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Abstract 

 
The topic of probabilistic geometry has been researched in the field of mathematics for well over 
50 years. Applying the intrinsic yet unintuitive metrics in these high-dimensional spaces to the 
information arena is conceptually very tricky. Pentti Kanerva found results related to this field in 
the mid 80s and applied them to content addressable memories. Dr. P. Nick Lawrence also 
rediscovered a more generalized version of these results in the early 90s and has developed it 
into his patented computational theory called Corobs, which stands for Correlational-Algorithm 
Objects. Recently, the link between quantum theory and Corob Theory was researched under 
DOD SBIR funding. This paper/presentation gives an overview of this field including the key 
concepts of how to implement useful computing knowing that randomly chosen points are all an 
expected or standard distance apart (robust equidistance of sqrt(N/6) in a real unit N-cube as 
N>20). These ideas are particularly relevant to the ANPA audience because of the direct 
application to “Program Universe” goals and results, since in a binary unit N-cube the distance 
and discrimination metrics are both XOR. For a link to the slides for this presentation see the 
Yahoo anpa- list email archive. 
 

1. Introduction 
 
The primary idea beneath ANPA’s combinatorial hierarchy goals is the hope that known stable 
constants and laws of physics spontaneously emerge due to the combinatorics of low-level 
random information processes. As a result of years of research at Lawrence Technologies, LLC 
on random neurological processes and more recently random quantum processes, we have 
developed a high-dimensional, computation model we call “Corob Theory”. This paper 
introduces the key ideas of Corob theory, which are related to the obscure mathematical field of 
probabilistic geometry. The goal of corob theory is to understand and mimic our ability to see 
and do things like previously seen and done. Corob theory and program universe goals are 
similar because both are interested in how something stable can emerge from purely random 
processes. Even though Corob theory started as a high-dimensional neurological based 
computation model, it was recently expanded to include the high-dimensional complex-valued 
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quantum corobs. These results depend on the intrinsic and emergent yet unintuitive distance 
metric properties of high-dimensional spaces. 

1.1 Approach and Concepts 
 
The Corob Technology is based on the idea that neurology somehow uses randomness to do 
useful similarity computing, and understanding this approach will lead to computers that act 
more like living systems, thereby performing like synthetic organisms or Synthorgs™. This 
thinking led to the rediscovery of the little known mathematical property from probabilistic 
geometry [1] that randomly chosen points within a high-dimensional unit N-cube approaches a 
growing expected or standard Cartesian distance / 6N  as the number of dimensions grows 
large. Even though these results are statistical in nature, the standard deviation is a constant 

7/120  = 0.2415, so effectively the actual range of the standard distance becomes extremely 
narrow and approaches the expected mean standard distance with high levels of certainty. We 
call this tendency toward the expected standard distance the fundamental Corob theorem.  
 

 
 

Figure 1.  Random process with mean of 1.0 
 

2. Randomness and Statistics 
 
The results presented in this paper act like random processes with a mean and a standard 
deviation. Therefore, these two terms are introduced and discussed here. This section is a small 
refresher course on the key aspects of probability mathematics the corob theory relies on. Also, 
we define our own terms that rely on these statistical properties. 
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2.1 Mean or Expected Value 
 

If a number of uniformly distributed random values are fed into a random process they produce a 
mean value with a high level of precision, so the random process tends to the mean, which 
represents the expected value. The random process actually generates values slightly smaller or 
larger than the mean, as shown in Figure 1. So even though the process tends to the expected 
value or mean, the actual values spread out around that center point. As one might expect 
random values close to the mean are more common than values further away. This spread can be 
characterized using the standard deviation and confidence interval, which are discussed next. 

2.2 Standard Deviation or Dispersion 
 
The exact amount of spread of the values from the random process is defined by the measure 
called standard deviation, which is the square root of the variance. Random processes naturally 
produce values closer to the mean value with a higher probability. The dispersion of values from 
the random process falls within the normalized interval defined by one standard deviation with a 
probability (or confidence interval) of 68.2%. This means that roughly two out of every three 
values falls within one standard deviation, nineteen out of every twenty values with within two 
standard deviations, etc (see Table 1). In contrast, it is possible but extremely unlikely that a 
random process will produce a value greater than 4 or 5 standard deviations away from the mean. 
This probability can be computed using the error function if the distribution is Gaussian. This 
relationship between probability and distance deviation from the mean has important information 
theoretic significance for the random processes discussed in this paper. 
 

