

Is Quantum Computing a Solution for Semiconductor Scaling?

Dallas IEEE Computer Society Meeting Jan 19, 2007

Douglas J. Matzke, Ph.D. CTO of Syngence, LLC matzke@IEEE.org

1

Introduction and Outline

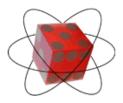
Topics in Presentation

- What does it take to build a GP computer?
- Limits of semiconductor/computer scaling
- Introduce idealized model of computational costs
- Introduce Quantum computing
- Information is Physical
- Compare/Contrast Classical Comp vs. QuComp
- Computing Myths
- Conclusions

Motivation: Limits of Computation

- >25 Years in semiconductor company (HW/SW)
- PhysComp 1981, <u>1992</u>, <u>1994</u>, 1996 (<u>chairman</u>)
- Billion Transistor issue of Computer Sept 1997
- Ph.D in area of Quantum Computing May, 2002
- Quantum Computing Research contract 2003-2004

Conventional semiconductors will stop scaling in next 10+ years


End of Silicon Scaling

"Manufacturers will be able to produce chips on the 16-nanometer* manufacturing process, expected by conservative estimates to arrive in 2018, and maybe one or two manufacturing processes after that, but that's it."

This is actually a power density/heat removal limit!!

Quote from News.com article "Intel scientists find wall for Moore's Law" and Proc of IEEE Nov 2003 article: "Limits to Binary Logic Switch Scaling—A Gedanken Model"

*gate length of 9 nm, 93 W/cm² & 1.5x10² gates/cm²

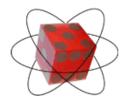
ITRS: International Technology Roadmap for Semiconductors

Near-term Years

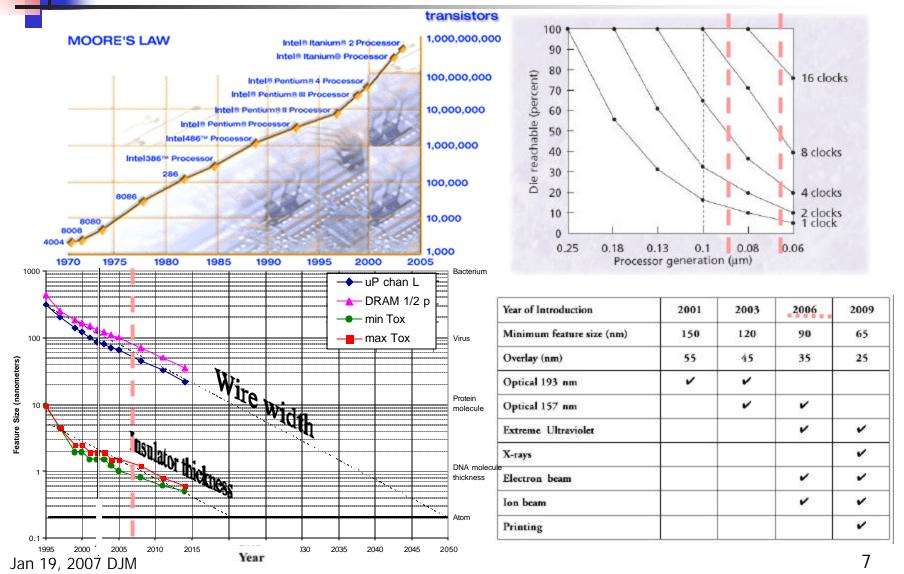
15 year forecast from 2003 ITRS - International Technology Roadmap for Semiconductors at: http://www.itrs.net/

YEAR OF PRODUCTION	2003	2004	2005	2006	2007	2008	2009
Technology Node		hp90			hp65		
DRAM ½ Pitch (nm)	100	90	80	70	65	57	50
MPU/ASIC M1 ¹ / ₂ Pitch (nm)	120	107	95	85	75	67	60
MPU/ASIC Poly Si ¹ / ₂ Pitch (nm)	107	90	80	70	65	57	50
MPU Printed Gate Length (nm)	65	53	45	40	35	32	28
MPU Physical Gate Length (nm)	45	37	32	28	25	22	20

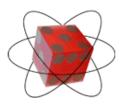
Long-term Years


These sizes are close to physical limits and technological limits.

