == 0,) (13.310))

where B is a constant bivector. To make further progresswe again assumethat

the torsion vanishes. The Riemann tensoris then symmetric, so)

R(B)== i1-I Rh(B) == i1-1R(B).) (13.311))

We can therefore write)

\\7/\\ (i1-1R(B))-oa/\\i1-1R(O(a)x B) == O.) (13.312))
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Now acting on this equation with h and using equation (13.235),we establish
the covariant result)

TJ/\\R(B) - oa/\\ R(w(a)x B) == O.) (13.313))
This result takesa more natural form when B becomesan arbitrary function of
position,and we write the Bianchi identity as)

Oa/\\(a.TJR(B)-R(a.TJB))== O.) (13.314))
We can extend the overdot notation of section11.1in the natural nlanner to
write equation (13.314)as)

V/\\R(B) == O.) (13.315))
This is a highly compact,elegant expressionof the Bianchi identity, though it is
often easierto use the more explicit form of equation (13.314).

The contracted Bianchi identity is obtained from)

(Oa/\\Ob).(V/\\R(a/\\b)) == oa.(R(a/\\V)+VR(a))
== 2R(V) -TJR,) (13.316))

from which we find)

Q(V) == O.) (13.317))
The adjoint form of this equation is sometimesmore useful:)

iJ.9(a) == TJ.9(a) -Ob'9(b.Va) == o.) (13.318))
This is the covariant expressionof conservationof the Einsteintensor.It follows
that the total matter energy-momentumtensor must satisfy the samerelation.
With the gravitational interaction turned off, the free-field(or flat-space)energy-
momentum tensormust be symmetric and divergence-free.This is the casefor
the functional electromagneticand fluid energy-momentumtensors.This is not
true of the Diractheory, where the presenceof spinaltersmany of the preceding
resultsand distortsmuch of the elegant structure of pure general relativity.

The covariant conservation equation (13.318)doesnot give rise to conserved
vectorcurrents, and henceconservedscalars,unlessa further symmetry ispresent
in the gravitational fields. In this caseone can construct a Killing vector K

satisfying equation (13.259).This is sufficient to prove that)

g(Oa).(aVK== 0),) (13.319))
which holds becauseg(a) is a symmetric tensor. It follows that)

TJ.(9(K))== iJ'9(K)-oa.g(aTJK)== 0,) (13.320))
which yieldsa covariantly conservedvector. This can beconvertedto a spacetime
current and hence to a conservedscalarquantity.)
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13.7 Notes)

Lagrangian field theory is discussedin many textbooks,particularly those that
go on to treat quantum field theory. The texts by Itzykson & Zuber (1980)and
Bjorken& Drell (1964)are again recommended,as are the book by Cheng &
Li (1984)and the set of lecture notes by Coleman (1985).The history of gauge
theoriesin the twentieth century is describedin the setofcollectedpapersedited
by Taylor (2001).The use of the multivector derivative in analysing field La-
grangians was introduced in the paper by Lasenby,Doran & Gull (1993a),and
further refinementsare contained in the thesisby Doran (1994).

The discoverythat gravity could be treated as a gauge theory was made ini-
tially by Utiyama (1956)and Kibble(1961).An attempt at a quantum treatment
along the lines suggestedby Kibblewas made by Feynman and is contained in

the Feynman Lectureson Gravitation (Feynman, Morningo & Wagner, 1995).
The application of spacetimealgebra in the context of classicalgeneral relativity
was promotedby Hestenesin the bookSpace-Time Algebra (1966)and the pa-
per 'Curvature calculations with spacetimealgebra'(1986).Many other authors
have followedthis route and a considerableliterature now existson applications
of Cliffordalgebrain general relativity. Rather than attempt to list all of these,
and run the risk of offending anyone we missout, we recommendsearching the
main pre-printarchiveson the keyword 'Clifford'.

The particular combination of the gauge treatment of gravity and the space-
time algebradevelopedhere was first presentedin full in the paper 'Gravity,
gauge theoriesand geometric algebra',by Lasenby,Doran & Gull (1998).This
contains an extensive list of referencesand we refer the readerthere for further

material. The form of the field equations in the presenceof torsion is discussed
in Doran et al.(1998).Readersof thesepapers,and the precedingchapter,will

notice that the notation and conventions for this subjecthave not yet settled
down. We believe that this chapter representsan advance over previous work,
but doubtlessthere is still room for improvement. While it has not been em-
ployed in this chapter, we do recommend the underbar/overbar notation for
linear functions in hand-written work. This helps keep track of the form of
various objects,and avoids the problemof using different fonts to distinguish
objects.Unfortunately, this notation tends to look too clutteredwhen typeset,
which is why underbarsare not employedin this book.)

13.8Exercises)

13.1 The physicalenergy-momentumtensorfor free-fieldelectromagnetismis
defined by)

Tem(a) == -
\037

FaF.)
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Prove that each of Tem(x),Tem(a),Tem(xax)and Tem(B.x)is con-
served.How many independentconservedconstantscan one construct
from these? How does this relate to the dimension of the spacetime
conformalgroup?

13.2 Prove that, in a spaceof dimensionn,)

\\7 (
1+ xa

)
== 0

(1+ 2x.a+ a2x2)n/2
'

where a is an arbitrary vector.
13.3 The field 1/J satisfies the minimally-coupledDiracequation.Prove that

\\7 .(1/Jr1;jJ) == 2eA.(1/Jr2;jJ),

\\7 .(1/Jr2;jJ) == -2eA.(1/JrI ;jJ).)

Can you derive these relations from a transformation appliedto the
DiracLagrangian?

13.4 The coupledMaxwell-DiracLagrangian is defined by)

- - -
\302\243

== (\\71/J1 r31/J - eA1/Jro1/J - m1/J1/J).)

Find the canonicalenergy-momentumtensor.Prove that \302\243 is unchanged
in form by the transformations)

1/J(x) \037 R1/J(x'),) A(x) \037 RA(x')R,)

where x' == RxR and R is a constant rotor.Find the conserved tensor
conjugate to this transformation.

13.5 The gravitational field strength is defined in terms of the bivector con-
nection 0

j.L by)

Rj.LV
==

oj.LOV
-

ovOj.L + OJ-L
x Ov,

Verify that this vanishes if)

OJ-L
== -2oJ-LRR,)

where R is a spacetimerotor.
13.6 Prove that, for non-vanishing spin,the w(a) field is given by

1 3
w(a) = H(a) -

\"2

a .(ob/\\H(b)) + /<o'S(a) -
\"2

/<O,a. (ob/\\S(b)).)

13.7 Prove that, in the caseof zero torsion, timelike paths which minimise

the propertime)

s= Jd:\\ (h-
1(x/).h-1(x/))1/2

satisfy the geodesicequation v.Vv == 0, where v == h-1(x)and v2 == 1.)
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Gravitation)

In this chapterwe explorethe content of the gravitational field equations derived
in section13.5.In covariant notation theseequations are)

Q(a)-Aa == \037T(a),

H(a) == \037S (a) +
\037

\037 (Ob
.S(b)) /\\ a,)

(14.1))

where \037
== 81rG, A is the cosmologicalconstant, Q(a) and H(a) denote the

Einstein and torsion tensors, and the matter sourcesare determinedby the
total energy-momentumtensorT(a) and the spintensorS(a).Locally,the field

equations definean Einstein-Cartantheory of gravitation.
We start this chapterwith a discussionof the various strategieswe can adopt

for solving the field equations.In particular, we focus on a new technique that
is unique to the gauge theory approach.Of course,the physical content of the
equations doesnot dependon the method of solution. But the field equations
have proved so resistant to analysis that it is important to have a wide range
of analytical approachesat our disposal.Mostof the applicationsof interest do
not involve macroscopicspin,so the torsion is set to zero.The only exceptionis
when we considerself-consistentcosmologicalmodelsfor a single spinor field in

a gravitational background.
As a first application of our solution method we study spherically-symmetric,

time-dependentsystems. This setup is sufficiently general to use for studying

non-rotating stars and blackholes,and also cosmology.We study the properties
of both classicaland quantum matter in these backgrounds,looking in detail
at scatteringand absorptionprocessesaround a blackhole. We then turn to
static cylindrical systems.Theseare of limited astrophysical interest,but they
do demonstratesome important features of our solution method. In particu-
lar we find that, for certain matter distributions,the gravitational fields admit
closedtimelike curves. Thesematter distributionscan give rise to violations of
causality, which are therefore not ruled out by the theory without further as-)
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sumptions.We end this chapter with a discussionof axially-symmetricfieldsand
the Kerr solution. We give a novel derivation of the Kerr solution, which exposes
a remarkable algebraicstructure hidden in other approaches.We alsodescribe
a version of the Kerr solution that illustrates many of its physical features in a

straightforward manner.)

14.1Solvingthe field equations
The traditional approach to solving the gravitational field equations in general
relativity is to start with the metric gJ-Lv' In equation (13.143)we showed that
the metric is recoveredfrom the h (a) gauge field by setting)

gJ-LV
==

gJ-L .gv ==
h\037I(eJ-L).h\037I(ev),) (14.2))

where the {eJ-L}comprisea coordinate frame. The metric gJ-LV
is invariant under

rotation-gauge transformations, so working in terms of the metric removes this

gauge freedom from the outset.The result is that the field equations becomea
set of non-linear, second-orderdifferential equations for the terms in 9J-LV' Any

metric is potentially a solution of the field equations-one where the matter

energy-momentumtensor is determined by the correspondingEinstein tensor.
But this is seldomuseful, as what is requiredis a solution for a given matter
distribution.This is an extremely difficult problem.

A relatedshortcoming of the metric approach is that it is extremely difficult

to set up a consistentperturbative scheme.The problem is that the metric is

gauge-dependent,so it is not apparent which quantities can be treatedas small.
This can only be definedconsistently in terms of covariant scalars,as theseare
the only gauge-invariant quantities. Clearly, then, we should aim to solve the

equations directly in terms of thesequantities. Such a method is describedhere,
and appliedto a range of problemsin this chapter.

We start by focusing on objectsthat transform covariantly under displace-
ments. For easeof referencewe call these intrinsic objects.Unlike the metric

formulation, the classof intrinsic objectsin the gauge treatment extendsbeyond
scalarsto includegeneralmultivectorsand functions. For example,each of h(\\7),

w(a) and R(B)are intrinsic objects.The task is to formulate the field equations
directly in terms of theseobjects.We assumethat the spinis negligible,so that

the secondfield equation in (14.1)states that the torsion iszero.The method we
describehere can therefore be directly appliedto problemsin general relativity.

The torsion equation relatesderivativesof h(a) to the w(a) field, where w(a)
is defined in equation (13.245).The torsion equation can be written as)

h(\037)/\\h(c)
== -od/\\(w(d).h(c)),) (14.3))
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which we contract with a/\\b to form)

(b /\\a h (\037) /\\ h (c))== -(b/\\ a ad/\\ (w (d) .h (c)) )
== (a.w(b)-b.w(a)).h(c).) (14.4))

The essentialoperatoron the left-hand sideis the directional derivativea.h(\\7).
This turns out to be the key operatorin our approach,and we write this as)

La == a.h(\\7).) (14.5))

The use of La for this operator should not be confused with the quantum-
mechanical angular momentum operators,though their propertiesare analysed
in a similar way. In terms of La the torsion equation becomes)

(Lah(b)-Lbh(a)).c== (a.w(b)- b.w(a)).h(c),) (14.6))

where, as usual, the overdots determine the scopeof a differential operator.
The information contained in the torsion equation is summarised neatly in

terms of the commutator bracketof the La operators.We find that the commu-
tator of La and Lb is)

[La,Lb] == (Lah(b)-Lbh(a)).\\7
== (Lah(b)- \302\243b

h (a)).\\7+ (Lab-Lba).h(\\7)
== (a.w(b)- b.w(a)+ Lab-Lba).h(\\7).) (14.7))

We can therefore write)

[La,Lb]==Lc,) (14.8))

where)

c == a.w(b)-b.w(a)+ Lab-Lba == a.T)b - b.T)a.) (14.9))

This bracketstructure summarisesthe intrinsic content of the torsion equation
in a very convenient manner. If spin is present, the right-hand side of equa-
tion (14.9)ismodifiedin a straightforward way to includespin-dependentterms.

The key to our strategy is that we delay any explicit solution for w(a) until

after further gauge fixing has been performed. Instead,we let w(a) take on a
suitably general form, consistentwith the form of the h function. This is often
best achievedwith the aid of a symbolicalgebrapackage,though it ispossible,if
tedious,to perform the calculations by hand. Oncea general form for w(a) has
beenfound, the relationship between h(a) and w(a) is then encodedintrinsically
in the commutation relations of the La.

The next objectto form is the Riemann tensor R(B). This is constructed
in terms of abstract first-order derivatives of the w( a) and additional quadratic)
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terms.We seethis by writing)

R(a/\\b) == LaO(h(a))-LbO(h(a))+ w(a)xw(b)
== Law(b) \037 Lbw(a)+ w(a)xw(b)-O(Lah(b)-Lbh(a)),) (14.10))

so that we have)

R(a/\\b) == Law(b)-Lbw(a)+ w(a)xw(b)-w(c),) (14.11))

where c is given by equation (14.9).Equation (14.11)enablesR(B) to be cal-
culated entirely in terms of intrinsic quantities. Oncethe general form of the
Riemann tensoris found, we can start to employthe rotation-gauge freedomto
convert R(B) to a suitably simple expression.This gauge fixing is crucial in

order to arrive at a set of equations that are not underconstrained.The gauge
fixing is now performeddirectly at the levelof the covariantvariables. This gives
the method great power, as one can motivate gauge choiceson sensiblephysical
grounds,rather than blind guessworkat the levelof the metric.

With R(B) suitably fixed, we arrive at a set of relations between first-order
abstractderivativesof the w(a),quadratic terms in w(a) and matter terms.The
next step is to imposethe Bianchi identities,which ensureoverallconsistencyof
the equations with the bracketstructure. Onceall this is achieved,one arrives
at a fully intrinsic set of equations. Solving these equations usually involves

searching for natural integrating factors. The final step is to make an explicit
positiongauge choiceof the h function. The natural way to do this is often to
ensurethat the form of h (a) is such that the integrating factors are expressed
simply in termsof the chosencoordinates.This descriptionisquite abstract,but

in the following sectionswe apply this schemeto a range of physical problems.
Theseshould illustrate how the schemeis appliedin practice.We start with the

simplestcaseof spherically-symmetric,torsion-freesystems.)

14.2Spherically-symmetricsystems
To solvethe field equations for spherically-symmetricsystems,we first introduce
the standardpolar coordinates(t, r,B, cp). In terms of the fixed

{\"Y J-L}
frame we

wri te)

r == vi (x /\\ \"Yo)
2

,)

X.,3
cos(B)== -,r

x'''Y2
tan(cp) == \037.

X'''Y)

(14.12))
t == x.\"Yo,)
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The associatedcoordinate frame is)

et ==
\"Yo,

er == sin(B)(cos(<p) \"YI + sin(<p) \"Y2) + cos(B)r3,
eo == r cos(B)(cos(<p) \"YI + sin(<p) r2) - r sin(B)r3,
e4>

== r sin(B)(- sin( <p) \"YI + cos(<p) (2),)

(14.13))

\037 \037

and we will also make useof the unit vectors Band <p defined by)

\037 1
B == -eo,

r)

\037 r
rP

=
sin(B)

e</>\ (14.14))

From thesewe define the unit bivectors)

ar == eret,) ao == Bet,)
\037

a
4>

==
<pet.) (14.15))

For applicationsin gravity there is little reasonto write thesespatialbivectors
in bold face, so we break the conventionadoptedearlier in this bookand leave
the unit bivectors in ordinary face. We work throughout in natural units c ==

n == G == 1,so that \037
== 87r, and in the first instance we set the cosmological

constant to zero.)

14.2.1The sphericalequations
Our first step towards a solution is to decidea suitableform for the h function

consistentwith sphericalsymmetry. The form we use is)

h(e
t
) == flet + f2er ,

h(er
) == 91er + 92et,

h(e
o
) == exeo,

h
(e4\302\273

==
exe4>,)

(14.16))

where fI, f2, 91,92 and ex are all functions of t and r only. The only rotation-
gauge freedom in this system is the freedom to perform a boost in the ar di-
rection.This freedom will be employed later to simplify the equations. Our
remaining position-gaugefreedom liesin the freedomto reparameteriset and r,
which doesnot affect the general form of h(a).A natural parameterisation will

emerge once the physical variables have been identified.
To find a general form w(a) consistent with the h function of equation (14.16),

we substitutethe latter into equation (13.250)and look at the general algebraic
form of w (a). Where the coefficientsin w (a) contain derivatives of terms from

h(a) new symbolsare introduced.Undifferentiated terms from h(a) appearing
in w(a) arisefrom frame derivatives and are left in explicitly. The result is that)
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ar ae acp

et.D 0 GJacp -G1ae
er.D 0 FJacp -F1ae

'\"

B.D Tae-SJacp -Tar SJar
cp.D Tacp+S1ae-SJar -Tar)

Table 14.1Covariant derivatives of the polar-frame unit timelike bivec-
tors.)

we can write)

w(et) == Geret,
w(er ) == Feret,
w( B) == seet+ (T-air)erB,

w(\037)
== sJet+ (T -

a/r)er\037,)

(14.17))

where G, F,SandT are functions of t and r only. The important feature of

thesefunctions is that they transform covariantly under displacementsofrandt.
To define a suitablebracketstructure we first introduce the operators)

Lt == et'h (\\7),

Lr == er .h(\\7),)

Le == e.h(V),

L\037

== J.h(\\7).)
(14.18))

Equation (14.8),together with our form for w(a),yieldsthe relations)

[Lt,Lr] == GLt -FLr,

[Lt,Le] == -SLe,

[Lt,L\037]

==
-SL\037,)

[Lr,Le] == -TLe,
[Lr,L\037]

== -TL1)'

[Lo,L1)]==0.)

(14.19))

A set of bracketrelations such as theseis the first step in writing the field equa-
tions in an entirely intrinsic form. Theuseof orthonormal vectors in expressing
theserelations bringsout the structure most clearly.