Table 1. Confidence Interval vs. standard deviation 
 

Standard Deviations Confidence Interval 
±1 0.6826895 
±2 0.9544997 
±3 0.9973002 
±4 0.9999366 
±5 0.9999994 

 

3. High Dimensional Spaces 
 

The primary random process forming the basis of corob technology is simply applying the 
Cartesian distance metric between two sets of N uniformly distributed, bounded, random values, 
where each set represents the address of a random point inside a high-dimensional unit N-cube. 
This random process can be thought of in two ways, as a mean of the probabilistic process or an 
ensemble result similar to the concept of the center of gravity. The ensemble results and 
interpretation appears to be directly related to the probabilistic phenomena.  
 
As this paper will demonstrate, the mean (and thereby the standard deviation) of several 
probabilistic Cartesian distances is related to the square root of the number of dimensions ~ N , 
with some unexpected results as N grows much larger than the typical 3 Euclidean dimensions 
(N>>20). This chapter provides a step-by-step mathematical introduction to these main ideas. 
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3.1 Cartesian Distance Metric 
 
The random process is simply the distance metric between any pair of points. Given an N 
dimensional unit N-cube and address values ( i0 x 1≤ ≤  and i0 y 1≤ ≤ ) in each of the N 
dimensions for points X = [x1, x2, …, xi, …, xN] and Y = [y1, y2, …, yi, …,yN], then the Cartesian 
distance is simply the square root of the sum of differences squared between the two points or 

2 2( ) ( )i i ii i
d x y z= − =∑ ∑ . The distance to the origin in three dimensions (for X, Y and Z) 

is simply the well-known distance formula 2 2 2
1 2 3( ) ( ) ( )d z z z= + +  or 2 2 2( ) ( ) ( )d X Y Z= + + .  

 
The primary unexpected result can now be discussed, which occurs when the values xi and yi are 
randomly generated with a uniform distribution random number generator, thereby creating a 
probabilistic geometry [1]. Under these conditions the distance between two randomly chosen 
points tends to an expected constant standard distance ~ / 6N  as the number of dimensions 
grows large N>>20. This equidistance tendency will be discussed next.  

3.2 Tendency towards Equidistance 
 
In three dimensions, the histogram of distances between randomly generated points X to the 
center point Y = [0.5, 0.5, …, 0.5] looks like the graph in Figure 2. This histogram is basically 
triangular, where the asymmetry is due to fewer occurrences of the largest distances since they 
are non-uniformly located only in the extreme corners of the n-cube.  
 

 
 

Figure 2.  Distances for random points to center point in 3-space 
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The interesting thing to note is that Figure 2 is exactly the same random process as Figure 1 
except that the number of dimensions representing each point is N = 3 rather than N = 12. The 
distances to the center point can be generalized for any number of dimensions and the result 
defines a probabilistic geometry, where any randomly chosen point probabilistically tends to be 
at the distance ~ /12N  from the center of the space. This distance to the center is conceptually 
equivalent to an expected standard radius that grows with the N and the tendency toward tha t 
particular value grows very strong with increasing N because the probabilistic distance metrics 
are dependent on N  but this standard deviation is also a constant! 
 

 
 

Figure 3. Histogram of Standard radius for N = 3, 12, 100 and 1000 
 

Figure 3 illustrates the standard radius and dispersion of the values with increasing N.  If the 
standard deviation is actually computed for each of the cases the standard deviation is the 
constant value 1/60 . Since the standard deviation indicates the spread of values around the 
mean standard radius, the actual spread becomes a smaller and smaller percentage of the mean 
that grows with increasing N.  Therefore, normalizing the standard deviation by dividing by the 
expected radius produces the ratio 1/60/ /12 1/60*12/ 1 / 5N N N= = . The normalized 
standard deviation actually shrinks with N (and in the limit tends to 0 for very large N). This 
means the standard radius tends strongly to a standard constant value (for each N) with 
increasing N. See Figure 4, which is a normalized version of Figure 3. Because of this property, 
probabilistic geometries are easy to explore using simple programs with randomly chosen points, 
because they quickly converge to their respective mean values, and it is high unlikely to find a 
point that is 5-10 standard deviations away from the mean. 
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Figure 4. Normalized standard deviation of radius for N=3, 12, 100 and 1000 
 

