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Abstract
The field of probabilistic geometry has been known about in 

the field of mathematics for over 50 years. Applying the 
unintuitive metrics in these high-dimensional spaces to 
the information arena is conceptually very tricky. 

Pentti Kanerva developed computational uses in the mid 
80s. Nick Lawrence also rediscovered similar results in 
the early 90s.  His patented computational theory is called 
Corobs, which stands for Correlational-Algorithm Objects. 
Recently, the link between quantum theory and Corob 
Theory was researched under DOD SBIR funding. 

This presentation gives an overview of this field including the 
key concepts of how to implement useful computation, 
knowing that randomly chosen points are all a standard, 
equidistant apart (sqrt(N/6)) in a unit N-cube (as N>>3).
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History of Geometric Probability

l Ninth Edition of Encyclopedia Britannica article by Crofton
l 1926 brochure by Deltheil
l 1962 book by Kendall and Moran
l 1988 book by Kanerva (Sparse Distributed Memory)
l 1998 Corob Patent & web site by Lawrence Technologies
l Modern books by Klain and Rota

Applications:
l Buffon Needle Problem (Barbier’s solution)
l Crystallography, sampling theory, atomic physics, QC, etc
l Basically the study of actions of Lie groups to sym spaces

Also known as probabilistic geometry or integral 
geometry or “continuous combinatorics” and 
related to the study of invariant measures in 
Euclidean n-spaces (n+1 invariants in dim=n).
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Motivated by Neurological Models 
Corobs and Synthetic Organisms

Sensors 

Cells  

Actors 

Lobes 

Environment 

Environment 

Nerve cells perform a random walk influenced by their 
input connections/structure. Therefore, randomness
is the key mechanism of neuronal information.

Lobes 
perform 
nearness 
metric 
computation

Goal: See and do things like things previously seen and done
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Discovering Geometric Probability

lWith a bounded N-space (N>20)(real or complex)
l Asymmetric (0 to 1) or symmetric (+1 to -1) spaces
lWith uniform distribution, randomly pick 2 points
l Compute or measure the Cartesian distance 
l Repeat process for 1000s of random points
lMost distances will be a “standard distance”,  

which for a unit N-cube is equivalent to              
with constant standard deviation of 
l Analytical results produces same (www.LT.com) 

and patents issued (plus more pending).

/ 6N
7/120 0.214=
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Key Concept: Equidistance

l All points tend to be the same 
distance from the red point.

l If the yellow point were at the 
center, the blue points would 
still be the same distance, 
and the red point would be 
among them!

l Distance is proportional to 
the probability of finding that 
point using a random process

l The more dimensions the 
larger the “standard distance” 
but the standard deviation 
remains a constant!

Points are corobs = Correlithm Objects
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Corob Computing using Soft Tokens

lData may be associated 
with Random Points.

lHere 3 data points are 
associated with Red, 
Green, and Blue.

l "Soft" because these 
tokens do not have 
sharp, brittle boundaries
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Nearby Points are Similar

l The (unknown) Grey point is 
closest to the Red point.

l It is much more likely to be a 
“noisy” version of the Red point 
than the Green or Blue points, 
because it is closer.

l Hence, "soft tokens" or "corobs"

l Naturally robust probabilistic yet 
error correcting representation



8/15/2002 DJM

Corob Language: Logic Example

import corob_lang #depends on the corob language python module
define system.gates_and size=30
define subspace.Boolean False True  #randomly thrown soft tokens

define input.In1 Boolean pattern=(False False True True), degrade=20
define input.In2 Boolean pattern=(False True False True), degrade=20
define bundles.AndOut.OrOut:  #two outputs

lobe(input=      (In1   In2   : Boolean Boolean), mode=quantize
education =((False False : False   False)