N ext we seekan intrinsic form of the Riemann tensor. This calculation is

simplified by making use of the results in table 14.1.The bracket relations

enableus to calculate the derivativesof airby writing)

Lt(a/r) == LtLeB == [Lt,Le]B== -Salr,
Lr(a/r)== LrLeB== [Lr,Le]B== -Ta/r.)

(14.20))

Applicationof equation (14.11)is now straightforward, and leadsto the Riemann)
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tensor)

R(ar ) == (LrG-LtF + G2 -F2)ar ,

R(ae)== (-LtS+ GT-S2)ae+ (LtT+ ST-SG)Iaqy ,

R(aqy ) == (-LtS+ GT-S2)aqy
- (LtT+ ST-SG)Iae,

R(Iaqy ) == (LrT+ T2-FS)Iaqy
- (LrS + ST-FT)ae,

R(Iae)== (LrT+ T2 -FS)Iae+ (LrS+ ST-FT)aqy ,

R(Iar ) == (-S2+ T2 - (a/r)2)Iar .)

(14.21))

We must next decideon the form of matter energy-momentumtensorthat the
gravitational fieldscoupleto.We assumethat the matter ismodelledby an ideal
fluid, as discussedin section13.5.4,sowe can write)

T(a) == (p+ p)a.vv -pa,) (14.22))

where p is the energydensity, p is the pressureand v is the covariant fluid velocity
(v

2 == 1).Radial symmetry means that v can only lie in the et and er directions,
so v must take the form)

v == cosh(X)et + sinh(x)er .) (14.23))

But, in restrictingthe h function to the form of equation (14.16),we retained
the gauge freedomto perform arbitrary radial boosts.This freedomcan now be
employedto set v == et, so that the matter energy-momentumtensorbecomes)

T(a) == (p+ p)a.etet -pa.) (14.24))

There is no physical content in the choice v == et as all physical relations must
be independentof gauge choices.The choicesimply fixesthe rotation gauge in

such a way that the energy-momentumtensortakeson the simplestform. This
removesall rotation-gauge freedom-an essentialstep in the solution method,
sinceall non-physicaldegreesof freedommust be removedbeforeone can achieve
a completeset of physical equations.

In section13.6.1we saw how to decomposethe Riemann tensorinto a source
term and the Weyl tensor.The sourceterm can be written)

47r
R(a/\\b)

-W( a/\\b) == -
(3a/\\ T(b)+ 3T(a) /\\b -2Ta/\\b),3) (14.25))

where T == oa .T(a)is the trace of the matter energy-momentumtensor.With

T(a) given by equation (14.24),R(B) is restrictedto the form

47r
R(B) == W(B)+ 3(3(p+ p)B.etet - 2pB).) (14.26))

Comparing this with equation (14.21)we see that the Weyl tensor must have)
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the general form)

W(a r ) ==
\302\260l

ar,
W(ae) == 02ae + (31Iaqn

W(a cP ) == 02acP- (3IIae,)

W(Iar ) == 04Iar,

W(Iae)== 03Iae + (32acP'

W(I acP)
== 031acP

- (32ae.)

(14.27))

Hereeach of the Oi representsa combination of intrinsic objects.
The torsionlessgravitational field equations ensurethat the Weyl tensorisself-

dual and symmetric. The former implies that 01== 04, 02 == 03 and (31 == -(32,

and the latter implies that (31 == (32. It follows that (31 == (32 == O. Finally, W(B)
must be traceless,which requiresthat 01+ 202 == O. Taken together, these
conditions reduceW(B) to the form)

a1
W(B) == -(B+ 3arBar).

4)
(14.28))

This is of Petrov type D.From the form of R(Iar ) we can seethat

87rp 2 2 a2
01== --S + T --.

3 r2)
(14.29))

If we now define (3 by)

2
2 2 a

4(3== -S + T -2'r)
(14.30))

then the full Riemann tensor can be written as)

(
27r

)
47r

R(B)= (3 + 3\"P (B+ 3arBar) + 3\"(3(p+ p)B.etet- 2pB).) (14.31))

We compare this with equation (14.21)to obtain the following set of equations:)

LtS == 2(3+ GT-S2- 47rp,

LtT == S(G-T),
LrS == T(F-S),
LrT == -2(3+ FS-T2 - 47rp,

LrG -Lt F == F2 -C2 + 4(3+ 47r(p + p).)

(14.32))

We are now closeto our goal of a completeset of intrinsic equations.The re-

maining step is to enforcethe Bianchi identities.The only identity that contains
new information in our presentsetupis the contracted Bianchi identity definedin

section13.6.2,which guarantees covariantconservationof the energy-momentum
tensor.For an ideal fluid this resultsin the pair of equations)

D.(pv)+ pD.v == 0,

(p + p)(v .Dv) !\\v - (Dp)!\\v == o.)
(14.33))
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The quantity (v.1Jv)J\\v is the covariantaccelerationbivector, so the secondequa-
tion relatesthe accelerationto the pressuregradient.For the caseof spherically-
symmetric fields, theseequations reduceto)

Ltp == -(F+ 2S)(p+ p),
LrP == -G(p+ p).)

(14.34))

The latter of theseidentifiesG as the radial acceleration.The full Bianchi iden-
tities now turn out to be satisfied as a consequenceof the contracted identities
and the bracket relation)

[Lt,Lr] == GLt -FLr.) (14.35))
This completesour derivation of the intrinsic equations.The full set is defined
by equations (14.20),(14.32),the contractedidentities (14.34)and the bracket
structure of equation (14.35).The equation structure is closed,as the bracket
relation (14.35)is consistent with the known derivatives. The derivation of such
a set of equations is the basic aim of our method. The equations deal solely
with objectsthat transform covariantlyunder displacements,and many of these
quantities have directphysical significance.)

14.2.2Solvingthe sphericalequations)
To solve the intrinsic equation structure we first form the derivatives of (3 to
obtain)

Lt{3+ 35(3== 27rSp,

Lr{3+ 3T{3== -27rTp.)
(14.36))

Theseresultssuggestthat we should look for an integrating factor for the Lt + 5
and Lr + T operators.Sucha function, X say, should have the propertiesthat)

LtX == SX,) LrX == TX.) (14.37))
A function with thesepropertiescan existonly if the derivatives are consistent
with the bracket relation of equation (14.35).This is checkedby forming)

[Lt,Lr]X == Lt(TX) -Lr (5X)
== X(LtT -Lr5)
== X(SG-FT)
== GLtX -FLrX,) (14.38))

which confirmsthat the propertiesofX are consistentwith the bracket structure.
In fact, we can seefrom equation (14.20)that r/a has the desiredproperties.
Integrating factors of this type often ariseas natural, intrinsically-definedcoor-
dinates,and the form of the solution is usually simplestwhen expresseddirectly
in termsof these.Sincethe position-gaugefreedomin the r direction has not yet)
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beenfixed, it is natural to set a == 1,so that r plays the role of the integrating
factor directly. We will confirm shortly that this gauge choiceensuresthat r is

a physicallymeaningful quantity.

With the radial scalefixed by setting a == 1,we can now make some further

simplifications. From the form of the h function in equation (14.16),together
with equation (14.37),we seethat)

91 == Lrr == Tr,
92 == Ltr == Sr.)

(14.39))

This replacestwo functions in the bivector connection in favour of terms in h(a).
We alsodefine)

3 r
(

2 2
)M == -2r (3 == - 92 -91+ 1 ,

2)
(14.40))

which satisfies)

Lt M == -41Tr292P,

LrM == 41Tr29IP'

The latter suggeststhat M plays the role of an intrinsic mass.
So far we have defined the natural distancescale,but have not yet found a

natural time coordinate.Such a coordinate is requiredto completethe solution,
so we now look for additional criteria to motivate this choice.We are currently
free to perform an arbitrary rand t-dependentdisplacementalong the et direc-
tion. This gives us completefreedom in the choice of f2 function. If we now

invert equation (14.41)to find the coordinate derivativesof M we obtain)

(14.41))

aM
at

aM
ar)

-41T9I92r2(p + p)
fI9l- f292

41Tr2(f19lP+ f292P)
f191- f292)

(14.42))

The secondequation reducesto a simple classicalrelation if we choosef2 == 0,
as we then obtain)

arM == 41Tr2p.) (14.43))

This saysthat, at constant time t, M(r,t) is determined by the amount of mass-

energy in a sphereof radiusr.
With f2 set to zero we can now use the bracket structure to solve for fl.We

have)

Lt == flat + 92ar,) Lr == 91ar,) (14.44))

so the bracketrelation of equation (14.35)implies that)

Lrfl == -CfI') (14.45))
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It follows that)

( J
r G(s)

)h = E(t) exp -
gl(S)

ds .) (14.46))

The function E(t) can be absorbedby a further t-dependentrescalingalong et,
which will not reintroduce a term in 12'In the 12 == 0 gauge we can therefore
reduceto a systemin which)

h = exp(
-

Jr \037\037:\037 dS)
.

The physical explanation for why the 12 == 0 gauge is a very natural one to
work in emergeswhen we set the pressureto zero.In this caseequation (14.34)
forces G to be zero, and equation (14.47)then sets 11== 1. A (free-falling)
particlecomovingwith the fluid has covariant velocity v == et,so the trajectory
of this particleis defined by)

(14.47))

tet + rer == h(et) == et + g2er ,) (14.48))

where the dots denotedifferentiation with respect to the proper time. Since
t == 1the time coordinatet matches the proper time of all observerscomoving
with the fluid. In this sense,the time coordinatethat has emergedbehaves like a
global Newtonian time on which all observerscan agree(provided all clocksare
correlatedinitially). By employing the variousgaugechoicesoutlined above, and
castingthe dynamics in terms of the t coordinate,we are ensuring that (when
p == 0) the physicsis formulated from the viewpoint of freely-fallingobservers.
We then expectthat the gravitational equations should take on a clear,physical
form, which is indeedthe case.

As a further illustration of this point, it isclear from (14.48)that g2 represents
a radial velocity for the particle.In the absenceof pressure,the rate of change
of massis given by)

atM == -47rr2g2P') (14.49))

This equation equatesthe work with the rate of flow of energydensity. Similarly,

equation (14.40),written in the form

(g\037)2

_
\037

=
\037 ((gd

2 _ 1) ,) (14.50))

is also now familiar from Newtonian physics\037 it is a Bernoulli equation for
zero pressureand total (non-relativistic) energy (gI2 - 1)/2.When pressureis
included,the purely Newtonian interpretation starts to breakdown, due mainly
to the fact that pressurecan act as a sourceof gravitation. But it remains the
casethat the gauge choicesdescribedhere pickout what appearsto be the most
natural set of equations for studying spherically-symmetricsystems.

The systemof equations we have now derived is summarised in table14.2.We)
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The h field)

- t t
h(e ) == fIe
h(e

r
) == gler +g2et

h(e
8
) == e8

h(e<P)
== e<P)

The w field)

w( et) == Geret
w( er ) == Feret
w(O) == g2/rOet+ (gI - l)/rer O

w(\037)
== g2/r\037et + (gl - l)/r er\037)

Directionalderivatives)
Lt == flat + g28r
Lr == glar)

Equations for G and F)
Lt g1 == Gg2
Lr g2 == FgI
fl == exp{Jr-G/gI ds})

Definition of M) M ==
\037r(g22

-gl2 + 1))

Remaining derivatives)
Lt g2 == Ggl -M/r2-47frp

Lrgl == Fg2 + M/r2- 47frp)

Matter derivatives)

LtM == -47fr2g2P
LrM == 47fr 2gIP
Ltp == -(2g2/r+ F)(p+ p)
LrP == -G(p+ p)

R(B)== 47f((p + p)B.etet-2p/3B)
-\037(M/r3

-47fp/3)(B+ 3arBar ))

Riemann tensor)

Energy-momentum tensor) T(a)== (p + p)a.etet-pa)

Table14.2Gravitational equations governing a radially-symmetric perfect
fluid. An equation of state and initial data p(r, to) and g2 (r, to) determine
the future evolution of the system.)

refer to this systemas defining the Newtonian gauge, sinceso many equations
take on an almost Newtonian form. Of course,this should not distract from

the fact that we have solved the full, relativistic gravitational field equations.
The systemof equations in table 14.2underliesa wide range of phenomena
in relativistic astrophysicsand cosmology. One aspect of these equations is
immediately apparent. Given an equation of state p == p(p),and initial data in

the form of the density p(r,to) and the velocity 92(r,to), the future evolution
of the systemis fully determined.This is becausep determinesp and M on a
time slice,and the definition of M determines91,The equations for LrP, Lr91)
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and Lr92 then determine the remaining information on the time slice.Finally,
the LtM and Lt92 equations can be usedto update the information to the next
time slice,and the processcan start again. The equations can therefore be
implemented numerically as a simpleset of first-order updateequations.This is

important for a wide range of applications.)

14.2.3Staticmatterdistributions)

As a first application of the equations governing a spherically-symmetricsystem,
we considera static matter distribution.This solution is appropriatefor a non-

rotating sphericalsource.The density and pressureare now functions of r only.
The massis given by)

M(r)=I
T

47fs2p(s)ds) (14.51))

and it follows that)

LtM == 47rr292P== -47rr2 92P.) (14.52))

For any physical matter distribution P and p must both be positive, in which

caseequation (14.52)can only be satisfied if 92 vanishes. It follows that F == 0
as well, so for static, extendedobjectswe have)

92 == F == O.) (14.53))

Since92 is zero, 91is given simply in terms of M(r) by)

2 2M(r)
91 == 1- .

r)
(14.54))

For this to hold we require that 2M(r)<r. This condition saysthat a horizon
has not formed anywhere in the object.

The remaining equation of use is that for Lt92'which now gives)

M(r)G9I == 2 + 47rrp.
r)

(14.55))

Equations(14.54)and (14.55)combinewith that for LrP to producethe Oppen-
heimer-Volkov equation)

ap
ar)

(p+ p)(M(r)+ 47rr3p)
r(r- 2M(r)))

(14.56))

This is the forcebalanceequation appropriatefor a relativistic matter distribu-
tion. The line element generatedby our solution is

ds2 - 1 de_ r
dr2 _ r2dfP - r2sin2

(B) dcp2-
(11)2 r -2M(r)

,) (14.57))
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where 11is given by equation (14.47).The solution extendsstraightforwardly to
the region outsidethe star.In this region M is constant, and)

11== l/g1 == (1-2M/r)-I/2.) (14.58))

We therefore recover the Schwarzschildline element. This is the solution used
for someof the most famous tests of general relativity, including those for the
bendingof light and the perihelion precessionof Mercury. Clearly, the gauge
theory framework doesnot alter any of theseresults.)

14.3Schwarzschildblackholes)

Perhapsthe most famous solution of the Einstein equations (apart from Lorent-
zian spacetime)is the Schwarzschildsolution for a blackhole. This solution
describesthe gravitational fields surrounding a point sourceof matter, of total
gravitational massM. One form of this solution isdescribedby the line element
of equation (14.57)for the caseof constant M. But this is ill definedat r == 2M
which, as we shall soondiscover,definesan event horizon. This tellsus that our

gauge choicehas not yieldeda satisfactory global solution, sowe must return to
the field equations to discoverwhat went wrong.

For a point sourcelocatedat the origin we have p == p == 0 everywhereaway

from the source.The matter equations therefore reduceto)

LtM == LrM == 0,) (14.59))

which tellsus that the massM is constant.The remaining equations simplify to

Ltgi == Gg2,

Lrg2 == FgI ,

gI
2- g22 == 1-2M/r.)

(14.60))

No further equations yield new information, so we have an underdetermined
systemof equations.Despiteall of the gauge-fixingsteps taken to arrive at the
set of equations summarised in table 14.2,for vacuum fields some additional
gauge fixing is still required.The reasonfor this is that, in the vacuum region,
the Riemann tensorreducesto)

M
R(B) == -

2r3(B+ 3arBar ).) (14.61))

Thistensoris now invariant under boostsin the ar plane,whereaspreviouslythe
presenceof the fluid velocity in the Riemann tensorvector brokethis symmetry.
The appearanceof this new symmetry in the matter-free casemanifests itself as
a new freedom in the choiceof the h function.

Given this new freedom,we can look for a choiceof gl and g2 which simplifies
the equations.If we attempt to reproducethe Schwarzschildline elementwe have)
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to set g2 == 0, but then we immediately run into difficulties with gl,which is not
defined for r < 2M.We must therefore look for an alternative gauge choice.A
suitablecandidate,motivated by the pressure-freeequations, is provided by the
simplechoice)

gl == 1.) (14.62))

It follows that)

11== 1,) g2 == -J2M/r) (14.63))

and)

G == 0
,)

M
(

M
)

1/2
F - ---

g2r2
-

2r3 .) (14.64))

In this gauge the h function has the remarkably simple form)

h(a) == a -J2M/ra.er et.) (14.65))

This only differs from the identity through a single term. The line element
obtainedfrom this gauge choice is)

( )
2

2M 1/2
ds2 = dt2 - dr + (--;:-)dt - r2

(dB2 + sin2
(B)dcjJ2),) (14.66))

which is regular at the horizon (r == 2M) and covers all spacetimedown to
r == O.Thisform of the line elementwas first derivedby Painleveand Gullstrand,
not long after Schwarzschild'soriginal work was published.Despitethe many

advantages of this form of the solution, it has not been routinely employed in

solving physical problems.
The h field of equation (14.65)is the form of the Schwarzschildsolutionwewill

use for studying the propertiesof spherically-symmetricblackholes.Of course,
all physical predictionsmust be independentof gauge, but this only reinforces
the point that we should always endeavourto work in a gauge that simplifiesthe
analysis as far as possible.The resultsfor the extensionto the action of h to an

arbitrary multivector A are useful in what follows.We find that)

h(A) == A -J2M/r(A.er)Aet.) (14.67))

It follows that det (h) == 1and the inverseof the adjoint function, as defined by

equation (4.152),is given by)

h-I(A)== A + J2M/r(A.et)Aer .) (14.68))

It is straightforward to verify that this function recovers the line element of
equation (14.66).)
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14.3.1Pointparticletrajectories
The motion of a classicalpoint particlein free fall is governed by the geodesic
equation)

v.Vv == v + w(v).v == o.) (14.69))

The massm of the particleis unimportant (provided m \302\253 M), and is set to
unity throughout this section.SinceG == 0 in our chosengauge, we immediately
seethat)

w( et) == O.) (14.70))

It follows that v == et is a solution of the geodesicequation. The trajectory this
defineshas)

x == h (v) == h (et) == et + uer ,) (14.71))

where)

u == r == -y'(2M/r).) (14.72))

Particles,or observers,following the geodesicdefined by v == et fall in radially
with velocity r given by the familiar Newtonian formula. Furthermore, we see
that t == 1,so the time coordinate t is preciselythe time measuredby these
infalling observers.This is, in part, why the gaugechoicewe have adoptedturns
out to simplify many calculations.