3.3 Probabilistic Geometries 
 
The label of standard radius evokes the idea that the random points are located on the surface of 
a high-dimensional N-sphere. One way to attempt to confirm this is to find the distance between 
a 1000 randomly chosen points and the origin Y = [0, 0, …, 0] with N=1000 and the result is the 
distance / 3N , which happens to be twice the standard radius 2 /12N = 4 /12 / 3N N= . 
This distance is unexpected because the known geometrical distance from the origin to the center 

is simply 2(0.5) (0.25) / 4
i

d N N= = =∑ . Since the random point is actually the radius 

/12N  away from the center, this defines a right triangle ( )2
/ 4N + ( )2

/12N  = ( )2
/ 3N , 

which simplifies to N/4 + N/12 = 3N/12 + N/12= 4N/12 = N/3. Therefore the distance between 
any randomly chosen point to the origin is / 3N , but even more unexpected is that this is also 
the distance to any random corner!! Likewise, the standard deviation of this standard corner 
distance approaches 0 with increasing N. This result is hard to visualize because the distance 
between a random point and every random corner is the constant / 3N . This is similar to Pentti 
Kanerva’s [2] distance between any two random corners of an n-cube / 2N  since the right 
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triangle from the center to two random corners has the property( )2
/ 4N + ( )2

/ 4N = ( )2
/ 2N  

and has the binomial distribution that can be derived using Pascal’s triangle. 
 
The most relevant statistical metric is the distance between two randomly chosen points inside 
the unit N-cube tends to the standard distance / 6N , with the standard deviation approaching 
0 as N grows to infinity. It is not that the other points do not exist; it is they are extremely hard to 
find using random processes. For a large number of random points, they all tend to a standard 
radius from the center, a standard diameter (D=2r) from any corner and a standard distance 
from each other. Points with these properties do not form an N-sphere inside an N-cube, but 
rather a high-dimensional tetrahedron or N-equihedron (or N-shell), since all the points tend to 
be equidistant. This idea is illustrated in Figure 5, where all the blue points are equidistance from 
the center red dot (and more importantly from each other). If any point (big yellow dot) was then 
moved to the center, the big red dot would be among the remaining blue points. These distance 
properties are definitely wrong for an N-sphere so we use the term N-shell or N-equihedron. 
 

 
 

Figure 5.  Planar Visualization of Equidistance Property 
 
An alternative visualization of all the equidistance properties is shown in Figure 6, which depicts 
this topology using a planar equilateral triangle to represent the N-equihedron and all lines are 
distances normalized by the expected standard radius. Note that any lines of the same color are 
the same length even if it is impossible to draw them as such in a planar graphic. 
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Figure 6. Standard distances from the perspective of green random points  
 

An important fact regarding Figure 6 is all the distances have been normalized by dividing by the 
expected standard radius R resulting in all standard distances becoming invariants or constants. 
For example, with the normalized radius X = R/R ≈ 1, then similarly the expected standard 
distance is Y ≈ 2 , the normalized corner to center distance is Z ≈ 3 , the standard corner 
distance is D = 2R = 2 ≈ 4  and the n-cube’s major diagonal is M ≈ 12 . The normalized 
Kanerva distance is K ≈ 6 . This means all expected distances are true constants independent 
of N and with vanishing standard deviations for very large N. Table 2 illustrates these same 
metrics in a tabular fashion depending on the preferred perspective of unit side or unit radius. 
 
Since the standard radius and major diagonal are constants for any number of N, then the 
normalized length of every side S must shrink with increasing N or S = 1/R ≈ 12/ N . 
Maintaining a unit radius forces the N-cube to shrink and maintaining a unit side length on the 
N-cube means the standard radius increases proportional to N . Since 12 is the magic number 
used for both the radius and N-cube side, when the number of dimensions N = 12 then the 
lengths R = S = 1 = volume. When the radius R = 1 then this acts like the unitarity constraint 
from quantum mechanics. This simple set of mathematical relationships is rich with potential 
meaning regarding the size or volume of things in both the classical and quantum domain 
depending on the number of dimensions and the normalization perspective. The number 12 is a 
special constant that emerges from this analysis, where these two aspects are indistinguishable.  
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Table 2. Geometric and probabilistic properties of unit N-cubes 
 

Line Type of 
Property 

Distance with 
Unit Side 

Distance with 
Unit Radius 

Description of distance metric 

1 Geom = 1 12/N≈  Side: any corner to a nearest corner 

2 Prob N/12R ≈  1≈  Radius: midpoint to random point 

3 Prob N/6Y ≈  2≈  Random point to random point 

4 Geom N/4Z =  3≈  Any corner to midpoint 

5 Prob N/3D ≈  4≈  Random corner to random point 

6 Prob N/2K ≈  6≈  Random corner to random corner 

7 Geom NM =  12≈  Any corner to most distant corner 
 
A final point about Figure 6 is the arc drawn at distance 3  from the origin. Obviously there are 
more points outside this arc then inside this arc, so this represents why the ensemble length 3  
is greater than the geometrical corner-center distance of 4 .  
 