(False True  : False   True)
(True  False : False   True)
(True  True  : True    True)) )

expect = "AndOut=(False False False True), OrOut=(False True True True)"
gates.validate_pattern(expect)  #inputs with  0% noise for time=0-3
gates.validate_pattern(expect)  #inputs with 20% noise for time=4-7
gates.validate_pattern(expect)  #inputs with 40% noise for time=8-11
gates.validate_pattern(expect)  #inputs with 60% noise for time=12-15
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Sensor and Actor Example: Thermometer
import corob_lang
define system.temperature
define subset.fahrenheit: 32..212
define subset.centigrade: 0..100
define subspace.comfort: #subjective labels

(freeze cool perfect warm hot sauna boil) 
drift=20  #string corobs 20% of standist

define input.thermometer: fahrenheit
define bundle.feeling:

sensor(     mode=interpolate,
input=(thermometer:comfort),
education=((32:freeze),(50:cool), 
(77:perfect),(95:warm),(104:hot), 
(150: sauna),(212:boil)) )

define bundle.centigauge:  #play on words
actor(      mode=interpolate, 
input=(feeling :centigrade), 
education=((freeze:0),(cool:10),

(perfect:25),(warm:35),(hot:40),
(sauna:66),(boil:100)) )

#validate, codegen, import & run 181 steps
temperature.run(steps=181)

Fahrenheit to Centigrade Conversion
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Embedding Continuous Geometries 
Using string corobs and toothpicks (patents pending)
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Topological Structure of N-Space 
Distance Histogram for N=3
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Distance Histogram for N=12
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Effects of Constant Standard Deviation 
Distance Histograms for N=3,12,100,1000

Best if N>35 
because standard 

distance is 10 times 
standard deviation

0.9999994±5

0.9999366±4

0.9973002±3

0.9544997±2

0.6826895±1

Confidence 
Interval

Standard 
Deviations
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Distance and Information Content
using standard distance normalized by standard deviation

Bit content of standard distance for N=1-250 

1 4.14 1 33 / 8bits N N= + ≈ +

( )/ 6 / 7/120 20 / 7prob erfcc N N= =

2ln ( )bits prob= −Just over  
4 bits per 

dimension!
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Standard Distance and Standard Radius

Forms an N-dim 
tetrahedron or 
N-equihedron  
(N-shell not N-sphere)

Space Center is 
point [.5 .5 …]

/12R N≅

M N Z Z= = +
/ 6Y N≅

/ 2 / 4Z M N= =

/6Y N=

/6Y N=

0 +1

0

+1

S = 1

/4Z N=

/4Z N=

/12R N=

/12R N=

/6Y N=

/12R N=
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Distance from Corner to Random Point

Distance from 
random corner to  
a random point is 
D=2R so call it   
the diameter D. 

Notice equalities:   
Z2 + R2 = D2 and 
Z2 + Z2 = K2 where

is the
Kanerva distance 
of random corners

/ 2K N≅/6Y N=

/6Y N=

0 +1

0

+1

S = 1

/4Z N=

/4Z N=

/12R N=

/12R N=

/6Y N=

/3D N=

/12R N=
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Normalized Distances Summary
for unit NR-cube

/12R N=

/12/ 1 1X N R= = =
/6/ 2Y N R= =

/4/ 3Z N R= =
/3/ 4D N R= =
/2/ 6K N R= =
/ 12M N R= =

/4/ 3C N R= =
7/120 / 7/10YStdev R N= =

1/ 12/S R N= =

1X=

2Y=
3Z=

4D=

1X=

4D=

3Z=

1X=

2Y =

4D=

2Y =

0 +1

+1

0

+1

1/60/ 1/5RStdev R N= =
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Standard Angles from Inner Product
Random points/tokens are nearly orthogonal

1cosθ −
 

=   
 

x y
x y

0.563°.0100       10,000

1.816°.03151000

5.758°.1000100

As AngleInner Prod 

Standard DeviationSize  
of NR

0.40°10,000

1.27°1000

4.05°100

As Angle

Standard DeviationSize   
of NC
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Standard Angle Proportional 
to Standard Distance