YEAR OF PRODUCTION	2010	2012	2013	2015	2016	2018
Technology Node	hp45		hp32		hp22	
DRAM ½ Pitch (nm)	45	35	32	25	22	18
MPU/ASIC M1 ½ Pitch (nm)	54	42	38	30	27	21
MPU/ASIC Poly Si ½ Pitch (nm)	45	35	32	25	22	18
MPU Printed Gate Length (nm)	25	20	18	14	13	10
MPU Physical Gate Length (nm)	18	14	13	10	9	7

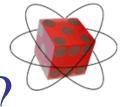


Computer Scaling Limits


- Physical Limits
 - Power density/Dissipation: max is 100 W/cm²
 - Thermal/noise: E/f = 100h
 - Molecular/atomic/charge discreteness limits
 - Quantum: tunneling & Heisenberg uncertainty
- Technology Limits
 - Gate Length: min ~18-22 nm
 - Lithography Limits: wavelength of visible light
 - Power dissipation (100 watts) and Temperature
 - Wire Scaling: multicpu chips at ~ billion transistors
 - Materials

Charts and Tables Galore

What does it take to build a general purpose computer?


Computing is the time-evolution of physical systems.

- Model of Computation
 - Representation of Information
 - Distinguishability of States
 - Memory/Algorithms
- Physical Computers
 - Matter/energy
 - Space/time
 - Noise/defect immunity
- Common Examples
 - Classical Mechanical/Semiconductor
 - Neurological/Biological/DNA
 - Quantum Computer a Paradigm Shift

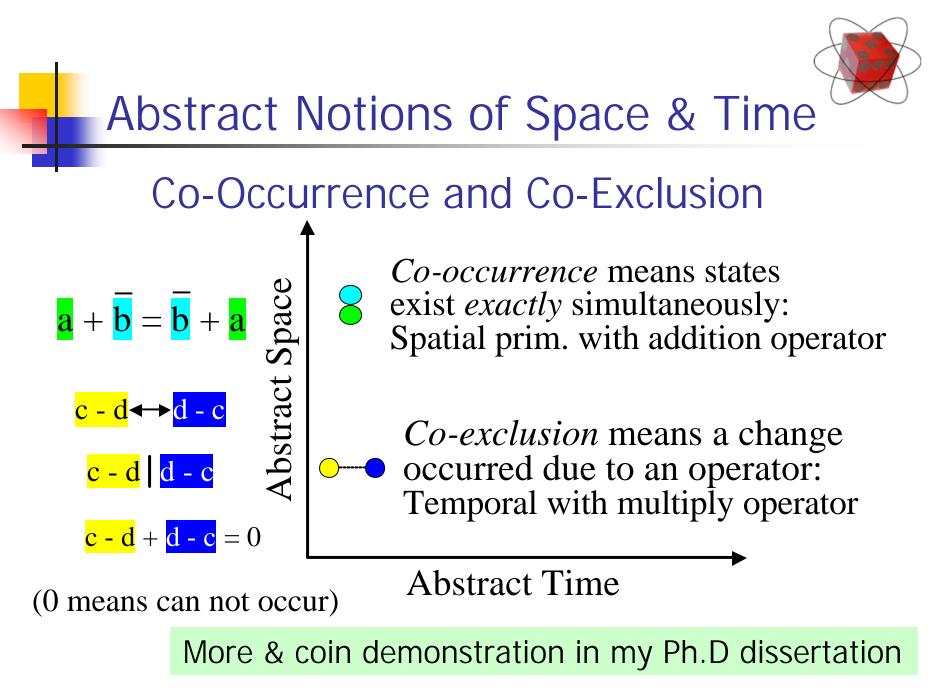
n Software Architecture Gates Memory Introduce idealized model of computational costs

- Space: Information is in wrong place Move it
 - Locality metrics are critical context
 - Related to number of spatial dimensions anisotropic
 - i.e. Busses, networks, caches, paging, regs, objects, ...
- *Time:* Information is in wrong form Convert it
 - Change rate and parallelism are critical (locality)
 - Related to temporal reference frame (i.e. time dilation)
 - i.e. consistency, FFT, holograms, probabilities, wholism
- All other physical costs
 - Creation/Erasure, Noise/ECC, Uncertainty, Precision, ...
 - Decidability, Distinguishability, Detection, ...