Now considera more general trajectory, with covariant velocity)

v == tet + (t V 2M/r+ r)er + Oee+ \037eq)') (14.73))

Sincethe h function is independent of t we have, from equation (13.272),)

h-I(et)'v== (1-2M/r)t- r v2M/r == constant.) (14.74))

So,for particlesmoving forwards in time (t > 0 for r ---+ 00),we can write)

(1-2M/r)t == Q+ rV 2M/r,) (14.75))

where the constant Q satisfies Q > O. The radial equation is found from the
constraint that v2 == 1,which gives)

r2 = 02 - (1-2M/r)(1+ r2
(iP + sin2(e)

\0372)).)
(14.76))

Sphericalsymmetry implies that the angular velocityJ is also conserved,where)

J2 == r4
(02+ sin2

(O)\0372).) (14.77))

The motion of a particlearound a blackhole is therefore determined by the
single radial equation)

r2 = 02 - (1- 2M/r) (1+
\037: )

.) (14.78))
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This equation is gauge-invariant, as it relateslocal quantities.The radial coor-
dinate r isdefinedlocallyby the magnitude of the Riemann tensor,and the dots
denotethe derivative with respectto (local) propertime. This transition from

global to local variables is in keepingwith the gauging process.The motion of
a particlein spacetimeis obtainedby integrating equations (14.78)and (14.75).
At the horizon we have r == -ct,so there is no polein equation (14.75),and the
equations can be integrated down to the singularity.

Differentiatingequation (14.78)we obtain)

M J2 3MJ2r == --+ --
r2 r3 r4) (14.79))

The equivalent three-dimensionalvector equation is)

.._ _ (
M 3MJ2

)
A

X - 2 + 4 x.r r) (14.80))

This equation was analysed perturbatively in section3.3.1.For stableorbitsthe
main new effectintroducedby relativity isa smallperturbation ofthe eccentricity
vector. The content ofequation (14.78)can similarly be summarisedin the radial
effectivepotential (perunit mass))

Veff
= -M

+
J2

(1_ 2M
) .r 2r2 r) (14.81))

We then have)

ct2 -1 r2

2
== 2+ Veff) (14.82))

which identifiesma as the conservedrelativistic energy of the particle.Bound
states have ct < 1and scatteringstates have ct > 1.

The effectivepotential differs from the Newtonian expressionin the factor
of (1-2M/r) multiplying the centrifugal term.This has little effect at large
distances,but dramatically alters the small-r behaviour. Insider == 2M the
centrifugal term in the effectivepotential changes sign and becomesattractive.
Thereis no longer any term in the potential applying an effectiveoutward force,
and the particlemust inexorably move towards the central singularity. One can
seethis clearly in equation (14.73).Insidethe horizon the velocity r must be
negative in order for v2 == 1to remain satisfied. Onceinsidethe horizon, no

particlecan escapethe singularity, no matter what force is appliedto attempt
to counteract the gravitational pull. Eventually, the tidal forces (definedby the
Riemann tensor) becomeso large that all objectsare pulled apart into their
constituent particles.)
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14.3.2Photontmjectories)
A full treatment of the propertiesof electromagnetic waves in a gravitational
background involves solving the gravitationally-coupled Maxwell equations of
section13.5.8.For a range of practical problemsit is sufficient to ignore the
detailedpropertiesof the electromagneticfield, and work in the geometricoptics
limit. In this approach,photons are treated as massless(scalar)point particles.
Theseparticlesfollow null trajectorieswith)

k == h-I(x),) k2 == O.) (14.83))

The trajectoriesare still specifiedby the equation k.Vk == O. For radial infall
we must have)

k == v(et - er ),) (14.84))

where v == k . et is the frequency measuredby radially free-fallingobservers
(at rest at infinity). The photon trajectory is independentof the frequency,as
demandedby the equivalenceprinciple.The path definedby k is given by)

x == h (k) == v (et - (1+ V (2M/r))er ) .) (14.85))

It follows that)
dr
dt

== -(1+ V(2M/r)).) (14.86))

This integrates straightforwardly to give the photon path. We have therefore
found the path without employing the equation of motion. This is possible
becausewe restrictedto motion in a singlespacetimeplane.

The equations of motion tell us how the frequencychangesalongthe path. To
find this we need)

(
M

)

1/2
w(k) == -v

2r3 ar,) (14.87))

from which we seethat)

. _ 2
(

M
)

1/2
v-v 3 .

2r

This equation is more usefully expressedin terms of the derivative with respect
to r. We use)

(14.88))

r == -v(1+ v(2M/r))) (14.89))

to arrive at)

1dv

v dr)

M 1
r 2M+ V(2Mr))

1 1
2r V r /rs+ 1') (14.90))

where rs == 2M is the Schwarzschildradius. This equation can again be inte-

gratedstraightforwardly to tell us how frequencyv changeswith radius.We see
that nothing untoward happensuntil r == 0 is reached.)
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We can repeat the previous analysis for outgoing photons. For this casewe
have)

k==v(et+er)) (14.91))

and the path is)

x == h(v) == v(et + (1-y'(2M/r))er ).) (14.92))

It follows that)

dr
dt

== 1- y'(2M/r).) (14.93))

But now, when r < 2M the path is still inwards. Insider == 2M, not even
light can escape.The surface r == 2M is calledthe event horizon. It marks the
boundary between two regions,one of which (the interior in this case)cannot
signal to the other.We also find that)

1dv
v dr)

M 1
r 2M- y'(2Mr))

1 1
2r vr/rs- l') (14.94))

which is negativeoutsidethe horizon. So,as photons climb out of a gravitational
field, they are redshift ed. This is one of the best-testedpredictionsof general
relativity. The redshift becomesincreasinglylarge as the horizon is approached,
so photons emitted from near the horizon are strongly redshifted as they climb
out to infinity. The various features of radial motion in a blackhole background
are shown in figure 14.1.One conclusionfrom this plot is that, asseenby external
observers,any objectfalling through the horizon appearsto hover outsidethe
horizon and just fade out of existenceas the redshift increases.

If any objectcollapsesto within its event horizon, it must carryon collapsing
to form a central singularity. There isno possibleforcecapableof preventingthe
collapse.This is becausematter is always constrainedto follow timelike paths,
and if the entire future light-conepointsinwards towards the singularity, no mat-
ter can escape.The objectremaining at the endof this processis calleda black
hole. All paths for infalling matter terminate on the singularity. There has been
much researchinto the propertiesof singularities, though their nature remains
enigmatic. In one sense,gravitational singularities are no more difficult to deal
with than singularities in the electromagnetic field due to point sources.They
can alsobe analysed in much the same way using integral equations.But this

(classical)treatment of singularitiescan only contain part of the story. Quantum
mechanically,blackholes have an associatedentropy, implying the existenceof
a seriesof microstatesconsistent with the macroscopicpropertiesof the hole.
It is widely believed that a more completeunderstanding of quantum gravity
should explain this phenomenon through a detailedquantum descriptionof the
singulari ty.)

515)))



GRAVITATION)

8)

----...---.........-.........10 ............................
\"'1IIiII.)

6)

t)

4)

2)

o
0) 1) 2) 3) 4) 5) 6)

r)

Figure 14.1Matter and photon trajectoriesin a black hole background.
The solid lines are photon trajectories,and the horizon lies at r == 2.
Outsidethe horizon it is possibleto sendphotons out to infinity, and hence
communicate with the rest of the universe. As the emitter approaches
the horizon, thesephotons are strongly redshifted and take a long time to
escape.Onceinside the horizon, all photon paths end on the singularity.
The broken lines representtwo possibletrajectoriesfor infalling matter.
TrajectoryI is for a particlereleasedfrom rest at r == 4. TrajectoryIIis
for a particlereleasedfrom rest at r == 00.)

14.3.3Stationaryobservers
It is instructive to seehow physicsappearsfrom the point of view of stationary
observersin a Schwarzschildbackground.Theseobservershave constant r, 0, cp,
so)

x == tet.) (14.95))

It follows that)

v == t(et + J(2M/r)er ).) (14.96))

But we require that v2 == 1for the path to be parameterisedby the observer's
propertime, so)

t2(1-2M/r) == 1,) t == (1-2M/r)-I/2.) (14.97))
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This is a constant, sincer is fixed for theseobservers.We can seeimmediately
that it is only possibleto remain at rest outside the horizon. This is reasonable
given the precedingconsiderations,though the picture is not quite soclear if the
blackhole is rotating. For this casethere is a region outsidethe horizon within

which it is impossibleto remain at rest (though it is still possibleto escape).
The covariant acceleration bivector for a particlewith velocity v is definedby)

(v .Vv) J\\ v == vv + w (v) .v v.) (14.98))

This gives the acceleration requiredto follow a given path. For stationary ob-
servers we have)

M
(v.Vv)l\\v =

r2(1-2Mjr)l/2
aro

Soan observer with massm needsto apply forceof Mm/r2x (1-2M/r)-1/2to
remain at rest.This is the Newtonianvaluemultiplied by a relativistic correction
term.This correction becomesincreasinglylarge as the horizon is approached,
as one would expect.

We can now look at physicsfrom point of view of theseobservers,which can be
viewedas both beingstationary and having constant acceleration.For example,
if a secondobserver has velocity )'0 (sois in free fall), the relative velocity the
two observersmeasure when their positionscoincideis)

(14.99))

vl\\io = V(2Mjr)ar . (14.100)v.)'o
As we might expect,this is the Newtonian result. The only differencenow lies
in the interpretation of who is accelerating.The stationary observer is the one
applying a force, sowe now say that it is this observer that is accelerating.The
observer in free fall is applying zero force, so is not accelerating.That is, we no

longer view gravity as applying a force, as this would require a conceptof what

the particlewould have done if the gravitational field were not present. Such a
conceptis not gauge-invariant,so is unphysical)

14.3.4Absorptionand scattering
The presenceof the horizon implies that incident particleswith total energy
E > mc2 can suffer two fates. Either they will be scatteredby the gravitational
fields,or they will be absorbedonto the central singularity. The crucial quantity
that determinesthe fate of the particleis the angular velocityJ. In figure 14.2we

plot the effectivepotential of equation (14.81)for a range of angular velocities.
If J is too small there is nothing to prevent the particlehitting the singularity.
As J increases,the effectivepotential developsa barrier. If this barrier isgreater
than the total (non-relativistic) energy, the particleis no longer absorbed,and
insteadis scatteredby the blackhole.)
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Figure 14.2The gravitational effective potential. The potential for a unit

mass particleis defined by equation (14.81),and units are chosenso that

the horizon lies at r == 2. The plots are for J values of 0, 4, 8, 16and
24. For small J nothing prevents the particlehitting the singularity. As

J increasesa barrier of increasing height is formed. If the particle has
insufficient energy to surmount this barrier it is scattered.)

For a given energy,we can determine the critical value of J that distinguishes
between absorptionand scattering.This is most usefully encodedin terms of an

impact parameter b, as illustrated in figure 14.3.Asymptotically, the incoming
particlehas angular velocity)

J == br(00) .) (14.101))

But in this regionthe energy is determined entirelyby r, sothe impact parameter
is given by)

b2
==

J2
2 1'a -) (14.102))

where a is the energy per unit massof the incident particle,as defined in equa-
tion (14.75).For a fixedenergy,the critical value of J therefore determinesthe
critical value of the impact parameter. From the point of view of absorption,
the blackhole then appearsas a discof radius b, and the total absorptioncross
sectionis defined by)

aabs == 7rb
2

.) (14.103))
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Figure 14.3The impact parameter. In the asymptotic incoming region,
the impact parameterb measuresthe distancebetween the incoming tra-
jectoryand a parallelradial trajectory. For a black hole there is a critical
value of b inside which all geodesicsterminate on the singularity. The
diagram alsodefines the scattering angle e.)

This will be a decreasingfunction of energy-the faster the particleis travelling,
the lesslikely it is to be absorbed.

The algebraneededto compute the absorptioncrosssectionis straightforward,
if a little tedious.First we write x == 1/r, so that the effectivepotential becomes

b2
(a2 -1)

Veff
== -Mx+ x2(1- 2Mx).

2)
(14.104))

The turning point is at)

1
( (

12M2
)

1/2

)Xc =
6M

1+ 1-
(a2_ 1)b2

.) (14.105))

To find b the equation we needto solve is therefore)

2Veff (xc) == a2 - 1.) (14.106))
The solution then returns the absorptioncrosssection

7rM 2
(J\"abs

=
2u4 (8u

4 + 20u2 -1+ (1+ 8u2
)3/2),

where we have expressedthe result in terms of the velocity u:)

(14.107))

p2u2 == _
E2)

a2-1
a2) (14.108))

The absorptioncrosssectionis plotted in figure 14.4.For small velocitieswe see
that)

167rM2)

u 2) (14.109))aabs f----+)

As the incident velocitydecreases,the absorptioncrosssectionincreases,as is to
beexpected.As the velocityincreasesthe absorptioncrosssectiontendstowards)
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Figure 14.4 Theclassicalabsorption crosssection.The crosssectionis a
function of the incident velocity u (in units of c).As the velocity approaches
the speedof light the crosssectionapproachesthe photon limit, as shown

by the straight line. The vertical axis is in units of (GM/C2
)2.)

the limiting result for a masslessparticle.For these the effectivepotential is

simply)

Veff
= J2

(1_ 2M
)

.
2r2 r)

(14.110))

The turning point occursat r == 3M, at which the effectivepotential has the
value J2/54M2. Equating this with asymptotic energy J2/2b2 we seethat for

photonsb2 == 27M2, and the photon absorptioncrosssectionis)
,)

aabs == 1Tb2 == 271TM2
.) (14.111))

This is the limiting value of equation (14.107)as u r--+ 1.In section14.4.3we

study how thesefeatures are modifiedby a more complete,quantum treatment
of the absorptionprocess.

Scatteringpresentsa more difficult problem.The differential scatteringcross
sectionfor a Newtonian l/r potential is determined by the Rutherford formula

da M2

dO,
-

4u2sin4
(O/2)')

(14.112))

where 0 is the scatteringangle and u is the velocityof the incident particle.This
formula relatesthe incident crosssectional area a to the solidangle do',where)

da == 21Tbdb,) dO,== 21Tsin(O)dO.) (14.113))
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The Rutherford crosssectionformula is easily computed from the propertiesof
hyperbolic trajectories.The relativistic correctionsto the Rutherford formula
are generatedby the additional r-3 term in the potential. This term makes
the problemconsiderablymore difficult to solve,and no simpleanalytic formula
exists for the classicalscatteringcrosssection.One problem is that it is now

possiblefor particlesto spiral around the centre before escaping.We could
build up a perturbative picture of the scatteringproblemusing the techniques
describedin section3.3.1,though the resulting expressionsare usually extremely
complicated.A better approach to this problem is describedin section14.4.1,
where the crosssectionis calculated using perturbative quantum theory.)

14.3.5Electromagnetismin a black holebackground
Further insight into the nature and effects of a blackhole is obtained by con-
sideringthe electromagnetic fields surrounding chargesheld at rest outsidethe
horizon. The relevant equations wereobtainedin section13.5.8.We assumethat
the charge is placedat a distancea > 2M along the z axis.The vector potential
can be written in terms of a single scalarpotential V (r,B) as)

(
v/2Mr

)A==V(r,B) et+r_2Mer ,) (14.114))

so that)

av 1 av A:F= -
or eret - r _ 2M ae e(et+ ;/2Mjrer )) (14.115))

and)

av 1 av A

D == --
a eret - aB Bet.r r - 2M

The Maxwellequations now reduceto the singlepartial differential equation)

(14.116))

1 a
(

2 av
)

1 1 a
(

. av
)r 2 or r or +

r(r - 2M)sin(e)ae sm(e)ae
= -p,

where p == q8(x-a) is a 8-function at z == a. The solution (originally found by

Linet) is)

(14.117))

V( B) == !L(r-M)(a-M) -M2cos2(B) qM
r, d +,ar ar) (14.118))

where)

d == (r(r-2M)+ (a-M)2-2(r-M)(a-M)cos(B)+ M2 cos2(B))1/2.(14.119))
When this result is substituted back into equation (14.115)we seethat the
covariant field:Fis both finite and continuous at the horizon. It follows that we)
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Figure 14.5Streamlines of the electricfield in a black hole background.
The horizon liesat r = 2 and the chargeis placedon the z axis. In the
left-hand diagram the chargeis held at z = 3, and in right-hand diagram
it is at z = 2.1.)

have found a global solution to the electromagnetic field equations, appropriate
both insideand outsidethe horizon.

One way to illustrate the global propertiesof :Fis to plot the streamlinesof
D.Equation (13.279)ensuresthat thesestreamlines beginand end on charges,
so for our caseof a single isolatedcharge they should therefore spreadout from

the charge and cover all space.Furthermore, sincethe distancescaler was
chosento agree with the gravitationally-defineddistance,the streamlines of D
conveygenuineintrinsic information. The plotsthereforeencodegauge-invariant
information about the electromagneticfield. Figure 14.5showsstreamline plots
for chargesheld at different distancesabove the horizon. A polarisation charge
is clearly visible at the origin, and streamlines are attracted towards this but

never actually meet it.The effectsof the polarisation charge can be felt outside
the horizon as a repulsive force acting backon the charge.That is, lessforce
is requiredto keepa charge at rest outsidea blackhole than is requiredfor an

uncharged particle.The fact that the origin of this effect liesinsidethe horizon
reinforcesthe importance of constructing global solutions to the field equations.)