This unit N-cube space is a distance metric space but nothing has been said about the angles. 
From standard geometry it is know that for right triangles then a2 + b2 = h2 where sides a and b 
form a right angle and h is the hypotenuse. This property happens to be true for the expected 

standard distance 
2 2 2

1 1 2+ =  and the Kanerva distance 
2 2 2

3 3 6+ = , which suggests all 
randomly chosen points (or corners) are orthogonal to each other when treated as vectors from 
the center of the space. Obviously, the angles shown between the yellow lines of the standard 
radiuses all approach 90° even though Figure 6 cannot be drawn to scale. Since the standard 
distance is probabilistic, the angle between them is also not exact. The angle between to two 
vectors (defined as midpoint to each random point) approaches an expected standard angle of 
90° as N grows. Figure 7 shows how the standard deviation shrinks with increasing N such that 
for N>3000 the standard deviation of the standard angle is <1°. The angle is computed with the 

formula in Figure 7 using the inner product i ix y= ∑x y  and norm 2
ix= ∑x  formulas. 

 

Standard Deviation Size of N 
Inner Prod  As Angle 

100 .1000 5.758° 
1000 .0315 1.816° 

1cosθ −
 

=    

x y
x y  

10,000 .0100        0.563° 
 

Figure 7. Expected Standard Angle approaches 90° for large N 

3.4 Soft Tokens or Corobs 
 
The entire probabilistic geometry is based on the premise that a set of random points generate 
these probabilities and at Lawrence Technologies we call such a random point a “corob” or soft 
token. A soft token is a valid term we have borrowed from communications theory, which has 



 10 

the identical meaning, where the tokens are maximally spread out through an N-space providing 
an error-correcting region around each token. It is also know from coding theory the maximum 
information density occurs when the tokens are uniformly spread throughout the space and they 
are equally spaced. These properties naturally occur for corobs and have been known about in 
the field of probabilistic geometries for decades. The primary invention of corob theory is how to 
coax useful Turing complete computing from these randomly populated metric N-spaces.  

3.5 Computing with Soft Tokens 
 
Computing with random corobs requires defining tokens and assigning particular symbolic 
meaning to each of the tokens. This is equivalent to assigning meaning to a particular random 
address in the subspace of dimension N. All the other random points are extremely far way 
because the standard deviation of distance metrics are proportional to 1/ N . Computation is 
simply mapping values from the environment into points in a subspace (using a sensor), finding 
which points are closest to meaningful known points, converting to another subspace (lobe), and 
finally converting the soft tokens back into the tradition numeric or string literals (actor). Corob 
computing is simply the process of creating spaces with the correct distance relationships to 
perform your desired behavior by moving the computation state around within the subspaces. 
This process can be shown to be Turing complete because lobes can define arbitrary logic gates 
and also represent dynamically stored state similar to a latch or cross-coupled NAND-gates. The 
following three sections discuss the various spatial and temporal relationship properties. 

3.6 N-spaces and Subspaces 
 
If an N-dimensional space is split in two, both of the resulting subspaces have the same 
properties regarding random tokens, as the whole N-space but with lower fidelity due to the 
increase in the normalized standard deviation. This is equivalent to the holographic property and 
can be easily understood as a noisy version of the original token. In general, random corobs are a 
set of random address values defined for a subspace of particular size N. Subspaces are 
concatenated together and sampled which effects tokens relative addresses depending on the 
desired operation. Remember that the directions up, down, right, left, east and west etc do not 
exist in subspaces. The only useful metric is similarity of distances compared to randomly 
chosen points, which were previously produced or known about in the system. For this reason, 
synthetic organisms respond in ways similar to previously seen, known or educated actions. 