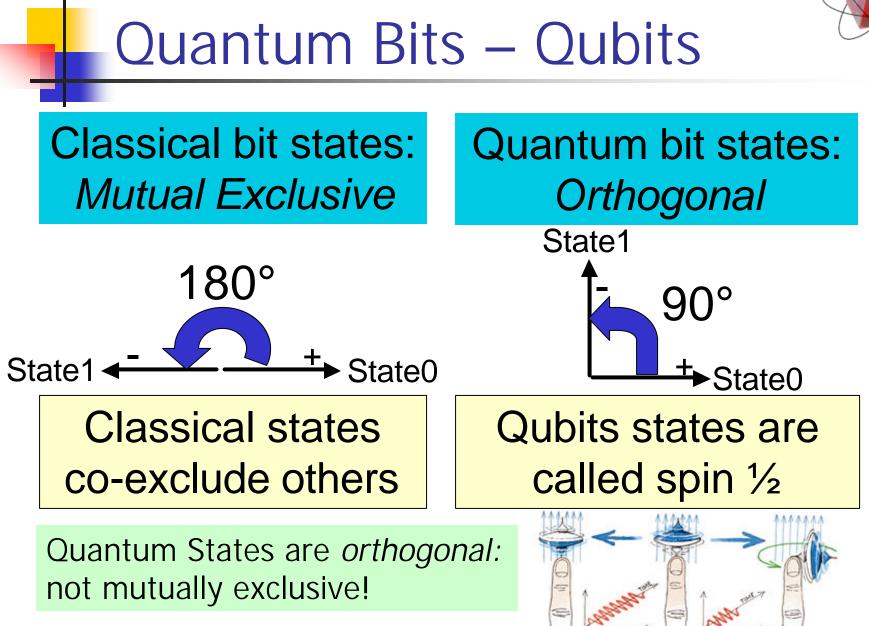
Idealized Smarter Computers?

- If Information is always in right "local" place(s)
 - Possible higher number of dimensions
 - Possible selective length contraction
- If Information is always in "correct" form(s)
 - Multiple consistent wholistic representations
 - Change occurs outside normal time
- If other costs mitigated
 - Arbitrarily high precision and distinguishability, etc
 - Arbitrarily low noise and uncertainty, etc

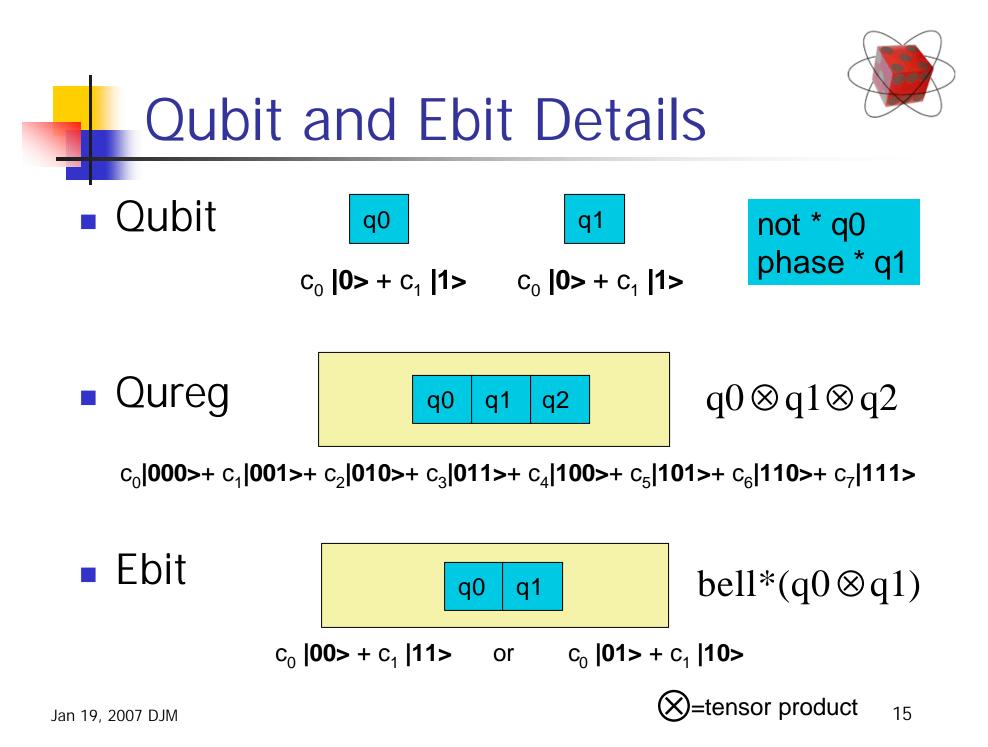
Possible solutions may exist with quantum bits

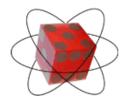

Is Quantum the Solution?