14.3.6Othergauges)
Before proceedingit is useful to study the vacuum sphericalequations in an

arbitrary gauge.We return to the sphericalequations before the 12 == 0 gauge
choice was made, and again imposethat M is constant. The equations that)
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remaIn are)

g1
2 - 92

2
== 1-2M/r) (14.120))

and)

8rg1 == G,) 8r92 == F,) (14.121))
and all fields are functions of r only. The bracketrelation of equation (14.35)
gIves)

928r f2 - g18rf1 == Gfl - Ff2,) (14.122))
from which it follows that)

8r (f191- f2g2) == 8rdet (h) == O.) (14.123))
The determinant of h is constant, and the value of this constant dependson the
choice of gauge.Becausethe Riemann tensor falls off as r-3 we always choose
to work in a gauge where h tendsto the identity as r 1---+ 00.In this casewe have
det (h) == 1,so we can write)

figi - f292 == 1.) (14.124))
No other equations remain to fix the solution further. We therefore have two

free functions in the choiceof h function.
A useful alternative to the Newtonian gauge chosen in this sectionis to write

the solution in Kerr-Schildform. For this for we set)

91==I-M/r,
fI==l+M/r,)

92 == -M/r,
f2 == M/r.)

(14.125))

In this casethe h function takeson the compact form

- M
h(a) == a + -a.e_e_,

r)
e_ == et - er .) (14.126))

This algebraicform has a number of convenientalgebraic features. The first is
that the solution is of the form of the identity plusan interaction term, as is also
the casein the Newtonian gauge setup. The secondis that this form of h(a) is
a symmetric function. Finally, e- is a null vector that satisfies h(e_) == e_. All

of thesefeatures can be employedto simplify calculations.
The line element generatedby our general form of h function is)

ds2 ==(1- 2M/r) dt2 + 2(fI92- f29I) dt dr - (f12 - f22)dr2

- r2
(d(}2+ sin2

((})d<jJ2). (14.127))
This in effect contains one arbitrary function, becausethe constraint on the
determinant fixesone of the two unknown coefficients.The remaining unspecified
degreeof freedomliesin the rotation gauge, which doesnot affectthe metric.We

can draw an important conclusionabout the metric by consideringits behaviour)
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at the horizon. There we must have 91== ::i:92,and we know that fI91-f292 == 1
globally. It follows that)

fIg2 - f291==::i:lat r == 2M,) (14.128))
so the off-diagonalterm must be either +1or -1at the horizon. The presence
of the horizon must break time reversal symmetry. This is to be expected.For
a blackhole (correspondingto the negative solution),the horizon is the place
where particlescan fall in, but cannot escape.The oppositevalue at the horizon
(correspondingto a positive value of g2 in the Newtonian gauge) defines an

object from which particlescan escape,but no particlecan crossthe horizon.
This is calleda white hole, though it is unclear whether such a solution defines
a physicallyrelevant object.)

14.4Quantum mechanicsin a blackholebackground
The gauge theory formulation of gravity is motivated by constructing gauge
fields to ensurethat the Diracequation is covariant under local rotations and
displacements.We now study the effects of the blackhole gauge fields on a
Dirac fermion. Assuming that no electromagnetic couplings are present, the
minimally-coupledequation takesthe familiar form)

D'ljJI0'3== m'ljJro.) (14.129))

The simplicity of the h field in the Newtonian gauge suggeststhat this will be
the simplestgauge to work in. As always,we must ensurethat the all physical
predictionsare gauge-invariant. With the gravitational fields as describedin

equations (14.64)and (14.65),the Diracequation becomes)

(
2M

)
1/2

(
0 3

)\"\\l'ljJI0'3
-

--:;:- ro or 'ljJ + 4r 'ljJ 10'3== m'ljJro.) (14.130))

If we pre-multiply by rO and employ the i symbol to representright-sidedmul-

tiplication by 10'3,then equation (14.130)becomes

(
2M

)
1/2 1 0 -

iot'ljJ == -iV'ljJ+ i - --
(r3/4

'ljJ ) + m'ljJ,r r3/4 or) (14.131))

where'ljJ == ro'ljJro. We seethat the Newtonian gaugehas enabledus to write the
Diracequation in a very straightforward Hamiltonian form. One reasonfor this

simplicity is that the spatialsectionsdefined by the time coordinate t are flat.
The interaction Hamiltonian in equation (14.131),with all constants included,)

IS)

'\"

(
2GM

)

I/2

(
0 3

)HI('ljJ)
== i n r or + 4r 'ljJ

.) (14.132))
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This single term incorporatesall gravitational effects exertedby a blackhole
on a Diracfermion. A number of observations can be made immediately. The
first is that the interaction Hamiltonian does not dependon the mass of the
particle,which is how the equivalenceprincipleis embodiedin the Diracequa-

A

tion. The secondpoint is that HI doesnot dependon the speedof light. The
non-relativistic approximation is therefore straightforward, following the tech-
nique ofsection8.3.3.To lowestorderin c-I we obtain the Schrodingerequation
with interaction determinedby ifI. For stationary states this equation is)

_ 11?
V 27jJ+i n (

2GM
)

1/2
\037\037 (r3/4'ljJ ) ==E'ljJ,2m r r3/4 8r) (14.133))

where
'ljJ

now denotesthe Schrodingerwave function. This equation is simplified
by introducing the phase-transformed variable)

I}J =
7jJ exp(-i(8r/ac)1/2),) (14.134))

where)

n?
ac ==

GMm2 ') (14.135))

The distanceac is the gravitational analogueof the Bohr radius for the hydrogen
atom. The new variable W satisfies the simple equation

n? 2 Mm--VW- -w == Ew.
2m r) (14.136))

This is preciselythe equation we would expectif we usedthe Newtonian grav-
itational potential. The solutions for Ware therefore Coulomb wavefunctions.
The non-relativistic limit enablesus to make two immediate predictions.The
first is that a spectrumof bound states should exist,with similar propertiesto
that of the hydrogen atom. The secondis that, in the non-relativistic limit, the
scatteringcrosssectionshould be determinedby the Rutherford formula. This
latter predictionis confirmed in the following section.

A

The interaction Hamiltonian HIhidesa significant feature, which is that it is
not Hermitian due to the presenceof the singularity. To see this we form the
differencebetween HIand its adjoint. With rp and

'ljJ
both Diracspinorswe find

that)

Jd3x(q}ih(7jJ))q= V2MJdO.1
00

dr(r3/4q}8r(r3/4
7jJ)J0'3)q

= Jd3x ((ih(cjJ)t7jJ)q + v2M JdO.
[T3/2(cjJt7jJJ0'3)q]\037,

(14.137))

where we follow the convention of section8.1.2.We will seeshortly that all
wavefunctionsapproach the origin as r-3/4. The boundary term at the origin
therefore does not vanish, and the Hamiltonian is not Hermitian. It follows)
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that any normalisable stationary state must have an imaginary component to
its energy. This is sensible.For all states the covariant current vector is always
timelike. Insidethe horizon this vector must point inwards, towards the singu-
larity, so current density is inevitably swept onto the singularity. This implies
that bound states must necessarilydecay, so we expectthe energy to have an

imaginary component.)

14.4.1Scattering
The Diracequation (14.131)is ideally suitedto a perturbative scatteringcalcu-
lation employing the methods of section8.5.We seekan iterative solution to the
Green'sfunction equation)

(i\"9
2 -B(X2)-m)SC(X2,xd = 84

(X2
-xd,) (14.138))

where)

(
2M

)
1/2

(
8 3

)B(x)== iio --:;:- 8r + 4r
.) (14.139))

As usual, the hats denoteoperatorswhich act on spinors,and in this sectionwe
retain the familiar i symbol to denotethe complexstructure.

The iterative solution to equation (14.138)is given by

SC(Xj,Xi)= SF(Xj,Xi)+ Jd4xlSF(xj,xdB(xdSF(Xl,Xi)

+ JJd4Xl d4
x2 SF(xj,xdB(xdSF(Xl,X2)B(X2)SF(X2,Xi)+...,(14.140))

where SP(X2,XI) is the free-field,position-spaceFeynman propagator.The in-
teraction term B(x) is independentof time so energy is conserved throughout
the interaction. Converting to momentum spacewe find that the scattering
multivector Tfi, as defined in equation (8.229),is given by)

Tji = (pj+ m)
(B(Pj,Pi)

+ J (\037:\0373
B(pj,k) k2 \037 :;n+if B(k,Pi)+ ...).

(14.141)
HereB(P2'PI) denotesthe spatialFourier transform of the interaction term,

B(P2,Pl)== (2M)1/2iioJd3xe-iP2'X\037(
\037 + \037 ) eiPl'X,rl/2 8r 4r) (14.142))

where bold symbols refer to spatialcomponents only. To evaluate this we first

write)

B( ) == (2M)1/2'\"
(

\037 f( _ ) + 8f()..Pl-P2)
)P2,Pl 'l1'o 4 Pl P2

8A
'

,,\\=1)

(14.143))
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where)

J
ip.X

(
2

)
3/2

f(p) = d3xe
r3/2 =

,;) (14.144))

We therefore find that the momentum-spaceinteraction isgovernedby the vertex
factor)

2 2

B( )
- 3/2\"

(M)I/2 P2 -PI AP2,Pl- 3w z
I

_ 17/2
10.

P2 PI
This factor has the unusual feature of vanishing if the ingoing and outgoing
particlesare on-shell,becauseenergy is conserved throughout the process.It
follows that the lowestordercontribution to the scattering crosssectionvanishes.
This is to be expected,as the vertex factor goesas VM, and we expectthe
amplitude to go as M to recover the Rutherford formula in the low velocity
limi t.

Working to the lowestnon-zeroorderin M the scatteringmultivector becomes)

(14.145))

Tfi == -97r3M(Pf + m)ioIlio,) (14.146))

where)

II == J
d3k p/ \037 k2

k + m k2 -Pi
2

.
(27r)3 IPf

- k1
7/2 k2 -m 2 + if Ik -Pi17/2) (14.147))

Herewe have explicitly included a factor of if to ensurethat any polesin the
complexplane are navigated in the correct manner. However,we have)

k2 _ m2
== E2 - k2 _ m2

== p2 _ k2
,) (14.148))

where E is the particleenergy and p2 == Pi2 == Pf 2. The pole in the propagator
is therefore cancelledby the vertex factors, so there is no needfor the factor of
if in the denominator. The integral we needto evaluate is therefore)

J d3k k2_p2 Ah =
(2w)3 Ipi _ k1

7/2
1k _ Pi17/2(k + m),) (14.149))

and the result of this integral is)

h =
9 \037 2 (2m + 3(Pi+ Pi) -4Ei'0),

7r q
where q == Pf -Pi'The scatteringmultivector is now given by)

(14.150))

47rM
(

2
)Tfi == -

2 E(2E+ q) + P + PfPi .
q)

(14.151))

This should be contrastedwith the equivalent expressionfor Coulombscattering,
given in equation (8.237).We seeimmediately that the coupling term goes)
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with the particleenergy, rather than its mass. This is becausethe interaction
Hamiltonian is independent of m. The unpolarisedcrosssectionis given by

da _ ITfil
2

dO 167r2

2M2
(

2 2 2 2 2 2
)== \037m (E -Pf.pz)+(2E-m) +4EPf'Pi.

q)
(14.152))

If we now let v == Ipi /E denotethe particle velocity,and 0 the scatteringangle,
we arrive at the simple expression)

da
dO)

M2

4 . 4 (1+ 2v2 - 3v2sin2(0/2)+ v4 - v4sin2
(0/2)).4v SIn (0/2))

(14.153))

As demandedby the equivalenceprinciple,this formula dependsonly on the
incident velocity, and not on the particlemass. This confirms that the equiv-
alence principleis directly encodedin the Dirac equation as a consequenceof
minimal coupling.The final crosssectionformula is gauge-invariant. We can
perform analoguesof this calculation in a range of different gauges,and the same
result is obtainedin all cases.Furthermore, all terms in the result have local,
gauge-invariantdefinitions. The massM can be defined in terms of tidal forces,
and the velocity v is that measuredlocally by observersin radial free fall from

rest at infinity. The angle 0 is the angle between asymptotic in and out states,
measuredlocally in the asymptotic regime.

The crosssectionof equation (14.153)confirms that the low velocity limit

recoversthe Rutherford formula. The masslesslimit m 1---+ 0 is also well defined,
and is obtainedby setting v == 1.This producesthe simpleformula)

da
dO)

M2cos2(O/2)
sin4

(0/2))
(14.154))

The small angle limit to this gives a crosssectiongoing as (4M)2/04.This re-
covers the classicalformula for the bending of light by a massivesource.While

the calculation here has assumeda point masssource,the small angle limit is

appropriatefor any localisedsourceof gravitational massM. The masslesslimit

contains a surprisein the backwarddirection,however.Simulationsof scattering
basedon masslessparticlesfollowing null geodesicsreveal a large 'glory' scat-
tering in the backward direction.This is absent from the quantum treatment,
and is a diffraction effect for masslessspin-l/2particlesthat is not evident at
the classicallevel. The schemedescribedhere can be modified to the caseof a
scalarfield, and producesthe differential crosssection)

du
dO)

M2
(1+ v2

)
2

4v4sin4(0/2)
.) (14.155))

Again, weseethat the equivalenceprincipleis obeyed,and the varioussmallangle
and low velocityapproximationsare retained.The classicalcrosssectioncontains)
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further structure, attributable to multiple orbits. In the quantum framework

theseeffectsshould be presentin the higher-order terms.)

14.4.2Stationarystatesand angularseparation)
The Diracequation in the Newtonian gauge is immediately separablein space
and time, and admits stationary state solutions of the form)

1/J(x) == 1/J(x) exp(-EtI0'3)') (14.156))
If the state isnormalisablethen E contains an imaginary componentdetermined
by)

Im(E)= -V2M
lim r3/2

fdrl (1/Jt1/J),2N r--+Q

where N is the normalisation constant)

(14.157))

N =
Jd

3x (7/J
t

7/J).) (14.158))

As expected,the sign of the imaginary componentofE correspondsto a decaying
wavefunction. This behaviour is independentof the sign of the real part of E, so
both positive and negative energy statesmust decay. For scatteringstateswe do
not demand that 1/J is normalisable, and can look for solutions where the energy
is real, with E >m.

With the time dependenceseparatedout, equation (14.131)reducesto)

V1/J - (2M/r)1/2r-3/48r(r3/41/J)
== iE1/J - imiJ;.) (14.159))

To solve this equation we follow the standardprocedurefor a central potential
and separateout the angular dependence.This is achievedusing the spherical
monogenics,describedin section8.4.1.We assumethat the wavefunction takes
the standard form of)

( )
{

1/Jzu(r)+ ar1/Jzv(r)I0'3
1/Jx\037 ==, ar 1/Jzu(r)0'3+ 1/JzIv(r))

\037
== l + 1,

\037
== -(l+ 1),)

(14.160))

where\"\" is a non-zero integer and u(r) and v(r) are complexfunctions of r only.
On substituting this wavefunction into the Dirac equation (14.159)we obtain
the pair of coupledradial equations)

(
1 -(2M

1
/r)1/2

) (U
UI

'2

I
)

== A (
U

U2

I

) ,-(2M/r)1/2) (14.161))

where)

A- (
\"\"/r-

i(E-m) - (2M/r)I/2(4r)-I)
i(E+ m) - (2M/r)I/2(4r)-I

)-\037/r
'

(14.162))
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Ul and U2 are the reducedfunctions defined by)

Ul == ru,) U2 == zrv) (14.163))

and the primesdenote differentiationwith respectto r.The form of this equation
should be contrastedwith the hydrogen atom of section8.4.3.

To analyse equation (14.161)we first rewrite it in the equivalent form)

(
u

) (
1 (2M/

l
r)1/2

) A
(U

U

2
1

)
.(1-2M/r)

u\037

=
(2M/r)1/2) (14.164))

This makes it clear that the equations have regular singular pointsat the origin
and horizon (r == 2M),as well as an irregular singular point at r == 00.Unfor-

tunately, the specialfunction theory requiredto deal with such equations has
not been developed.Hypergeometricfunctions are appropriatefor differential

equations with three regular singular points, or one regular and one irregular
singular point. An attempt to generalisehypergeometric functions results in

Heun'sequation, but most techniques for handling this involve seriessolutions
and numericalintegration, sotheseare the techniquesthat must be appliedhere.
The presenceof the three singular pointsimplies that any powerserieswill have
a limited radius of convergence,so typically these can only be used to define
initial data for numerical integration routines.

A Frobenius seriesabout the origin shows that both UI and U2 approach the

origin as r1/4. It follows that the wavefunction goesas r-3/4 near the origin,
as was stated earlier.For normalisable states this behaviour ensuresthat the

energy contains an imaginary decay factor. Next we construct a seriesabout the
horizon by writing)

00
8,,\", k

Ul == 1] \037ak1] ,
k=O)

00

U2 == 1]8Lbk1]k,
k=O)

(14.165))

where1]== r-2M.On substituting this seriesinto equation (14.164),and setting
1]== 0, we obtain)

s
(

ao

) (
1 1

) (
\037/(2lYf) i(E+ m) - (8M)-1

) (
ao
)2M bo

== 1 1 i(E-m) - (8M)-1 -\037/(2M) bo
.

(14.166)
The two values of the indexs for which this has non-zerosolutions are)

s == 0 and s == -
\037

+ 4iME.) (14.167))

The s == 0 solution correspondsto an analytic power serieswith a well-defined
wavefunction at the horizon. Such solutions are certainly physical.The second
root gives rise to a wavefunction that is singular at the horizon, and as such is
physicallyinadmissible.As a consequence,it is not possibleto construct a com-

pleteset of outgoing modesat infinity and in any scatteringprocesssomeof the)
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wavefunction is lost.This is the quantum-mechanicaldescriptionof absorption
by a blackhole.