3.7 Cardinal, Ordinal and Continuous Relationships 
 
Most of computing involves defining relationships between tokens, and corob theory 
geometrically represents all such relationships in N-spaces. The three kinds of relationships are: 
 

1) Cardinal or unordered tokens (such as a list of names, properties or colors). 
2) Ordered tokens (such as the alphabet where letter “c” is closer to “d” than “m”) 
3) Continuous spaces (such as 1-D for temperature and 2-D for images, etc) 

 
Cardinal tokens are directly implemented using the random corobs already defined since they 
tend to be equally spaced with no apparent ordering. A subspace can hold M cardinal tokens 
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without any confusion by choosing the size N of the subspace such that some minimum spacing 
is guaranteed (i.e. 5-10 standard deviations) for that number of tokens.  
 
Ordered tokens require that the distance between tokens is proportional to the difference in their 
adjacent sequence number. The distances between adjacent tokens must be smaller than standard 
distance and can be constructed using the following procedure. First decide what percentage of 
standard distance the tokens should be spaced apart (i.e. use s = 30% but depends on the 
application). Second, generate a random point c1=i and assign that to the first token “a”. Third, 
generate another random point c2=i+1 and use it as a random angle reference point at standard 
distance d. Interpolate between the two points to find a point close to c1 by using the formula 
c1*s + c2(1-s) to compute the address of token “b”. Repeat steps 2 & 3 between remaining points 
ci and ci+1. The resulting pearls on a string each have a distance metric that is smaller for its 
immediate token neighbor(s) than to the other tokens. When any token is compared to any of the 
pre-defined tokens, the closest tokens are easy to find. Also, the nearest neighbors are unique 
because it is extremely unlikely that random corobs will be less than the standard distance apart. 
This close spacing of sequential tokens is called a string corob (can also form a ring corob). 
 
Continuous spaces are conceptually equivalent to ordered-tokens except that a continuous 
number of points must maintain the linear spacing as expected in a continuous variable.  So if a 
continuous space is pre-populated with a set of ordered grid points, it is possible find an arbitrary 
number of interpolated points between each grid point. Unfortunately, the interpolated metric 
distances between grid points act as if they droop like fabric between tent poles because this 
process represents simulating a linear 1-D space within a high-dimensional N-subspace with 
unusual probabilistic metrics. Therefore, a construct was invented and patented called the 
toothpick method for string corobs, which effectively randomizes the drooping effect. The string 
corob can be adapted for representing 1-D, 2-D, etc continuous spaces as illustrated in Figure 8. 

 
Figure 8. Embedding continuous geometries using string corobs and toothpicks 
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3.8 Mutual Exclusion and Concurrency 
 
Corob tokens are stored in N-dimensional subspaces just like conventional classical tokens can 
be assigned a binary number and stored in a conventional n-bit register or memory. For example, 
the three tokens Red = 012, Green = 102 and Blue = 112 could be stored in a 2 bit register, which 
has the maximum capacity of 22 = 4 possible distinct binary tokens. These distinct values are 
mutually exclusive because there is room for only one binary value at a time. Alternatively, the 
three tokens could be orthogonally coded as Red = 0012, Green = 0102 and Blue = 1002 in a 3 bit 
register with a maximum capacity of 23 = 8 distinct states, which then simultaneously allows any 
valid combination of Red, Green and Blue such as Purple = 1012 and White = 1112. 
Unfortunately, no other color shades can be represented in this encoding unless more intensity 
bits are allocated for each color (from 1 bit to 8 or 24 bits as used in modern computer graphics).  
 
This discussion demonstrates that states (Red, Green or Blue) can share the same minimalistic bit 
encodings only if they are mutual exclusive. If multiple states must be simultaneously present 
then the encoding cannot be shared and must be redundant (orthogonal or separate bits allocated 
for each color). This same argument is true for tokens defined in subspaces in that each corob 
token is encoded as a random address in the subspace. The difference between subspaces and 
registers is subspaces naturally have extra room to simultaneously represent mixtures of naturally 
orthonormal tokens using the principles of vector addition.  
 
For example, if Red, Green and Blue are each assigned a random corob in the same subspace 
(size N = 20 gives statistically reasonable separation) then they can be thought of as orthonormal 
states with an error correction region around each point. It is also possible to create points that 
are partway between Red and Blue (just average their addresses) and form a color we know as 
Purple. So even though the colors Purple and Yellow etc were not predefined for the “color 
subspace” they can be represented in the system as a concurrent mixture of other primary tokens.  
 
This kind of concurrency or token mixtures does not emerge in the traditional mutual exclusive 
binary encodings of tokens unless they are separately coded. Because of the minimal encoding, 
conventional binary encoding have abrupt edges while corobs represent soft tokens with a unique 
kind of concurrency encoding possible.  This concurrency can occur because corob points can 
also be thought of as orthonormal basis vectors. This concurrency is also similar to the mixture 
of spin states in quantum computing, thereby leading the qubit property we call superposition. 
The primary idea behind superposition is that the spin states are NOT mutually exclusive, so the 
system state can simultaneously represent both Up and Down or both True and False.  