- Pros (non-classical)
 - Superposition qubits
 - Entanglement ebits
 - Unitary and Reversible
 - Quantum Speedup for some algorithms
- Cons (paradigm shift)
 - Distinct states not distinguishable
 - Probabilistic Measurement
 - Ensemble Computing and Error Correction
 - Decoherence and noise
 - No known scalable manufacturing process



Classical vs. Quantum Bits


Topic	Classical	Quantum
Bits	Binary values 0/1	Qubits $c_0 0\rangle + c_1 1\rangle$
States	Mutually exclusive	Linearly independ.
Operators	Nand/Nor gates	Matrix Multiply
Reversibility	Toffoli/Fredkin gate	Qubits are unitary
Measurement	Deterministic	Probabilistic
Superposition	Code division mlpx	Mixtures of $ 0\rangle \& 1\rangle$
Entanglement	none	Ebits $c_0 00\rangle + c_1 11\rangle$



Quregister: Matrices 201

$$state 0_{0} = |0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$
$$state 1_{0} = |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
$$(tensor product) \qquad (itensor product) \qquad (iten$$

Qubit Operators

Gate	Symbolic	Matrix	Circuit
Identity	$\sigma_{_0}*\psi$	$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	ψ
Not (Pauli-X)	$\sigma_1^*\psi$	$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\psi - x -$
Shift (Pauli-Z)	$\sigma_{3}^{*}\psi$	$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	ψ -[z]
Rotate	$\theta^*\psi$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$	Ψ-Θ-
Hadamard	$H^*\psi$	$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	₩ –⊞–
n 19, 2007 DJM		$\begin{bmatrix} 0\rangle & 1\rangle \end{bmatrix}$	

Jan 19, 2007 DJM

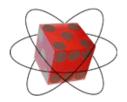
17

Quantum Noise

Pauli Spin Matrices

Identity	$\boldsymbol{s}_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$oldsymbol{s}_0^*oldsymbol{y}$
Bit Flip Error	$\boldsymbol{s}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$oldsymbol{s}_1^*oldsymbol{y}$
Phase Flip Error	$\boldsymbol{s}_{3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$s_{3}*y$
Both Bit and Phase Flip Error	$\boldsymbol{s}_{2} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$	$\boldsymbol{s}_2^* \boldsymbol{y}$

$$\begin{bmatrix} a & b \\ b^* & c \end{bmatrix} = \frac{1}{2}(a+d)\mathbf{s}_0 + \frac{1}{2}(b+b^*)\mathbf{s}_1 + \frac{1}{2}i(b-b^*)\mathbf{s}_2 + \frac{1}{2}(a-d)\mathbf{s}_3$$

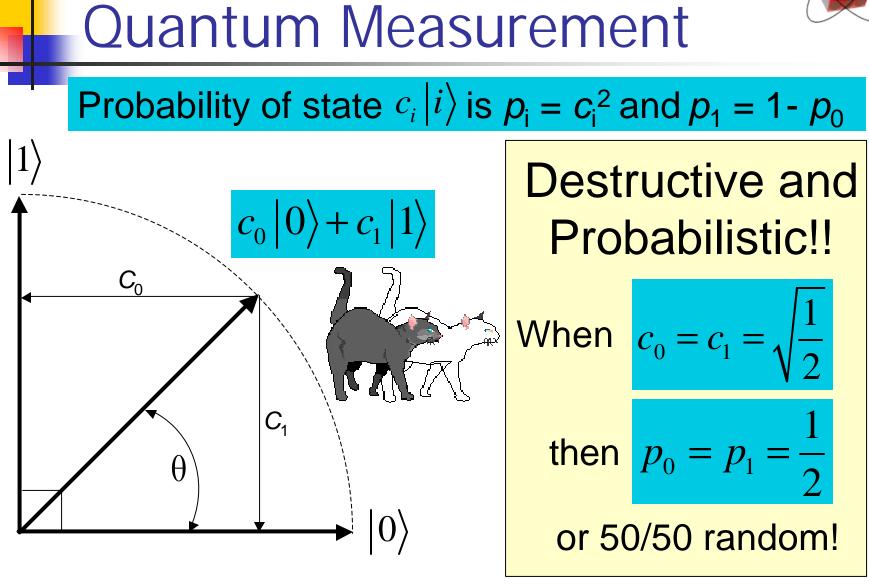


Entangled Bits – Ebits

- EPR (Einstein, Podolski, Rosen)
- Bell States
 - $B_{0} = \Phi^{+} = c_{0} \left(|00\rangle + |11\rangle \right), \qquad B_{1} = \Phi^{-} = c_{0} \left(|00\rangle |11\rangle \right)$ $B_{2} = \Psi^{+} = c_{0} \left(|01\rangle + |10\rangle \right), \qquad B_{3} = \Psi^{-} = c_{0} \left(|01\rangle |10\rangle \right)$
- Magic States $M_0 = c_0 (|00\rangle + |11\rangle), \quad M_1 = c_1 (|00\rangle - |11\rangle)$ $M_2 = c_1 (|01\rangle + |10\rangle), \quad M_3 = c_0 (|01\rangle - |10\rangle)$