Beforeproceeding,we should confirm that the two indicialrootsat the horizon
are gauge-invariant, and not an artifact of our various gauge choices.This is
important becausethe singular indexcan be used to determine the Hawking
temperatureof the blackhole.The method we use to confirm gauge invariance
is quite general and can be appliedto a range of situations.We start by keeping
the gauge unspecifiedso that, after separatingout the angular dependence,the
Diracequation reducesto)

(
Lr Lt

) (
Ul

) (
li/r-G/2 im-F/2

) (
Ul

)Lt Lr U2
- -im-F/2 -\037/r

-G/2 U2') (14.168))

We can still assumethat the time dependenceis of the form exp(-iEt),so that
equation (14.168)becomes)

(:\037 :\037) (:D= B
(:\037)

,) (14.169))

where)

B == (
\037/r

-G/2 + if2E
-i(m-fIE) - F/2)

i(m+ fIE) -F/2
)-\037/r

-G/2+ if2E
.) (14.170))

The form of time dependenceis gauge-invariant, sincethe time coordinate is
defined by the requirement that the Riemann tensor is stationary. Given a time
coordinatet, a general displacementconsistentwith this requirement takes the
form)

t r--+ t f
== t + a(r) ,) (14.171))

where a is a differentiablefunction of r. This ensuresthat stationary states all
go as exp(-iEt),regardlessof the choiceof time coordinate.

Now, since912-922 == 1-2M/r holdsfor vacuum solutions in all gauges,we
obtain)

(1-2M/r) (U}) == (
91

u2
-92)

-92
) B (

Ul

) .
91 U2)

(14.172))

We again look for a power seriessolution of the form of equation (14.165),and
setting 1]== 0 producesthe indicial equation)

det
[(

91
-92)

-92
)

B-
\037I

]
== 0,

91 r r=2M)
(14.173))

where I is the identity matrix. For vacuum fieldswe know that)

91G-92F==
\037ar(912

-922)== M/r2,) (14.174))
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which is gauge-invariant. It follows that the solutions to the indicial equation
are)

s == 0 and s ==
-\037 + 4iME(91f2-92f1)') (14.175))

But, as discussedin section14.3.6,at the horizon we have)

(91f2 -92f1)== ::1:1,) (14.176))

with the positive sign correspondingto the blackhole case.The indicesof the
Diracequation are therefore gauge-invariant. Similar arguments can be applied
to scalarand higher-spin fields.)

14.4.3Quantumabsorption)

We are now in a positionto give a full, quantum-mechanicaldescriptionof ab-

sorption by a blackhole. At the horizon the solutions of the Diracequation

separateinto two branches,one regular and one singular. The singular branch is

unphysical and cannot be excitedby finite incoming waves. The regular branch

is finite at the horizon, with an inward-pointing current. This gives rise to ab-

sorption.To understand this processin detail we needto study the asymptotic
form of the regular solutions and determine their split into incoming and out-

going modes.We can then construct an arbitrary incoming mode (typically a

plane wave) and study the amount of scatteredradiation. Any radiation that is

not scatteredis absorbed.
In absorptionand scatteringproblemswe are interestedin states with real

energy E, E > m. For such states the spatialcurrent J is conserved, and for

angular eigenstateswe obtain the conservedWronskian W:)

W ==
91(U1U\037 + Ut U2) + 92(U1u t + U2U\037),) (14.177))

This measuresthe total outward flux over a surface of radiusr, and we have

written W in an arbitrary gauge.At the horizon we seethat)

W == -9Ilu1- u21
2

,) (14.178))

and so the flux is inwards for all regular solutions.This is to be expected,as the

current must point inwards at the horizon.
For explicit calculations we return to the Newtonian gauge.The radial equa-

tion (14.164)is straightforward to integrate numerically. We start with a power
seriesexpansionaround the horizonof the regular solution. This allowsus to find

values of UI and U2 a small distanceeither sideof the horizon. Thesevalues are

then used to initiate numerical integration of the equations, both inwards and

outwards.To visualise the solutions it is convenient to plot the radial density
function P(r):)

P(r) == IU112 + I
U21

2
.) (14.179))
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Figure 14.6The radial density for scatteredstates. The plots show P(r)
as a function of radius. The horizon liesat r == 2, and the product mM is
set to 0.01in units of

m\037,
where mp is the Planck mass. The modesare

scaledso that the Wronskian is -1,and only the regular solution is plotted.
The top two diagrams are for /<i; == 1,with E == 10mc2 (left) and E == 20mc2

(right). The bottom two diagrams are for /<i; == 2, with E == 10mc2 (left)
and E == 20mc2 (right).)

In physical terms P(r) is r2 times the timelike component of the Diraccurrent,
as measuredby observersin radial free fall from rest at infinity. It is only in

the Newtonian gauge that this definition gives rise to the simple formula of

equation (14.179).
In figure 14.6we plot P(r) for a range of energiesand angula momenta. The

plots are for scatteringstates, so the wavefunctions are unnormalised. For the
sakeof comparisonthe magnitude of each mode is fixedby setting the Wronskian

to -1.The gravitational coupling is controlled by the dimensionlessquantity)

GMm
tic)

Mm)
2 '

mp)
(14.180))

where mp is the Planck mass. In figure 14.6we have used a dimensionless
couplingof 0.01.The chosenenergiesof 10mc2 and 20mc2 imply that the modes
are highly relativistic, and also ensurethat the associatedwavelengthsare larger
than the horizon size.To understandthe asymptotic features of the plots we
return to equation (14.161)and solvefor the behaviour at large r. We find that)
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the solutions behave asymptotically as

Ul =/Jexpi(pr
+

\037
(m

2 + 2p2
)ln(pr))

e2iE(2Mr)1/2

+ a exp-i(pr
+

\037
(m

2 + 2p2)In(pr))
e2iE(2Mr)1/2) (14.181))

and)

U2 = p/J expi(pr +
M

(m
2 + 2p2)In(pr)

)
e2iE(2Mr)1/2E+m p

_ pa
exp-i(pr +

M
(m

2 + 2p2)In(pr)) e2iE(2Mr)1/2,E+m p

wherep2 == E2-m 2 . The Wronskian is therefore equal to)

(14.182))

w = -
E \037 m (lal

2 -1m2),

and the radial probability P(r) is given asymptotically by

4m

(
2M(m2+ 2p2)

)I
Ull

2 + IU212 =
E+ m lall/JI CDS 2pr +

p In(pr)+ <Po

2E
+ E (la l

2 + 1/J1
2
). (14.184)+m)

(14.183))

The oscillationspredictedby this formula are clearly visible in figure 14.6.The

magnitudes ofa and (3 determine the relative amounts of scatteredand absorbed
radiation presentfor a given mode.With the Wronskian held constant, all modes
have a constant flux through the horizon onto the singularity. In the large
r region lal determinesthe amount of ingoing radiation, and 1(31 the amount

of outgoing radiation. As lal increases,a smaller fraction of the radiation is
absorbedand more is scattered.Oneeffect that is clear in figure 14.6is that as
the angular momentum increases,for fixed energy, jal also increases.That is,
lessradiation is absorbedfor fixed energy as the angular momentum increases.
This is preciselythe behaviour we expectfrom classicalconsiderations.

Given that each mode is normalisedsuch that W == -1,then total absorption
crosssectionis given by)

7r \" I\037Iaabs =
2p(E-m) \037 la,,12

'

where at\\: is the value ofa for eachangular eigenmode.The valuesof at\\: are deter-
mined numerically by integrating the radial equations out to a suitabledistance
from the horizon and matching to the asymptotic forms of equations (14.181)
and (14.182).Typically,we needto sum over a range of \037 valuesbefore the sum
settlesdown to its final result. The result of this sum, for a massive fermion,
is plotted in figure 14.7.For energiescloseto the rest energy the absorption)

(14.185))

534)))



14.5COSMOLOGY)

140)

120)

100)

80
Crosssection)

60)

40)

20)

o)
1) 2) 3 4

Energy)

5) 6) 7)

Figure 14.7 The quantum absorption crosssection. The plot shows the
total absorptioncrosssectionas a function of the incident energy. The
dimensionless coupling Mm/m\037 is 0.1,and the energy is plotted in units
of the rest energy mc2. The horizontal line is the photon limit.)

crosssectionfollowsthe classicalprediction.But at higher energiesa seriesof
oscillationsare presentas the wavelength becomescomparable with the horizon
size.Theseoscillationstake placearound the photon limit of 277r, and are also
presentfor masslessparticles.The preciseform of theseoscillationsdependson
the massof the particle,so representsa quantum-mechanicalviolation of the
equivalenceprinciple.)

14.5Cosmology)
The radial equationswe have developedso far are easily adaptedto the caseof
homogeneous,isotropicmatter distributions.Such distributionsprovide a good
model for the large scaledistribution of matter in the observableuniverse. Be-
fore studying the field equations for such cosmologicalmatter distributions,we
must first introduce the cosmologicalconstant. This was originally introduced
by Einsteinto allow the construction of static cosmologicalsolutions, and for

many years had beenthought to be an unnecessaryadditional feature of general
relativity. But experimental evidence, both from the cosmicmicrowaveback-
ground and from distant supernovae, now favours modelswhich do include a
cosmologicalconstant.There are alsohints from quantum gravity that a cosmo-)
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logicalconstant should ariseas a form of vacuum energy, though this is not well

understood.
We start with the radial equations, as summarised in table 14.2.Inclusion

of the cosmologicalconstant A only modifiesa handful of theseequations.The
massfunction M becomes)

M ==
\037r(922

-91
2 + 1-Ar2/3),

and the derivatives of the 91 and 92 fieldsbecome

Ltg2 == G9I-M/r2+ rA/3 - 47rrp,

Lr91== F92 + M/r2 - rA/3 - 47rrp.

The Riemann tensoris alteredto)

(14.186))

(14.187))

1
R(B)==47r(p+ p)B.etet -3(87rp + A)B

(
M 27r

)-
2r3

-3P (B+ 3arBar )) (14.188))

and we continue to assumethat the matter distribution takes the form of an

ideal fluid.
For cosmologicalmodelsthe matter distribution is assumedto be spatially

homogeneousand isotropic,sothat p and p are functions of time only. The mass
function M is then given by)

47r 3M(r,t) == 3r p,) (14.189))

so the Riemann tensoralso dependsonly on time. The equation for LrP tellsus

that G vanishes, and hence that)

il == 1.) (14.190))

The time coordinatet therefore measuresthe propertime for observersat rest
with respectto the cosmologicalbackground.The derivativesof M and p simi-
larly tell us that)

F ==
92
r)

(14.191))

and)
. 392

( )p==--p+p.r
For theseto be consistentwith the relation Lr92 == F91we must have)

(14.192))

F == H(t),) 92(r, t) == rH(t ) ,) (14.193))

whereH(t) isa function of time only. The Lt92equation now reducesto a simple
equation for H(t):)

. 2 A 47rH+ H -- == --(p + 3p).3 3)
(14.194))
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The h field)
h(a) = a + a.er((gl- l)er + H(t)ret )
g12= 1-kr 2

exp(-2Jt H(t')dt'))

The w field) w(a) = H(t)al\\et - (gl - l)/r al\\(eret)et)

Riemann tensor) n(B) = 47r(p + p)B.etet - (87rp + A)/3 B

87rp = 3H(t)2-A + 3k exp(-2Jt H(t')dt')

if + H2 -A/3 = -(47r/3)(p + 3p)
P = -3H(t)(p+ p))

The density)

Dynamical equations)

Table 14.3 Equations governing a homogeneous, isotropicperfectfluid.
The covariant vectoret defines the rest frame of the universe. This is de-
termined experimentally from the cosmicmicrowave background radiation.
No other direction is contained in n(B),and all physical fields are functions

of time only.)

Finally, we are left with a pair of equations for 91,
Lt91 == 0,

Lr91== (912-1)/r.
The secondequation tellsus that 91 is of the form

91
2

== 1+ r2
4>(t).

The equation for Lt91then tellsus that 4>(t) satisfies

\037

== -2H(t)4>.)

(14.195))

(14.196))

(14.197))
It follows that 91 is given by

912 = 1-kr 2exp(-2Jt H(t') dt l

) ,

where k is an arbitrary constant of integration which turns out to define the

spatial geometry. The full set of equations describinga homogeneousperfect
fluid are summarisedin table 14.3.)

(14.198))

14.5.1Comparisonwith standardapproach)

The derivation of the cosmologicalequations presentedhere, as a specialcaseof
a sphericalsolution, differs from most presentations.To recovera more familiar

set of equations we first introduce the distancefunction S defined by)

S(t)H(t)=
S(t)

.) (14.199))
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With this substitution we find 91is now simply)

91
2

== 1- kr 2/82
.) (14.200))

Similarly, the H and density equations become)

8 A 47r

8
-3 == -3(p + 3p),

82 + k A 87r

82
-

'3== 3P.)

(14.201))

Theseare the Friedmann equations of cosmology. Our derivation has focused
attention on the Hubble function H(t),rather than the distancescale8(t).This
is natural, as H(t) is a directly measurable (gauge-invariant)quantity, whereas
8(t) is only defined up to an arbitrary scaling.

The Friedmann equations are usually derived by starting with a diagonal line
element.This is obtainedfrom the radial setupby the displacementdefined by)

f(x) == x.etet + 8x!\\etet.) (14.202))

Underthis displacement,h(a) transforms to

h' (a)= a.etet+
\037

((1-kr 2
)1/2a.erer + a/\\u r ur),

and the line element this definesis

82
ds2

== dt2 - dr2-82r2
(d(}2+sin2((})dq'>2) .1- kr 2

In this gauge we can seeclearly that 8controls the distancescale,and k controls
the spatialgeometry. We can always choosethe scalesuch that k is either zero
or :i:1.A k of zero correspondsto a spatially flat universe, which is favoured
on theoretical grounds and is consistentwith observations. The non-zerovalues
correspondto an openuniverse (k < 0, defining hyperbolicgeometry) or a closed
universe (k > 0, defining sphericalgeometries).Thesethree spatialgeometries
are the only spatially homogeneousand isotropicmodelswe can consider.These
geometriesare discussedin more detail in chapter 10.Which model is appropri-
ate for the universeon its largest scalesisdeterminedby the presentvaluesof the
density and Hubblefunction. Mostexperimentsfind that the universe is closeto
the critical density (k == 0),but no experiment can ever conclusivelyprove that
k iszero.Any slight deviation in the density away from the critical value implies
that k is non-zero. The fact that the universe is so closeto its critical density
has led theoreticians to proposea range of modelswhich force the universe to
have k == O.The most popular of theseis provided by inflationary cosmology,in
which the universe passesthrough a stageof rapid inflation, so that all spatial
sectionsare expandeddramatically and becomeessentially flat.)

(14.203))

(14.204))
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14.5.2Densityperturbationsand clusterformation
We will not discussthe detailedsolutions of the cosmologicalequations in this
book. This is a large subject and is covered in detail in a range of modern
textbooks.Herewe discussan application where the derivation from the radial
equations is particularly helpful. The problem of interest is the growth of a
perturbation in a cosmologicalbackground.The perturbation is assumedto be
spherically-symmetric,and the coordinate systemis centredon the perturbation.
To simplify matters further, we ignore the cosmologicalconstant and set the
pressureto zero.We are therefore dealing with a simple model of a pressureless
fluid collapsingunder the influenceof its own gravity.

Returning to the radial equations in table14.2,we seethat for zeropressurewe
have G \037 0 and II \037 1.The matter therefore follows geodesics,and t measures
the proper time for observerscomovingwith the matter. The masssatisfies)

LtM \037 0,) (14.205))

which says that the mass M enclosedwithin radius r is conserved along the
fluid streamlines.The operatorLt is clearly the comovingderivative along the
fluid streamlines.The function 91is also conservedalong a streamline, and the
equations integrate straightforwardly to determine the streamlines (geodesics).
The form of the geodesicdependson the value of 91,and there are three cases
to consider:)

1.912 < 1.This caseincludesclosedcosmologies,and the matter streamlines
are defined by)

r\037)
M

1 2(1- cos(1])),-91
M

( 2)3/2(TJ
- sin(TJ)

-
TJi + sin(TJi))1- 91)

(14.206))
t - ii \037)

where 7] parameterisesthe curve, and 7]i is determinedfrom the initial value of
r at time ii.The velocity92 is given by)

92=
(

M
2)1/2sin(TJ)r 1-91

and 1]i is fixed in the range 0 < 1]i < 21T by determining whether the initial

velocity is inwards or outwards. Setting1]i \037 1T correspondsto starting from

rest,and provides a simplemodel for blackhole formation.)

(14.207))

2.912
\037 1.This caseinclude flat cosmologies,and the equations integrate di-

rectly to give)

2(r3/2 - ri/2)t -t i =
3(2M)1/2

.) (14.208))
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The velocity is chosenoutwards to avoid a singularity forming instantaneously.)

3.912> 1.This caseincludesopencosmologies.The streamlinesare parame-
terisedby)

Mr =
g12-1(cosh(7])-1),

t - ti =
(

2
M

)3/2
(sinh(7])

-
7]
- sinh(7]i) + 7]i)

91 -1
and the velocity is given by)

(14.209))

M .
g2 = (2 )1/2smh(7]).r 91 -1

For this caseit isalsonecessaryto start with an initial outward velocity,in order
to avoid streamline crossing.)

(14.210))

By working globally in the Newtonian gauge we keepsimplecontrol over the
initial conditions.For thesewe wish to set up a small perturbation in a finite

region, such that outsidethe perturbation the system evolvesas a homogeneous
cosmology.This will be the caseprovidedthe averagedensity in the perturbation
matches the external universe. Supposethat the perturbation initially haswidth

ri and the external cosmologyhas initial values Pi and Hi for the density and
Hubblefunction respectively.We introduce the dimensionlessvariables)

rx ==-,
ri)

( )
_ 92(r,ti)- rHi

v x -
H '

ri i)

f(x) = p(r,ti) -Pi .
Pi)

(14.211))

The functions f(x) and v(x) are relatedby

dx2f(x) = -
dx(x2v(x)), (14.212)

with both f(x) and v(x) vanishing at the boundary (x == 1).Equation (14.212)
ensuresthat the model is correctly compensated,so that the perturbation has
no effect on the external cosmology. (Equation (14.212)also ensuresthat no

decayingmodesare presentin the perturbation left over from the linear regime.)
To fix f(x) and v (x)we choosea parameter n, which controls the polynomial
degreeof the functions, and also fix the value of the velocity gradient at the

origin. The function v (x) is then a polynomial of degree2n + 1,formed as
follows. At the centre we set v == 0, and the first derivative is determinedby
the velocity gradient. The remaining derivatives up to ordern are set to zero.
Similarly, at the boundary v is chosensuch that 92 matches the exterior value of
r Hi up to the first n derivatives. The result is a simple function controllingthe

perturbation, and for each initial value of r the fluid streamlinescan be plotted
easily. An exampleof thesestreamlinesis shown in figure 14.8.