3.9 Noise Insensitivity and Reliability 
 
Most tokens are assigned a random address in a subspace, which are naturally far apart. If some 
process creates a noisy version of one of the tokens (drifting away in a random direction by 
mixing in another unknown random token) the distance metric will still identify the closest 
original token compared to all the other known tokens up to the standard distance limit. This 
probabilistic geometry property leads to reliability of identifying tokens in the face of noise less 
than the amount equivalent to pure randomness. This idea that the amount of noise is directly 
quantifiable based on the standard distance metric is an important idea central to corob theory. 
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4. Distance and Information Content 

4.1 Distance Metric is Information 
 
Any probabilistic process defines a mean and standard deviation. In addition, the confidence 
interval is proportional to the standard deviation and can be computed using the error function 
(by assuming the distribution as a Gaussian). This means that a distance metric represents a 
probability, which can be directly converted to the equivalent information content in bits. 
Therefore two points at the standard distance have little information content since they are at the 
expected distance. Alternatively, two points that are close compared to standard distance 
represent a much higher information content since it is unexpected due to random processes.  

4.2 Information content of each dimension 
 
The information content of each dimension can be computed by starting with the standard 
distance represented as the number of standard deviations / 6 / 7/120 20 / 7N N= , which 
leads to a probability using the error function prob = erfcc( 20 / 7N . The final bit content of this 
standard distance probability is: bits = –ln2(prob). Figure 9 shows the plot of these equations for 
N from 1 through 250, where after that the error function (which is an integral) underflows for 
double precision floating-point numbers.  
 

 
Figure 9.  Bit content of standard distance for N=1-250 
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This plot produces a straight line that approximates the equation of ( )1 / 7/120N+ =  

1 (4.14* )N= + . So each dimension (a floating point number i0 x 1≤ ≤ ) is worth slightly more 
than 4 bits of information or roughly sixteen discrete values in each dimension. This makes sense 
since the N-space volume and the mean standard distance grows with N, so more bits are 
required to represent probability in larger spaces since they are effectively N-shell ratios. This 
limit to the precision needed for representing each dimension is primarily due to the distance 
metric, which sums many such squared dimensions resulting in the lower order bits becoming 
insignificant. This also means that the hardware accelerators for this kind of system may be able 
to use less than 6-8 bits of precision for each adder or multiplier used in the squaring operations. 
 
Based on Figure 9 and the equation 1 120/7N+  (or approximately 1 (1 )N π+ + ) it is possible 
to represent either probabilities or bit content by creating specifically sized spaces to hold that 
information content. Pre-specified grid points can be carefully located in that space and then a 
test point can be created with multiple simultaneous probabilities. This strong relationship 
between concurrent probabilities, information content and distance metric is expected to be 
useful in the quantum-computing arena. 

5. Quantum Corobs 
 
The key step in applying corob theory to quantum computing is to compute the standard metrics 
for bounded, complex-valued spaces. The first step is to make the space symmetric around zero 
by choosing the bounds to be –1 to +1 thereby making the side length of S=2 and the space 
center the point [0,0,0,…]. All distance metrics normalized by the standard radius are the same 
due to axis relabeling.  The next step converts real to complex numbers by transforming 
uniformly distributed random values to uniformly distributed random phases. Finally, we must 
deal with the fact that the vector elements are complex numbers. So the difference between 

complex numbers produces ( )i i iz x y= − , which can be used in Cartesian distance formula of 

2 2 2
1 2 ... Nz z z+ + + . This requires the complex square of 

2 *
i i iz z z= , where 

*
i i iz a ib= −  is 

the complex conjugate of i i iz a ib= +  resulting in 
2 2 2( )( )i i i i i i iz a ib a ib a b= − + = + , 

which is the scalar magnitude squared of the complex number. 
 
When a large array of N uniformly distributed phase complex numbers with magnitude = 1 is 
placed through discovery of the standard metrics, the results are shown in Figure 10. This array 
of N complex numbers also exhibits the corob standard distance metrics. Notice how the corner 
distance distribution is different due to the constraint that each complex magnitude = 1. In any 
case the standard distance is the same after renormalization using the standard radius. Arrays of 
complex numbers form the essential mathematics of quantum Hilbert spaces. 
 