1X≅ 1X≅

2Y ≅

Yθ ≈

Corob tokens are identical to orthonormal basis states!
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Random magnitude and phase for N=Nc
Distribution shifts relative to size of bounding box

/3R N=

/3/ 1 1X N R= = =
2 /3/ 2Y N R= =

2 / 6Z N R= =
7 /3/ 7D N R= =

4 / 12K N R= =
8 / 24M N R= =

4 /3/ 4 2C N R= = =

2/ 4 / 12/S R R N= = =

7D=

-1 +1

+1

-1

+1

+1

0

7D=

0

7D=

1X=

2Y =

2Y =

1X=

6Z=

2Y =

6Z=

6 1 7D = + =2 2 22 6 1 7D = + =
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Random phase and magnitude=1 for Nc

R N=

/ 1 1X N R= = =
2 / 2Y N R= =

2 / 2Z N R= =
3 / 3D N R= =

4 / 4 2K N R= = =
8 / 8M N R= =

4 / 4 2C N R= = =

2/ 4 / 4/S R R N= = =-1 +1

+1

-1

+1

+1

0

1X=

2Y =

2Y =

3D=

2Z=

0

2Y =

1X=

2Z=

3D=

3D=

1X=

2 2 22 2 1 3D = + =
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Qubits with Random phase for Nq

R N=

/ 1 1X N R= = =
2 / 2Y N R= =

4 / 4 2Z N R= = =
5 / 5D N R= =

8 / 8K N R= =
16 / 16 4M N R= = =

4 / 4 2C N R= = =

2/ 2/S R N= =

1X=

2Y =

2Y =

+1

+1

+1

+1

-1
-1

1X=

2Y =

1X=0

4Z=
5D=

5D=

4Z=5D=

0

2 2 22 4 1 5D = + =
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Normalizing Vector Add/Mult
Corob equivalence to unitarity constraint

...x y z
sum

S
± ± ±

=
Where S is the number of 
terms in the sum and P the 
# of terms in the product.

The bounds on the sumation
space increases by sqrt(S) 

1
( ...) 3

P
prod x y z

−
= × × ×

1x=

1y=

2x y− =

2x y+ =

Standard basis

' 1x =' 1y =

' ' 2x y− =

' ' 2x y+ =

Dual basis
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Quantum Corobs Survive Projection

Standard Distance 

<< Standard Distance 

X Cluster

Y Cluster

l Two random 
phase corobs X,Y

l Encode as arrays 
of qubit phases

l Measure qubits to 
form class. corob

l Repeat process or 
run concurrently

l All Xs will look like 
noisy versions of 
each other.

l All Ys will look like 
noisy versions of 
each other.
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Quantum Randomness Generates Corobs

50%ebit (q=2)

95%4 qubits

50%ebit (q=3)

100%>4qubits

70.7%2 qubits

50%1 qubit

70.7%complex

%standistElement

Moral: Use arrays of simple qubits or ebits to represent 
corobs else the quantum randomness will destroy token 
identity. This suggests simple ensemble computing!

Corobs must 
be random but 
repeatable !!
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Ebits Maintain Token Separation

Ebit projection cluster separation histogram normalized by Ebit standard distance 

In cluster dist

between 
clusters dist
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Ebit Histogram for 3 entangled qubits

In cluster dist

between 
clusters dist
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Summary and Conclusions

l Information, probability and distance metrics 
lSoft tokens or Corobs approach robustly

expresses classical and quantum computing.
lStrong correlation between corob and 

quantum computing theories suggests: 
¡ Corob based languages useful for quantum comp
¡ Quantum systems may naturally represent corobs
¡ Robustness in corob theory may be useful as 

natural error correction for quantum systems
¡ New high dimensional interpretation of quantum 

with new insight underlying uncertainty principle 