If the systemis allowedto evolve for a suitableamount of time, it provides)
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10)

40)

30)
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2) 4) 6) 8) 10)

r)

Figure 14.8Matter streamlinesfor an n == 3 model. The perturbation has
initial width 1,with H\037

== 1and
p\037

== 3/81r.The velocity gradient at the
centreof the perturbation is 0.95.The central region is thereforemoving
inwards relative to the Hubble flow, so recollapsesto a singularity after a
finite time. All units are arbitrary.)

a goodmodel of a clusterof galaxiessitting insidea cosmologicalbackground.
One can then study photon paths in this model, to look for lensing effects, or

temperatureperturbationsin the cosmicmicrowavebackground.One weakness
with thesemodelsis that no pressureis included,so the clusterhas no means of

supportingitself. This impliesthat a singularity forms after a finite term (deter-
mined by the central density and velocity gradient).The model then describes
a blackhole, sitting in an expandinguniverse.)

14.5.3The Diracequationin a cosmologicalbackground
A goodillustration of the full gravitational equations, with torsion included,is
provided by the caseof a Diracfield coupledself-consistentlyto gravity. The

equations governing this systemare)

1t(a)== 47r('ljJI'\"'t3'ljJ).a,

Q(a)-Aa == 87r(a.D'ljJl,3'ljJ)1,

D'ljJI,3== m'ljJ.)

(14.213))
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This systemof equations is highly non-linear and extremely difficult to analyse
in all but the simplestof situations. Here we are interestedin cosmological
solutions,for which all fields are functions of time only. We also restrict our
discussionto the spatially flat case(k == 0),so that we can write)

h (a) == a + rH(t )a .er et.) (14.214))
The w function is given by

w(a) == H(t)a/\\et+ !K:a.S,
where K: == 87r and Sdenotesthe spin trivector:

I -S ==
21/Y

Ir31/Y.)

(14.215))

(14.216))
After a little work, the Einsteintensor evaluates to

Q(a)== 2Ha/\\et et + 3H2a -
\037K:a' (V.S)+ \037K:2a'S

S-
\037K:2S2a,

and the matter energy-momentumtensoris
. - IT(a) == (a.et1/Ylr31/Y + Ha/\\et S+ 2K:a.SS)I.)

(14.217))

(14.218))

Finally, the Dirac equation is now

(et8t + \037Het + \037K:S)1/YIr3
==

m1/Y,) (14.219))
which has the unusual feature of beingnonlinear, due to the presenceof the spin
term.

We will construct the simplestsolution to this systemby setting the spinor1/Y

equal to a magnitude and phaseonly:)

1/Y
== p(t)I/2e-ICI'3XCt ).) (14.220))

The Diracequation therefore reducesto the pair of equations)

p == -3pH,
X == 37rp + m.

The Einsteinequation yieldsthe final pair of equations

3H2 - 127r2p2 - 87rmp -A == 0,
2H+ 3H2 + 127r2p2 -A == O.

The secondof thesefollows from the first and the equation for p. Theseequations
are solved by)

(14.221))

(14.222))

(32
P ==

6n sinh ((3t) (m sinh ({3t) + (3cosh({3t))
,) (14.223))

where)

(3 = v'3A .
2) (14.224))
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The initial singularity is chosen to correspondto t == O. The Hubblefunction is
similarly given by

H(t)= (32+ 2(3sinh 2
((3t) + 2m(3sinh((3t) cosh((3t)

3sinh(tJ t ) (m sinh(tJt) + tJ cosh(tJt)))
(14.225))

The limit A \037 0 iseasilytaken and givesrather simplerbehaviour in the absence
of a cosmologicalconstant:)

1
p(t) =

6nt(1+mt) ')
H t ==

1+ 2mt() 3t(1+ mt)
.) (14.226))

Antiparticle solutions can alsobe found, though thesecan have unusual proper-ties.At large times the Hubblefunction tends to a constant value of (A/3)1/2.
This behaviour is typical of A cosmologiesand leadsto the surprisingprediction
that the universe will keepaccelerating.The presenceof a non-zerospinvector
implies that thesemodelsbreak isotropy, but this fact is hidden from the line
element, which remains isotropic. The spin direction is only seenby particles
with non-zerospin,which interact directly with the torsion tensor.)

14.6Cylindricalsystems)
We now turn our attention to a different classof exactsolutions- thoseex-
hibiting cylindrical symmetry. Such solutions can provide modelsfor stringlike
configurations,and someof the solutionsare alsoappropriatefor gravity in (2+1)
dimensions.We first introduce cylindricalpolar coordinates(t, p, cp,z),where)

p == ((XI)2+ (X
2
)2)1/2,)

X2
tan (cp) == 1\"x) (14.227))

and xf-t == ,J-L.X . We use the symbol p for the cylindrical distanceto avoid
confusionwith the radial coordinater used throughout this chapter. When we
cometo describethe matter, the energydensity is denotedE in this section.The
coordinateframe defined by cylindricalpolar coordinate is)

et == '0,
ep == cos(cp)'1+ sin(cp),2,)

e
cP

== p(-sin(cp)'I+ cos(cp)'2),
(14.228))eZ == ,3,)

and we continue to write J for the unit vector e
cP/p. As a bivector basiswe use

the set {ap, acP ,a3},where)

ap == epet,)
A

a
cP

== cpet, a3 == eZet .) (14.229))
We are interestedin stationary fields that exhibit cylindrical symmetry. For

thesewe can write a general h function as)

h(e
t
) == flet + pf2ecP ,

h (ecP) == phI ecP + h2et
,)

h(eP ) == 9IeP ,
h (e

Z
) == eZ

,)

(14.230))
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whereall of the arbitrary functions dependon p only. A suitablew field consistent
with this h field is given by)

Wt == w(et) == -Tap+ (K+ h 2)Ia3,

w p == w(ep) == Ka4Y,

w\037

== w(J) == Kap + (hI -G)Ia3,

Wz == w(ez) == O.)

(14.231))

Again, the new scalarfunctions appearinghere (T, K, K, G) are functions of

p alone. Sinceall expressionsinvolving Lz must vanish, there are only three

non-vanishing commutation relations to construct.Theseare)

[Lp,Lt] == TLt + (K+ K)L\037,

[Lp,L\037]

== -(K-K)Lt - GL\037,

[Lt,L\037]
== O.)

(14.232))

Sinceneither Lt nor L
\037

contains derivativeswith respectto p, the bracket rela-
tions immediately yield)

Lpfl == Tfl+ (K+ K)f2,
Lpf2 == -Gf2- (K-K)fl,
Lphl == -Gh1- (K-K)h2,

Lph2 == Th2 + (K+ K)hI .)

(14.233))

The cylindricalderivativeLp is given by Lp == 91(p)8p. We can always make the

positiongauge choice91 == 1,though this is not always the simplestgauge to
work with.

The Riemann tensortakesthe general form)

R(ap) == CYia p + pIa3,

n(Ia3)== CY2Ia3 -pap,
R(a4Y) ==

CY3a4Y,)

(14.234))

where the scalarfunctions are defined by)

CYI
== -LpT+ T2 -K(K+ 21<),

2 -
CY2

== LpG+ G -K(K-2K),
CY3

== K2 -GT,
13 == LpK+ G(K+ K)-T(K-K).)

(14.235))
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The samefunctions appear in the Einsteintensor,)
A

Q(et) == -Q2et - (Jcp,

Q(ep) == -Q3ep,
A '\"

Q(cp)== -QIcp+ (Jet,

Q(ez) == -(Ql+ Q2+ Q3)ez .)

(14.236))

It is a feature of gravity in (2 + 1)dimensionsthat all of the information in the
Riemann tensorisalsocontained in the Einstein tensor.That is, there isno Weyl
tensorin three dimensions.It alsoturns out that no additional new information

is obtainedfrom the Bianchi identities,which are satisfied automatically from

the equationswe have already constructed.
The h function of equation (14.230)contains a singlerotational gaugefreedom,

which is the freedomto boost in the a
cjJ plane. If we make the physicalassump-

tion that the matter energy-momentum tensor has a future-pointing timelike

eigenvector,the gauge freedom can be usedto set this eigenvectorto the et di-
rection.Oncethis is doneall the rotational gauge freedom in the problem has
beenremoved, and we are left with a completeset of field equations.Theseare)

-LpG-G2 + K(K-2K)== 87rf,

K2-GT == 87rPp ,

-LpT+ T2-K(K+ 2K)==
87rPcjJ,

LpK+ G(K+ K)-T(K-K) == 0,)

(14.237))

where E is the matter density, and Pp and PcjJ are the radial and azimuthal

pressuresrespectively. The coefficientof Q(ez) is determined algebraicallyby the
other three coefficients,and the samemust thereforebe true ofthe matter energy-
momentum tensor. It follows that the z-component of the Einstein equations
contains no new information. Of course,if we were working in a genuine (2+ 1)
system,the ez equation would not be present.)

14.6.1Vacuum solutions
In the vacuum region all of the scalars{Ql,Q2,Q3,(3}are zero, so we are still
free to perform an p-dependentboost in the a

cjJ
direction.This freedomcan be

employed to set K to zero.It is alsouseful in this region to work in a gauge
where 91 == 1.In this casethe vacuum region is describedby the simple pair of
equations)

opG+ G2 -GT == 0,

opT-T2 + GT == 0,)
(14.238))
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with K determinedby K2 == CT.On subtracting theseequations and integrating
we seethat)

G-T==1/(p+po),) (14.239))

where Po is an arbitrary constant of integration. Similarly, adding the equations
and integrating yields)

G + T == c/(p+ Po),) (14.240))

where c is a secondconstant of integration.
The restriction that CT== K2 > 0 means that c2 > 1,and we can set)

c == ::f:cosh(20).) (14.241))

There are two distinct vacuum configurations,dependingon which sign is chosen
for c. In either case,the constant a can begaugedto zero with a further constant
boost in the

acjJ
direction (which does not reintroduce a K term). The two

vacuum sectorsare therefore characterisedby the solutions)

G=::. 1
,p+Po

1T=::.- ,p+Po

All other vacuum solutions can be reachedfrom this pair by p-dependentboosts
in the acjJ direction. No globally-definedgauge transformation existsbetween
these solution classes.For both solutions the Riemann tensor vanishes, since
there is no Weyl tensor for three-dimensional systems. It is therefore possible
locally to gauge transform all of these fields to zero, but this is not possible
globally. In this sensethe solutionsrepresenttwo distinct topologicalstructures.)

type I:) T==K==K==O,)

(14.242))
type II:) G == K == K == O.)

14.6.2Physicalpropertiesofmattersolutions
The key physicalpropertiesassociatedwith matter solutionsare the acceleration,
vorticity, shearand angular momentum of the string. Given that we have chosen
a gaugewhere the timelike eigenvectorof the energy-momentumtensoris et,the
accelerationvector w is defined by)

w == et.Vet== -Tep .) (14.243))

This measuresthe extent to which particlescomoving with the matter (with

velocityet) depart from geodesicmotion. The vorticity bivector w is defined by)

w == Vl\\et + wl\\et == -(K-K)Iu3') (14.244))

The definition ensuresthat w satisfieset'w == O. To define the sheartensorwe

require the linear function H that projectsvectors into the 3-spaceorthogonal)
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to et,)

H (a) == a -a.et et.
In terms of this function the sheartensora(a) is defined by)

(14.245))

a(a) == \037(H(a).Vet + H(Ob)(b.Vet).a)-
\037H(a)V'et

1 - A A

== -2(K+ K)(a.ep c/> + a.c/>ep)') (14.246))

This is a symmetric, tracelesslinear function. We seethat acceleration is con-
trolled by T,the vorticity by (K-K) and the shearby (K+ K). In the matter
region all of these scalarquantities are physically measurable functions. The
sameis true of the fourth function, G, which can be determined from the radial
pressure.

The remaining physical property of relevance is the angular momentum con-
tained in the fields. The vector 9cjJ is a Killing vector for cylindricalsolutions,so
the vector T(9cjJ)is covariantly conserved.It follows that)

\\7. (h (T(9cjJ))det (h) -I) == O.) (14.247))

The total conservedangular momentum per unit length in the et frame is there-
fore given by the expression)

Js=
iPS

d2
xl.T(gc/\302\273det (h)-I,

where Ps is the string radius. In the 91 == 1gauge this expressionevaluates to
gIve)

(14.248))

iPSJs= -271\"

Jo
dp(E + Pc/\302\273frh(frh 1-hhz)-2,) (14.249))

which shows that a non-zero12is requiredfor angular momentum to be present.)

14.6.3Cosmicstrings)
Cosmicstringsare an exampleof topologicaldefectsthat can occur as a remnant
of symmetry breakingprocessesin the early universe. They have zero radial and
azimuthal pressures.It follows that there is a negativepressurealong the length
of the string -they are under tension.The energy-momentumtensor is)

T(a) ==
\037f(a

- Ia3a1a3)') (14.250))

From the Einsteinequations we seethat QI ==
CY3

== (3 == 0, and the Riemann
tensortherefore has the compact form)

R(B) == 87rE:(BIa3)Ia3.) (14.251))
Tidal forcesare only exertedin the Ia3 plane and are controlledby the density.)
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The Einsteinequations tell us that T == K == K == 0, soall that remains is the

single equation)

LpG+ G2 == -87rE.) (14.252))

The full solution is then recoveredby integrating the bracket equations (14.233).
Theseimply that both II and h 2 are constant. A global rotation can therefore
be performed to transform to a gauge where II == 1and h2 == O.The remaining

equations are)

Lph1== -GhI ,) Lp12== -G12.) (14.253))

It follows that 12 == Ah I , where A is an arbitrary constant. But phI must tend
to 1as p r--+ 0 so that h( a) is well defined on the axis.It follows that hI, and
hence 12,must divergeas p-l.For 12 this would imply that h( et

) is singular on
the axis,which is not permitted.It follows that the constant A must be zero, so
the string has no angular momentum. This agreeswith the fact that the shear
and vorticity are both zero.Pressureisnecessaryfor stringsto have any angular
momentum.

We have now restrictedh(a) to the simpleform)

h(a) == a + (91- l)a.ep eP + (phI- l)a.e4Ye4Y
,) (14.254))

and the remaining equations are)

Lphl == -Gh1,) LpG== -87rf -G2
,) (14.255))

with Lp == 9IOp.To completethe solution we must make a gauge choice for 91,
An obviouschoiceis to set91== 1,so that p measuresthe properradial distance
from the string. A slightly simpleralternative is to choosea gauge such that

h (e4Y) == e4Y. This requiresthat)

h1==I/p) (14.256))

and it follows that)

G==9I/P.) (14.257))

The equations now integrate to give

912 = 1-lP

161fsE(s)ds, (14.258)

where the constant of integration is chosenso that h (a) is well defined on the
axis.On defining)

M(p) =lP

21fSE(S)ds,

the solution can be summarised neatly by)

(14.259))

h(a) == a + ((1-8M(p))1/2- l)a.ep eP
.) (14.260))
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The choiceof density function is arbitrary, provided 8M(p)< 1.In the vacuum

region outsidethe string we have T == K == K == 0, so the vacuum region is
describedby a solution in the gauge classof type 1.This can be describedin

terms of a flat spacetime,with a wedge of spacetimeremoved and the edges
identified. This topological picture of a string defect can be used to provide a
qualitative understanding of many of the string'sproperties.)

14.6.4Rigidly rotatingstrings)

The simplestmodelsthat include pressureare thosefor a two-dimensionalideal
fluid, with Pp ==

PcP
== P.The two natural physicalmodelsto considerare those

where the fluid is vorticity-free (K == K) or shear-free (K == -K).The latter
casecorrespondsto a rigidly rotating string, and is the situation we analysehere.
The equations governing this setupare (in the 91 == 1radial gauge))

opK-2KT== 0,

opG+ G2 == -87rc+ 3K2
,

opT-T2
== -87rP+ K2

,

K2 -GT == 87rP.)

(14.261))

Thesecan be solved once the density distribution has beenspecified.A choice
of density that producesa straightforward solution is)

87rc == 3K2 + ,,\\2,) (14.262))

where ,,\\ is an arbitrary positive constant. This ansatz ensuresthat the density
is always positive.The equations for G and T can be solvedimmediatelyto give)

G ==
,,\\ cos(\"\\p)

sin(\"\\p)
,)

T ==
,,\\ sin(\"\\p)

cos(\"\\p) + A') (14.263))

where A is a constant satisfying A <-1.
We next solve for K to obtain)

K ==
B

(A + cos(\"\\p ))2
') (14.264))

where B is a further constant. The density and pressurecan now be recovered
from equations (14.261).The boundary of the string occurswhere the pressure
vanishes, and this must be reachedbefore p == 7r /,,\\. Finally, we return to equa-
tions (14.233)to find a suitableform for the h function. First we seethat fI/h2
is a constant, so that a gauge transformation can be performed to set h2 == O.)
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The remaining functions are easily found by integration:

II= 1+A
cos(\"\\p) + A'

,,\\

hI ==

sin (\"\\p)

,

-B(/I2 - 1)
12 ==

\"\\(A + 1)sin(\"\\p)

For 11the arbitrary time-scalefactor has beenusedto set II == 1on the axis.It
is simpleto verify that this solution is well definedon the axisof the string. For

completeness,the correspondingline element is)

(14.265))

( )
2

cos(\"\\p)+A 2B
ds2 =

(1+ A)2
dt2 +

A2(A + 1)3(1
-

COS(Ap))(2A + 1+ COS(Ap))dtd<jJ

sin2
(,,\\p)

(
B2(1- cos(\"\\p))

2
(2A + 1+ COS(,,\\p))2

)
2 2 2-

2 1- 2 dcf;
- dp - dz .