Both the real and complex spaces that are symmetric around point [0,0,0,…] have the property 
that randomly chosen points also naturally represent a vector from the center, without any fix up. 
This is useful since the same representation can be used for distance metrics or vector 
computations (i.e. inner product). Also the center does not shift if the bounds of the space grows. 
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Figure 10. Uniformly distributed phase and magnitude = 1 complex numbers for Nc 
 

 
 

 

 
 

Figure 11. Uniformly distributed phase qubits for Nq or ebits for Ne with q=2 

2 2 22 2 1 3D = + =

2 2 22 4 1 5D = + =
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This same standard metrics discovery process can also be applied to arrays of mathematical 
objects of higher grade, such as isolated arrays of qubits and arrays of ebits. Figure 11 shows the 
same normalized distance metrics that result  for both. These arrays of qubits are not the typical 
entangled quantum registers but simple arrays of isolated qubits, which we call a quantum 
ensemble. The arrays of ebits are also arrays of isolated ebits, where each ebit is formed by 
inseparably entangling two qubits. Quantum corobs are quantum ensembles formed on top of 
simple arrays of qubits or ebits, where the phase is the primary random variable. 

5.1 Measurement as Noise Injection 
 
It is possible to encode classical corobs into quantum corobs by converting random values to 
random phases. It is also possible to convert a quantum corob back into a classical corob or 
Kanerva bit array by measuring the quantum corob. The key result of this measurement process 
is the quantum corob survives this process. We believe this result is so significant that we have 
already filed a provisional US patent on the idea. Here are the details.  
 
The key concept about this measurement process is when evenly distributed phase angles are 
projected; they produce results that look like a noisy version of some average result. Most 
importantly, the noise is smaller than the amount that would make it appear like another 
completely random point. In simple corob terms, the distance between repeated projections of a 
repeatable corob soft token X is smaller than standard distance, whereas the distance between 
projection of soft token X compared to that of soft token Y is at appropriate standard distance. 
Figure 12 pictorially represents these relative distances of repeatable projections.  
 

 
 

Figure 12. Cluster Projection distance for qubit arrays 
 
Figure 13 shows the histogram that proves the earlier statement that repeated projections from a 
repeatable qubit soft token X acts like noisy version of some average expectation result because 
the distance is roughly 0.5 of standard distance. The rule of thumb we use is if the standard 
distance is 0.5 then the number of non-noisy dimensions is (0.5)2 = 0.25 to give the same 
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distance, so roughly 25% of the dimensions are noisy. This is possible even with arrays of 
random phase qubits because the projection process favors points/probabilities that are closer to 
either measurement basis set compared to the purely random results from phases 45 degrees 
away. Since the initial phase is totally random the choice of basis states is also immaterial. The 
histogram demonstrates that the standard deviation also shrinks as N becomes larger. The labels 
mean; ic = “in cluster” and bc = “between cluster”. These histograms indicate it is highly 
unlikely for expected values around 0.5 standard distance will ever be confused with points at 
standard distance, therefore repeatable, qubit-encoded  quantum corobs survive measurement.  

 

 
 

Figure 13. State cluster measurement histogram for qubit arrays N=50, 100, 1000 
 
This result is interesting and quite unintuitive, because quantum randomness is not considered to 
be a computational resource. The key to this result is that isolated quantum ensembles must be 
used instead of entangled quantum registers. Notice discrete states when N=50 is low. 
 
This result can be easily validated by looking at arrays of larger grain-size mathematical objects 
vs. complex numbers, qubits or ebits. Assume that each array element is an entangled quantum 
register of Q=2, 3, 4, or more qubits. Using the tensor product to create entangled qubits forms 
larger sets of unique basis vectors. Table 3 shows the result of taking a measurement using an 
arbitrary phase basis vector. The key conclusion is that the larger register the more random the 
measurement process produces. Even though quantum registers are producing corobs, they 
generate random corobs rather than tokens that survive. These numbers are slightly different 
than the talk slides due to improvements in our libraries of generators. 
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Table 3. State Cluster measurement distances for arrays of higher grained qubit registers 
 

Element % of standist # of reals Entangled state equation 

complex 70.7 % 2 a  (is complex) 

1 qubit 50 % 4 0 1a b+  

2 qubits 65 % 8 2 2 2 200 01 10 11a b c d+ + +  

3 qubits 76 % 12 0 2 1 2 6 2 7 2000 001 ... 110 111c c c c+ + + +  

4 qubits 83 % 16 0 2 1 2 14 2 15 20000 0001 ... 1110 1111c c c c+ + + +  

>4qubits 100 % >16 0 1 2 10 1 ... 2 1N Nc c c N c N− −+ + + − + −  
 

This same result is illustrated graphically in Figure 14 for a fixed N=1000 with changing grain 
size of q=1 vs. q=2. These measurements are the cluster distances of the new state results after 
measurement. 
 