,,\\ ,,\\2 sin2
(,,\\p)(1 + A)4(A + cos(\"\\p))

(14.266))

The exterior vacuum fields can be found simply by returning to the vacuum

equations,and solving these in the casewhere K + K == O.The general form of
vacuum fieldsoutsidea rigidly rotating string is then given by

-a2G--
(p+po)((p+po)2-a2)'

T == _ p + Po

(p+po)2-a2 '
K ==

a
(p + Po)2 -a2 ')

(14.267))

where Po and a are constantsto be determinedby the fields at the boundary.
This solution falls into the secondclassof vacuum solutions, as definedby equa-
tion (14.242).The h function is determinedby

11== -(1+ A) (a/B)1/2
((p + Po)

2 _ (2
)
-1/2

,

(( )
2 2

)
1/2

hI = (a/B)1/2A2
P+Po -a

,
(p + PO)

h =
II(p:Po)(If

- 1).)

(14.268))

Thesefields have an unusual property. At large distances,11falls off as p-l,
whereas 12 tends to a constant value. Beyond the point where the magnitude
of 12overtakes that of II, a closedcircular path orbiting the string becomes
timelike. This solution admits closedtimelike curves, even out at infinity. Such
solutions are often thought of as unphysical, due to the bizarre acausal effects)
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they would allow. But there is nothing outrageous in the matter distribution
usedto generatethe solution, and it is difficult to pin down a precisestatement
of what constitutesa 'physicallyacceptable'matter distribution.)

14.7Axially-symmetricsystems
As a further application of the gauge theory treatment of gravity, we now turn

to the equations governing a stationary axisymmetric system. Suchfields are
producedby rotating stars, galaxiesand blackholes,and as such are of consid-
erableimportance in astrophysics.The prototype axisymmetricconfigurationis
describedby the Kerrsolution, which uniquely describesthe fieldsproducedby
an uncharged rotating black hole.The more complicatedproblemof finding the
fields outsidea rotating massive objectsuch as a star or planet has yet to be
fully solved.Herewe discusstwo forms of the Kerr solution. The first continues
the solution strategy adoptedin the cylindricalsetup,and can be generalisedto
include matter fields. The secondform generalisesthe Newtonian gauge for the
Schwarzschildsolution, and has a number of significant features.)

14.7.1Intrinsicform ofthe axisymmetricequations
We employa standardspherical-polarcoordinate systemto describeaxisymmet-
ric fields,and the notation is preciselyas defined at the start of section14.2.A

suitableform of the h function consistent with axial symmetry is)

h( et
) == IIet + I4ecP ,

h(e
r
) == 91eT+ 93e8,

h(e
8
) == i Ie8 + i3er,

h(ecP ) == hiecP + h 2et
,)

(14.269))

whereall of the variables{II,.. ., i3}are scalarfunctionsofrande.The labelling
convention for the {Ii,..., ii}is chosen to allow for a more general parameteri-
sation appropriatefor time-dependentsystems.We have ignored the possibility
of any coupling between the et and eT, so strictly speakingare looking for the
fields outsidean extendedsourcewith no horizon present. On solving the vac-
uum field equations we will construct a form of the Kerr solution, which will

turn out to be ill definedat the horizon. As with the Schwarzschildsolution, the
singular nature of the fieldsis a consequenceof a bad gauge choice,rather than
an intrinsic propertyof the fields. In section14.7.3we give a form of the Kerr
solution which avoids this problem.

A suitably general form of w function consistent with the h field of equa-)
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tion (14.269)is given by

w(et) == -(T+ IJ)eret- (5+ IK)Bet+ h 2Ia3,

w( er ) == (5'+ IK')erB- i3erB,

w(B) == (G'+ IJ')er8 - (iI/r)ere,
w(J)== (H+IK)e\037+(G+IJ)er\037+hl/(rsin(e))Ia3')

(14.270))

The variables written in capitalsare also functions of rande, exceptfor the

pseudoscalarI. The reasonfor the labelling scheme will becomeclearerwhen

the final set of equations is derived.There are 40 independent scalarvariables
in gravity, so it is difficult to construct a labelling schemethat doesnot con-
flict with existingconventionssomewhere.A significant feature of our scheme
is that a complexstructure naturally emerges,generatedby the pseudoscalarf.
It is a well-known feature of the Kerr solution that it is underpinned by a com-

plexanalytic structure.The origin of this lies in the natural complexstructure
of spacetimebivectors. Throughout this sectionwe use complexto refer to a
combination of scalarand pseudoscalarquantities.

The bracket structure defined by our choiceof the w function is)

[Lt,Lr] == -TLt- (K+ K')L;j;,
[Lt,Lo] == -5Lt + (J- J')L;j;,
[Lt,L;j;]

== 0,)

[Lr,Le] == -5'Lr -G'Lo,

[Lr,L;j;]== -(K-K')Lt -GL;j;,

[Lo,L;j;]
== (J+ J')Lt-HL;j;')

(14.271))

The Riemann tensorgeneratedby these fields is complicatedand, rather than

giving its full algebraicexpression,it is simpler to considerthe general form.

This can be written as)

R(ar ) == alar + (3Iae,
R(ae) == a2ae + (32ar,

R(arjJ)
== a3a

rjJ,)

R(far ) == a4Iar + (34Iae,
R(Iae) == Ct5Iae+ (35Iar ,

R(Ia</J) == a6Ia
</J,)

(14.272))

where each of the ai and (3i is a complexcombination. If we now specialiseto
the caseof vacuum solutions, so that the Riemann tensoris determined solely
by the Weyl tensor,the duality relation W(I B) == fW(B) immediately sets)

Ctl == Ct4, Ct2 == Cts, a3 == a6, {3l == {34 {32 == (35.) (14.273))

In addition, for a vacuum solution R(B) must be symmetric and traceless.The
most general form of tensorconsistent with this requirement is)

R(ar ) == alar + (3ae,

R(ae) == a2ae + (3ar,
R(a</J) == -(0:1+ (2)a</J,)

(14.274))
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with ai and f3 complexcombinations.
Next we considerthe rotational gauge freedom in our choiceof axisymmetric

fields. We are free to perform a rotation in the Ia
cjJ plane, and a boost in the a

cjJ

direction.Thesecan be summarisedin the singlerotor R:)

R == exp(wIacjJ/2),) (14.275))

wherethe scalar+ pseudoscalarquantity w is an arbitrary function of (r,0). This
gauge freedom can be employed to diagonalisethe Riemann tensor by setting
f3 == O. This removesall of the gauge freedompresent,and enablesus to write)

1?(ar ) == alar, 1?(ae)== a2ae, R(acjJ) == -(al+ (2)acjJ.) (14.276))

The form of the Riemann tensor for the Schwarzschild solution is algebraically
special,in that two of its eigenvaluesare degenerate.This is referredto ashaving
Petrov type D.There is no reasonto expectthe same to be true for axisymmetric
fields, and the field outsidea general rotating star is almost certainly not of
type D.But it turns out that, if a horizon is present,the solution must be of
type D.As we are interestedhere in deriving the Kerr solution, we therefore
imposethe additional condition that the Riemann tensoris degenerate,with the
general algebraicform)

a
R(B) == -(B+ 3arBar ),2) (14.277))

with a a scalar + pseudoscalarquantity. This final restriction on the form of
R(B) is not a gauge choice- it is a restriction on the form of solution we can
construct.

Comparing the general form of equation (14.277)with the explicit Riemann
tensorconstructedfrom the w field, we establishthat)

a == (G+ IJ)(T+ IJ)+ (8+ IK)(H+ IK).) (14.278))

The remaining identitiesreduceto a seriesof equations,an exampleof which is)

Lr(G+ IJ) ==(5'+ IK'-8-IK)(H+ IK) - I(K-K')(8+ IK)- (G+ T + IJ)(G+ IJ). (14.279))

In all there are ten equations of this type. They all relate intrinsic derivativesof
the variables in the w field to quadratic combinationsof the samevariables. By
forming suitablecombinations of theseequations we find that)

Lra == -3a(G+ IJ),) Lea== -3a(8+ IK),) (14.280))

so the intrinsic derivatives of a are quite simple.
Next we must considerthe Bianchi identities. These contain higher order

consistencyrelations between the hand w fields. For the Schwarzschildand)
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cylindricalcasesthesecontained no new information, but this is not the casefor

the axisymmetric setup. If we considerthe equation)

V1?(ar ) -Oa1?(a.Var ) == 0) (14.281))

we obtain the pair of equations)
3

Lra == --a(G+ IJ+ G'+ IJ'),2
3

Lea== --a(5+ IK+ 5'+ IK'),2

Comparing thesewith equation (14.280),we seethat)

(14.282))

G'+ IJ' == G + IJ,) 5'+ IK'== 5 + IK.) (14.283))

This simplification for type D fields explainsour choice of notation of primed
and unprimed variables.

With four of the variables now solvedfor, the remaining equations simplify to)

Lr(G+ IJ) == -(G+ IJ)2-T(G+ IJ),
Lr(T+ IJ) == (5+ IK)2- (2(G+ IJ)-T)(T+ IJ)-25(H+ IK),
Lr(5+ IK)== -IJ(5+ IK) -2IK(G+ IJ),
Lr(H+ IK)== -(G+ IJ)(5+ IK) -G(H+ IK))

(14.284))

and)

Le(5+ IK)== (5+ IK)2+ H(5+ IK),
Le(H+ IK) == -(G+ IJ)2+ (2(5+ IK) -H)(H+ IK)

+2G(T+IJ),
Le(G+ IJ) == IK(G+ IJ)+ 2IJ(5+ IK),
Le(T+ IJ) == (G+ IJ)(5+ IK) + 5(T+ IJ).)

(14.285))

Theseequations are all consistentwith the bracket structure, which now takes
the form)

[Lr,Le] == -5Lr -GLe') (14.286))

Our set of equations is now complete.We have explicit forms for the intrinsic

derivativesof all of our variables;theseare all consistent with the bracket struc-

ture, and the full Bianchi identities are all satisfied.We have achievedthe first

main goal of the intrinsic method.)

14.7.2The Kerr solution
The vacuum equations summarised in equations (14.284)and (14.285)display a
number of remarkable features. They are naturally complex,with the spacetime)
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pseudoscalaras the unit imaginary, and there is a clear symmetry between the
'\"rand 0 equations. We now demonstratethat, subject to certain boundary

conditions,theseequations admit a unique, two-parameter family of solutions.
This is the Kerr solution. The proof is constructive, but it is slightly involved

and we will skipsomeof the details.
The first step in solving a set of intrinsic equations is the identification of

suitableintegrating factors. To find the first of theseconsiderthe function)

Z == Zoo:-1/3,) (14.287))

where Zo is an arbitrary complexconstant.The function Z satisfies)

LrZ==(G+IJ)Z,) LeZ== -(S+ IK)Z.) (14.288))

On separatingZ into modulus X and argument X,)

Z == Xe1x) (14.289))

we find that)

LrX == GX,) LeX == -SX.) (14.290))

It follows that X acts as an integrating factor for G and S.But if we recall the
bracketof equation (14.286),we seethat)

[XLr,XLel == o.) (14.291))

We have therefore constructeda pair of commuting derivations. This is sufficient

to ensurethat we can fix our displacementgauge freedomby setting g3 == i3 == O.
With this done,we can then write)

XLr == g(r)8r, XLe == i(O)80') (14.292))

whereg(r)and i(O)are arbitrary functions that we can choosewith further gauge
fixing.

More generally, if a pair of variables A and Bsatisfy the equation)

LeA-LrB== GB+ SA) (14.293))

then an integrating factor G existsdefined (up to an arbitrary magnitude) by)

LrG == AG,) LeG== BG.) (14.294))

One such paIr is T and -H. For these we define the integrating factor F,
satisfying)

LrF == TF,) LeF== -HF.) (14.295))

With the integrating factors X, Z and F at our disposal,we can considerably)
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simplify our equations for G + IJ and 5 + IK to obtain)

Lr(FZ(G+IJ))==0,

Le(FZ(5+ IK)) == 0,)

Le(XZ(G+ IJ))== -2XZ(5G+ JK),
(14.296)Lr (XZ(5+ IK)) == 2XZ(5G+ JK).)

These equations focus attention on the quantity 5G+ JK. On forming the
derivatives of this quantity we seethat)

Lr (XF(5G+ JK)) == Le(XF(5G+ JK)) == 0,) (14.297))

and it follows that XF(5G+ JK) is a constant.For the Schwarzschildsolution
this constant is zero.We therefore expectthat this term should also vanish

for a rotating sourcesince, at large distances,the fields should tend to the
Schwarzschildcase.It turns out that one can construct solutionswith XF(5G+
JK) =I=- 0, but these are appropriatefor an infinite disc of matter and not a
localisedsource.As we are looking for the fields outsidea localisedrotating
source,we can set)

5G+ JK == O.) (14.298))

It follows that)

XFZ2(G+ IJ)(5+ IK) == C1,) (14.299))

where C1 is an arbitrary complexconstant.
Remarkably, we are now closeto a completesolution to the problem.Equa-

tion (14.296)tellsus that we can set)

FZ(G+ IJ) == W(8),) FZ(5+ IK) == U(r),) (14.300))

where U and Ware complexfunctions of rand 8 respectively.If we now form)

W(8)
==

G+IJ ==I5J-GK
U(r) 5 + IK 52 + K2 '

we seethat the result is a pure imaginary quantity. It follows that Wand U are
7r /2 out of phaseand, sinceU and Ware separatelyfunctions of rand 8, their

phasesmust be constant.Next we construct the derivativesof Z to obtain)

(14.301))

XLrZ == g(r)orZ== XZ(G+ IJ) == CI/U(r)) (14.302))

and)

XLeZ== i(8)ooZ== XZ(5+ IK) == C1/W(8).) (14.303))

It follows that Z must be the sum of a function of r and a function of 8.Fur-

thermore, thesefunctions must also have constant phases,7r/2apart. Sincethe
overall phaseof Z is arbitrary (Z was defined up to an arbitrary complexscale
factor), we can write)

Z == R(r)+ I\\I!(8),) (14.304))
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where R(r) and W (0) are real functions. Thesesatisfy the equation)

Z3
XLr (XLr In(Z))+ XLo(XLeIn(Z))= Go =

Z\037
') (14.305))

which is to be solved for Rand W.

There is considerablegauge freedom in equation (14.305),sincewe are free to
choosethe functionsg(r) and i(0).The most convenientchoiceof gauge is to set)

Z == r - Iacos(O).) (14.306))

The remaining functions are then found by integration. The end result,after a
seriesof further gauge choices,is the Kerr solution in the form)

2 2 . 2
(0)-

h (
t
)

_ t _ r + a t ar SIn
cPe -9 -

pD:,.1/2
e +

p
e,

_ D:,.1/2
h(e

r
) == gr == er,

p

h(e
O
) == gO ==

\037ee,

p

h
(eel\302\273

== gcP ==
r

ecjJ +
a

et

p pD:,.1/2')

(14.307))

where)

p2 == X2
== r2 + a2 cos2 (0)) (14.308))

and)

D:,. == r 2 - 2Mr + a2
.) (14.309))

The massis given by M, and the angular momentum by aMc. The quantity a
is the angular momentum per unit mass,and has dimensionsof distance. The
limit a 1---+ 0 recoversthe Schwarzschildsolution in the form appropriatefor the
exteriorof a non-rotating star.The reciprocalvectors are)

D:,.1/2 a
gt == et - -ecjJ,

p rp
p

gr ==

D:,.1/2
er ,

p
go == -eo,r

r2 + a2 aD:,.1/2sin2
(0)

gcjJ
==

ecjJ
- et.

rp p)

(14.310))
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The variables controllingthe w field are given by

\0371/2G+IJ== ,
p(r - Ia cos(0))

S+IK== -Iasin(O)
p (r- Ia cos(0))

,

r-M
T -G = -

p/11/2'

H _ S ==
cos(0) .

p sin( 0))

(14.311))

The equation for T shows that a horizon existswhere \037 == O. The fact that the
solution is singular there is a reflection of our choiceof time coordinate.This
measuresthe time for observersat a constant distancefrom the source.Such
observerscannot exist insidethe horizon, and the solution breaksdown there.
As with the Schwarzschildsystem,the resolution of this problem is to express
the fields in termsof a different time coordinate.

The Riemann tensorfor the Kerr solution can now be written in the compact
form)

M
n(B)== -

3 (B+ 3arBar ).
2(r - Ia cos(0)))

(14.312))

This is obtainedfrom the Schwarzschildsolution by simply replacing r by the
scalar+ pseudoscalarcombination r - Ia cos(0). Preciselysuch a replacement
can be usedto generatethe Kerr solution using a 'complexcoordinate transfor-
mation' in the Newman-Penroseformalism. This transformation doesproduce
the Kerr solution, but there is no a priori reasonto expectthat such a trans-
formation appliedto a vacuum solution will generate a new vacuum solution.
Our extremely compact form of the Riemann tensor for the Kerr solution is a
significant advantage of the gauge theory approach to gravitation advocated in

this book. The comparisonwith the standardtensorformulation of general rel-
ativity is dramatic -most textbooksdevote nearly a pageto listing all of the
components of the Riemann tensor,if they list them at all.)

14.7.3A Newtoniangaugefor the Kerr solution)

The form of the Kerr solution developedin the precedingsectiongives rise to
a metric that expressesthe geometry in terms of Boyer-Lindquistcoordinates.
Such a form is only appropriatefor the region outsidean extendedobject.If a
horizon has formed we must find an alternative gauge choice which covers the
horizon smoothly. From our discussionof the Schwarzschildsolution, we would
like to find an analogue of the Newtonian gauge appropriatefor rotating black)
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holes.Such a gauge doesexist,though it is not straightforwardly obtained from

the Boyer-Lindquistsetup.
The first step in expressingthe Kerr solution in a Newtonian gauge is the

introduction of spheroidalcoordinates(r,0,cP), as describedin section6.2.2.
The spheroidalcoordinatesare relatedto their sphericalcounterparts (r,0, cP) as
follows:)

(r2 + a2)1/2sin(8)== r sin(O),
if cos(0) == r cos(0).)

(14.313))

The scalarparameter a is the same as that controllingthe angular momentum.
In the limit a r--+ 0, the barredcoordinatesreduceto their unbarred spherical-
polar equivalents. Surfacesof constant r are ellipsesin flat space, though a
statement such as this relates to the propertiesof the coordinate system,and
not necessarilyto physically measurablefeatures. It is convenientto introduce
the hyperbolic coordinateu, defined by)

a sinh( u) == f.) (14.314))

The coordinateframe vectors are given by)

e.p== tanh(u) sin(e)(cos(cP) 11+ sin(cP) 12)+ cos(0)13,
eo == a cosh(u) cos(e)(cos(cP) 11+ sin(cP) 12)- a sinh( u) sin(8)13)

(14.315))

with
ecj; unchanged from its sphericaldefinition. We also define the unit vectors)

\" a cosh(u)ef == _ e.p,
p)

\" 1e-- -e-e - - e,
p)

(14.316))

where p is defined by

15
2 == a2sinh 2

(u) + a2cos2(8) == f2 + a2cos2(8).) (14.317))

The unit frame vectors satisfy)

\"

etefeiJcP== I.) (14.318))

The Newtonian gauge form of the Schwarzschildsolution, defined in equa-
tion (14.65),contains the unit vectors et and er . The generalisation of this
function to the Kerr solution is given by)

_

(
2Mf

)

1/2
h (n) == n -

-2 2 n .e.pV,r +a) (14.319))

where the vector argument is denotedby n to avoid confusionwith the scalar
parametera. The timelike velocity vector v is defined by)

v == cosh(j3)et + sinh(fJ) J) (14.320))
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where)

tanh(,6) = sin(e)
cosh(u))

arsin(0)
f2 + a2 .) (14.321))

It follows that)

cosh(,6)=
a

cos_h
(u)

,
p)

sinh(,6)=
a

si\037(

e).
p)

(14.322))

Comparisonwith equation (14.65)showshow the various termsare generalised
in moving from the Schwarzschildto the Kerr solution.

The w(a) function generatedby equation (14.319)has)

w( et) == 0,

w(er ) = - M
_ erl\\v,Q(r- Ia cos(0))2

(
A

)
Q A

W eo == - I (0
_
)

eo/\\ v ,r - a cos
A Q

w(cjJ) == -
a<jJ,

cosh(j3)(r- Ia cos(0)))

(14.323))

where)

(2Mr)I/2a==- _
p)

(14.324))

The terms in the w function also neatly generalisetheir counterparts in the
Schwarzschildsolution. In particular, the fact that w (et)vanishes implies that

et satisfiesthe geodesicequation. The trajectoriesdefinedby this velocitydefine
a family of observerswhosepropertime is given by t.

The remaining covariant objectto construct is the Riemann tensor. If we
define the unit bivector)

A

N == ef /\\ v
,) (14.325))

then the Riemann tensortakeson the simple form)

M A A

R(B)==- _ 3(B+3NBN).
2(r- Iacos(O)))

(14.326))

This is obtainedfrom the form of equation (14.312)by a displacement(taking
the unbarred to the barredcoordinates)and a boostfrom et to v. Both are gauge
transformations, so the intrinsic information in equations (14.312)and (14.326)
is preciselythe same.The same transformations are involved in taking the h(a)
function from the form of equation (14.307)to that of equation (14.319).In

addition, further (singular) transformations are alsorequiredto convert t to the
time measuredby a set of infaUing observerswith covariant velocity et.)
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14.7.4Geodesicsand the horizon
The hand w fields for the Newtonian form of the Kerr solution are well defined
over all spacetime,down to the ring f == cos(0) == O. There are no problemswith

motion through the horizon, and infalling observersreach the central singularity

in a finite coordinatetime. This is becausethe coordinatet now measuresthe
propertime for a family of free-fallingobserverswith covariant velocityet. The

trajectoriesdefined by this velocity have)

I
h( )

A -=-

X == et == et -aef == et - ref.) (14.327))

This defines a family of observersall infalling along directionswith constant e
and cjJ, and with infall velocity)

r==) (
2Mf

)
1/2

f2 + a 2) (14.328))

Thisfamily neatly generalisesthe observersin radial free fall from rest at infinity

employedin the Schwarzschildsolution. As in the sphericalcase,many physical
phenomena are simplestto interpret when expressedin terms of observerswith

covariant velocityet. A curious feature of theseobserversis that they appearto
'slowdown' as the singularity is approached,though they do reach f == 0 in a
finite propertime.

The next task is to locatethe horizon in our new form of the Kerr solution.
A horizon marks the boundary between regionswhere one cannot signal to the
other.Thisoccurswhere it is no longer possibleto sendnull photons outwards.
If k denotesthe covariant photon velocity, with k2 == 0, a horizon will occur
when it is no longer possibleto satisfy)

ef .h (k) < O.) (14.329))

The left-hand sideof this inequality can also be written as)

( (
2M-

)
1/2

)
h (er ) .k = er + 1'2+ :2 v.k.) (14.330))

It is not possiblefor two future-pointing null vectors to have an inner product
lessthan 0, so the horizon occursat)

2Mf
== 1.r2 + a2

This defines a quadratic equation, with two solutions when a < M, one when
a == M and no solutions for a >M. In the casewhere a < M, the outer horizon
definesan event horizon. Photonscan crossthis on an inward trajectory, but no

photonscan escape.The inner horizon is slightly different. On the insideof the
inner horizon it ispossiblefor photonsto travel outwards, but they cannot cross)

(14.331))
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the horizon. Instead,they pile up just insidethe boundary, forming an unstable
Cauchy horizon.

Insteadof consideringobserversattempting to exit to infinity, supposeinstead
that we look for observersat rest with respectto the background (f, 0, cjJ) coor-
dinates. Suchobserverscan be constructedfrom observations of distant stars,
for example.Theseobservershave covariant velocity)

I . I .
(

2Mf A

)
h- (x)==th- (et)==t et+ -2 2 cosh (;3)cjJ,r +a

and the condition that this is a unit timelike vector forces)

(14.332))

'2
(1_ 2Mf

) == 1t
1'2+ a2cos2(O)

.
The surface within which it is not possibleto remain at rest is calledthe ergo-
sphere.For non-rotating blackholesthe horizon and ergospherecoincide.But
for rotating blackholesthe ergosphereis defined by)

(14.333))

f2 + a2 cos2(O)- 2Mf == O.) (14.334))

This surface liesoutsidethe horizon, and touches the horizon at the poles.In
the intervening region it is impossibleto remain at rest, but it is still possible
to escape.Onecan think of this in terms of the angular momentum of the hole
dragging observersaround with it.

To gain some further insight into the propertiesof the Kerr solution, consider
circular orbits in the equatorial plane (0== 7r/2).For thesewe have

(h-l(i;))2= 1;2- (1'2+ a2)\0372
-

2\037 (i-a\037)2
= 1.

r)
(14.335))

The f derivative of this expressionmust vanish for a circular orbit, which tells
us that)

1'3= M (\037

-ar.
If we let 0 denote the angular momentum measuredby our set of preferred
infalling observers(which are at rest at infinity), we have)

(14.336))

cjJo == --;-.
t)

(14.337))

It follows that, for circular orbits,)

M1/2
0== aMl/2:i:f3/2

.) (14.338))

For a given distance,there are two possiblevalues of the angular velocity for
circular orbits. The larger value of 0 is for a particlecorotating with the black
hole, and the smaller for a counterrotating orbit. Again, this effect can be)
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understoodin terms of the black hole dragging matter around with it. The
larger angular velocity for corotating orbitsmeans it is possibleto form stable
orbitsmuch closerto the event horizon than for the Schwarzschildcase.)

14.7.5The Diracequationin a Kerrbackground
As a final illustration of the utility of the Newtonian gauge form of the Kerr
solution, we return to the Diracequation. We first form)

M
(

2Mf
)

1/2 1
8bW(b) == -v- et - .

0152 f2 + a2 f - Iacos(O))
(14.339))

The Diracequation in the Newtonian gauge can therefore be written)

1/2

(
V 8 v 1

)\\J'lj;
- (2Mf) -=-='lj;+ \037'lj; + et -

'lj;

p 8r 4rp 2(f2 + a2)I/2(f-Iacos(O))
== -m'lj;Ir3 . (14.340))

If we again multiply through by et,we arrive at an interaction Hamiltonian of
the form)

i (2M)1/2

(
8ifK 'l/J

=
1]2

(1'3+ a2
f) 1/4

of((1'3+ a2
f) 1/4

'l/J )

8 -1/2 (
ii
)

)
- -1/4 -1/4 ar cos0-acos(0)r (J

cf> of(r 'l/J) +
2(1'2+ a2)l/2

I'l/J ,) (14.341))

where we continue to use i for the quantum imaginary. This Hamiltonian is
(almost) Hermitian when integrated over flat three-dimensionalspace,because
the measurein oblatespheroidalcoordinatesis)

d3
X ==

15
2
sin(e)df dedcjJ.) (14.342))

Our form of the Kerr solution therefore does generalisethe many attractive
features of the Newtonian gauge for the Schwarzschildsolution. As in the
Schwarzschildcase,the Hamiltonian isnot self-adjointwhen acting on normalised
wavefunctions. For the Kerr casea boundary term arisesat f == 0, which now

definesa discof radiusa.
The Dirac equation (14.340)isseparablein spheroidalcoordinates,though the

detailsof this separationare quite complicated.One problem is that the angular
separationconstant dependson the energy. This makes scattering calculations
far more difficult than in the sphericalcase,as the separationconstant must be
recalculatedfor each energy. A considerableamount of work remains to be done
in extending the detailedunderstanding of quantum theory in a Schwarzschild
backgroundthe Kerr case.)
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14.8Notes)

Many of the applicationsdiscussedin this chapter are covered in greater detail
in the papers by Doran, Lasenby, Gull and coworkers.The solution method
describedin this chapter was first proposedin the paper 'Gravity, gauge theories
and geometric algebra'by Lasenby,Doran & Gull (1998).This method should
be comparedwith the spincoefficientformalism of Newman & Penrose(1962).
The advantages of the Newtonian gauge for spherically-symmetricsystemshave
beenpromotedby a handful of authors, most notably in the papersby Gautreau

(1984),Gautreau & Cohen (1995),and by Martel & Poisson(2001).
The problem of the electromagnetic fields createdby a point charge at rest

outsidea Schwarzschildblackhole was first tackledby Copson(1928),who ob-
tained a solution that was valid locally in the vicinity of the charge, but con-
tained an additional poleat the origin. Linet (1976)modifiedCopson'ssolution
by removing the singularity at the origin to obtain the potential describedin

section14.3.5.Similar plots to thosepresentedin section14.3.5were first ob-
tained by Hanni & Ruffini (1973),though these authors did not extend their
plots through the horizon. A popular means of interpreting theseplots in terms
of effects entirely around the horizon is advanced in The Membrane Paradigm
by Thorne, Price& Macdonald(1986).We believe that a better understanding
is gained by consideringthe global propertiesof fields, both insideand outside
the horizon.

Scatteringand absorptionprocessesby blackholeshave beenwidely discussed
by many authors. Summaries of this work can be found in the booksby Fut-

terman, Handler& Matzner (1988)and Chandrasekhar(1983),or the article by

Anderssonand Jensen(2000).The first attempt at a quantum calculation of the
scatteringcrosssectionwas by Collins,Delbourgo& Williams (1973),though

their derivation did not employ a consistent perturbation scheme.The calcu-
lation describedin this chapter was first publishedin the paper 'Perturbation
theory calculation of the blackhole elasticscatteringcrosssection'by Doran
and Lasenby (2002).Classicaland quantum absorptionprocessesare discussed
in detailby Sanchez (1977,1978)and Unruh (1976).

Cylindrical systemsare discussedby Deser,Jackiw & 't Hooft (1984)and
Jensen& Soleng(1992).The propertiesof cosmicstringsare describedin Cos-
mic Stringsand Other TopologicalDefects by Vilenkin & Shellard(1994).The
solutionsdescribedin this chapter weredevelopedin the paper 'Physicsof rotat-
ing cylindricalstrings'by Doran, Lasenby& Gull (1996).The form of the fields
outsidea rotating blackhole was first discoveredby Kerr (1963),and has been
widely discussedsince.A fairly completesummary of this work in contained in

Chandrasekhar'sThe Mathematical Theoryof BlackHoles(1983).The complex
coordinatetransformation trick for deriving the Kerr solution was discovered
by Newman & Janis (1965),and later explainedby Schifferet al.(1973).The)
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uniquenesstheorem for blackholes was developedby Carter (1971)and Robin-
son (1975).The analogue of the Newtonian gauge for the Kerr solution was
discoveredby Doran (2000).

The applicationsof the gauge theory approach to gravity discussedin this

chapter have concentrated on the simplestEinstein-Cartantheory. Modernde-
velopments in quantum gravity have suggesteda number of modificationsto this

theory. Two of the most common ideasinclude the introduction of local scale
invariance, and the inclusion of higher order terms in the Lagrangian. The ge-
ometric algebragauge theory approach is equally applicablein these settings.
Somepreliminary work on this subjectis describedby Lewis,Doran & Lasenby
(2000).This field is developing rapidly, driven in part by developments in in-

flationary theory and observations of the cosmicmicrowavebackground.These
observations could well revolutioniseour understanding of gravitation in future

years.)

14.9Exercises)
14.1 Sphericalsymmetry of the h function can be imposedby demanding that)

Rhxl(RaR)R == h(a),)

where R is a constant spatialrotor (RetR == et),and x' == RxR.Prove
that this symmetry implies that the {er , et }and {eO,e<P} pairsdecouple
from each other.Show further that we must have)

h(0) == aO+ (3\037,

h(J) == aJ- (30,)

and explain why we can always set (3 == 0 with a suitablegauge choice.
14.2 The energy-momentumtensorfor an ideal fluid is)

T(a) == (p + p)a.vv-pa.)

Showthat covariantconservationofthe energy-momentumtensorresults
in the pair of equations)

v.(pv)+ pV.v == 0,

(p + p)(v.Vv)/\\v - (Vp)/\\v == O.)

Give a physical interpretation of theseequations.
14.3 The Schwarzschildline element is definedby

ds2
==

(1- 2M
) dt2 _ r

dr2 _ r2d()2 - r2sin2
(()) drjJ2.r r - 2M

Find the equation for the free-falltime as measuredby radially-infalling)
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observers,starting from restat infinity. Expressthe line element in terms
of this new time coordinateto obtain the Painleve-Gullstrand form)

( (
2M

)

1/2

)
2

ds2 = dt2 - dr + ---;:- dt - r2(de2 + sin2(e)d<jJ2).)

14.4 Prove that the total absorptioncrosssectionfor a spherically-symmetric
blackhole of massM is given by

7rM 2
crabs =

2u4 (8u
4 + 20u2-1+ (1+ 8u2

)3/2)

where u is the incident velocity.
14.5 The covariant electromagneticfield generatedby a charge at rest on the

z axisoutsidea Schwarzschildblackhole is definedby

av 1 av AF= -
Dr eret- r _ 2M De e(et+ y'2Mjrer ),)

where)

V(r, e)= !L(r-M)(a-M) -M2cos2(e)+ qM
ar D ar)

and)

D == (r(r-2M)+ (a -M)2-2(r-M)(a-M)cos(O)+ M2cos2(O))1/2.)

Prove that F is finite and continuous at the horizon.
14.6 In calculating the scatteringcrosssectionfrom a blackhole we needto

compute the integral

J d3k k2 -p2 A

h =
(27rp Ipi _ k1

7/21k _ Pi17/ 2 (k + m).

Evaluate this integral by first displacingthe origin in k-spaceby the
amount (Pi+ pi)/2,and then introducing spheroidalcoordinates

k i == a sinh (u) sin (v) cos(r/J ),

k2 == asinh(u)sin(v) sin(r/J),

k2 == a cosh(u) cos(v),

where 0 <u <00,0< v < 7r, 0 < r/J < 27r and a == Iql/2.
14.7 The Kerr-Schildform of the Schwarzschildsolution is defined by

- M
h(a) == a + -a.e_e_, e_ == et - er .r

Construct the Dirac equation in this gauge, and find the interaction
vertex factor in momentum space.Calculatethe differential scattering
crosssectionfor a fermion in this gauge, and verify that it is the same
as found in the Newtonian gauge.)
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14.8 Prove that det (h) is constant for spherically-symmetricvacuum gravi-
tational fields.

14.9 For a particle in a circular orbit around a Schwarzschildblackhole,
prove that the non-relativisticbinding energy (asdefinedby the effective
potential) is given by (G == c == 1)

Eb == _ M r -4M
.

2r r -3M
14.10Derive the full set of time-dependentradial equations with the cosmo-

logicalconstant A included.
14.11A spherically-symmetricdistribution of dust is releasedfrom rest, with

the initial density distribution chosenso that streamlines do not cross.
Prove that a singularity forms at the origin after a time)

t == (\037
)

1/2
f 32Po

'
where Po is the central density.

14.12Solvethe Diracequation in a cosmologicalbackgroundwith k i=- O.Is the
Diracfield homogeneous?Can you construct self-consistentsolutions to
this systemof equations?

14.13Construct a matched set of interior and exterior gravitational fields
around a rigidly-rotating cylindrical string. Do closedtimelike curves
exist in this geometry?

14.14Verify that the Kerr solution defined by equation (14.307)satisfies the
vacuum field equations.

14.15The Riemann tensorfor the Kerr solution can be written as
M

R(B) == -
3(B+ 3arBar).

2(r - Ia cos(e))
Prove that this satisfies ObR(b/\\c) == 0 and interpret both parts of this
result.

14.16The Newtonian gauge form of the Kerr solution involves the spheroidal
coordinatesf and O.Prove that f == cos(0) == 0 definesa ring.)
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