 
 

Figure 14. State Cluster histograms for arrays N=1000 of qubit registers with q=1 and q=2 
 
The new resulting state is only part of the measurement process. The answer can also be viewed 
as a corob state since it is a binary valued Kanerva point. If many answers are averaged together 
they form the expected value, which is just the probability of finding a 1, so can be represented 
as real-valued corob. Figure 15 shows the histogram distributions of the measurement answers. 
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Figure 15. Answer cluster histograms for arrays N=500 of qubit registers with q=1 and q=2 
 
In conclusion, isolated arrays of qubits (or quantum ensembles) allow representing quantum 
corobs that survive measurement, whereas quantum registers produce random corobs. 

5.2 Ebit corobs survive measurement  
 
Constructing arrays of uniformly distributed random phase complex numbers or qubits (pairs of 
complex numbers) is mathematically straightforward. A qubit is represented as expression 

0 1a b+  where complex numbers a and b must meet the unitarity constraint of 2 2 1a b+ = . The 
first step in investigating corobs using ebits is that generating uniformly distributed arrays of 
random phase ebits is not as simple. These ebit states are the inseparable entanglement of two 
individual qubits. With complex numbers a, b, c and d an ebit has the representation of 

00 11a d+  (or 01 10b c+ ) with respective unitarity constraints of 2 2 1a d+ =  with 0b c= =  

(or 2 2 1b c+ =  with 0a d= = ), which both meet the overall constraint of 2 2 2 2 1a b c d+ + + = . 
Notice how no tensor product of two smaller states can produce either combination of states, 
which is the definition of inseparability for ebits. It is still possible to mathematically produce a 
uniform random phase distribution of ebits after the tensor product and erasure steps.  
 
When an ebit is measured, the two qubits are then broken apart into two separate unentangled 
qubits of the appropriate states. So the measurement for an ebit array of size N produces two 
qubit arrays of size N and a binary answer array of size N. These can all be analyzed from a 
standard distance metrics with the following results. Again Figures 16 and 17 are slightly 
different than the presented slides due to improvements in the ebit modeling libraries. 
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Figure 16. State cluster distance histogram for ebit arrays (q=2) 
 

 
 

Figure 17. State cluster distance histogram for ebit arrays (q=3) 
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Figure 18. State cluster distances for ebit arrays N=1000 with q=2 and q=3 
 

 
 

Figure 19. Answer cluster distances for ebit arrays N=1000 with q=2 and q=3 
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The overall result of measurement of quantum corobs represented in ebit arrays, is the both the 
answer and the qubit results indicate survival of the tokens. Quantum corobs survive 
measurement. Measurement of highly entangled quantum registers produce random corobs. 

6. Conclusions 
 
The striking result of this research is that noise and quantum randomness can be quantitatively 
viewed from the corob perspective. This result shows that unentangled quantum ensembles can 
be useful for representing unique data tokens in both the classical and quantum domains. Most 
importantly, these quantum data tokens can survive quantum measurement, which may be useful 
for any neurological theory that would make use of quantum mechanisms.  
 
In order to explore this interrelation between classical and quantum corobs, we are building a 
corob language and tool suite that would allow systems to be defined containing arrays of both 
types of cells. This language is currently going thru the second design revision. The key 
computational mechanism is lightweight concurrent rules that act as unique observer 
perspectives defined by corobs or basis states in various subspaces. These rules appear to have 
the characteristics of quantum superposition because states can evolve in multiple simultaneous 
paths. It is expected that corob language with quantum extensions would allow research in 
interesting quantum domains such as quantum key distribution and quantum computation.  
 
These results are novel and interesting since most people researching quantum computing do not 
know about corob theory. Anytime a large number of independent random values are represented 
by a system then standard distance metrics emerge. Program universe also has these same 
properties so therefore corob distance metrics must naturally emerge from that endeavor. The 
corob theory also is quite instructive about how stability can emerge from purely random 
processes (since the discrimination metric is identical to distance metric), which is virtually the 
same goal as Program Universe.  
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