$$c_0 = 1/\sqrt{2}$$
 $c_1 = i/\sqrt{2}$

Jan 19, 2007 DJM

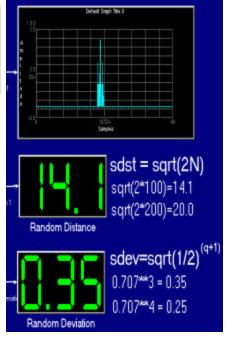

EPR: Non-local connection

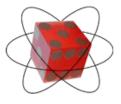
- Step1: Two qubits • Step2: Entangle \rightarrow Ebit • Step3: Separate $|0_0\rangle, |0_1\rangle$ $\Phi^{\pm} = |00\rangle \pm |11\rangle$ $\Psi^{\pm} = |01\rangle \pm |10\rangle$ $|2\rangle, |2\rangle$
- Step4: Measure a qubit
 - Other is same if Φ^{\pm}
 - Other is opposite if Ψ^{\pm}

$$answer = 1, other = 1$$

 $answer = 1, other = 0$

Linked coins analogy

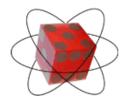

Jan 19, 2007 DJM Measurement operator is singular (not unitary) 21



Ensemble Computing

- Ensemble
 - A set of "like" things
 - States can be all the same or all random!!
- Examples
 - Neurons: pulse rate
 - Photons: phase angle
 - Qubits: used in NMR quantum computing
 - Kanerva Mems: Numenta, On Cognition, Jeff Hawkins
 - Correlithm Objects: Lawrence Technologies

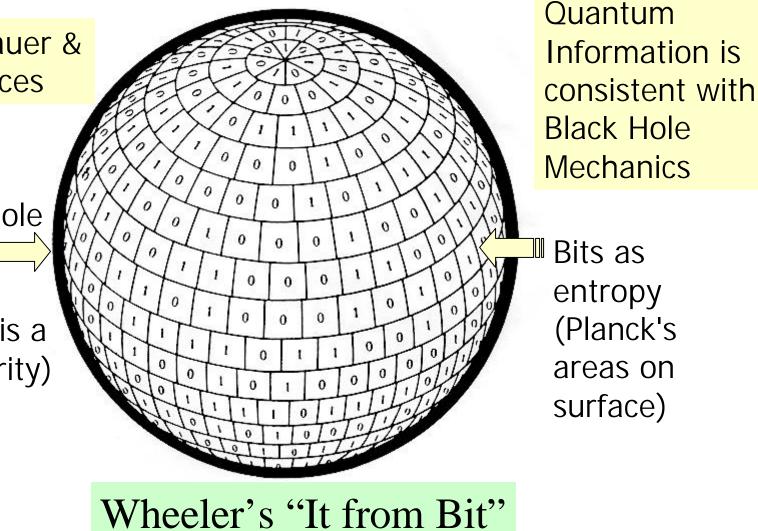
Ensembles can use randomness as a resource.



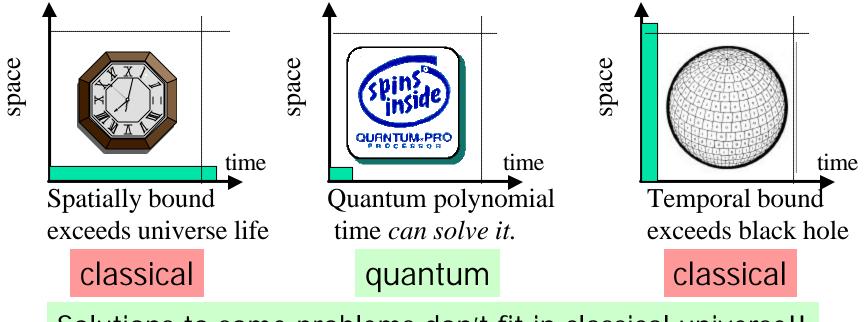
Why is quantum information special?

Quantum Computing requires a paradigm shift!!

- Quantum states are high dim (Hilbert space)
 - Can be smarter in higher dims with no time
 - Superposition creates new dims (tensor products)
- Quantum states are non-local in 3d & atemporal
 - Causality and determinacy are not the primary ideas
 - Large scale unitary consistency constraint system


Quantum information precedes space/time and energy/matter - Wheeler's "It from Bit"

Information is Physical


Rolf Landauer & phase spaces

Black Hole event horizon (inside is a singularity)

Quantum Computing Speedup

- Peter Shor's Algorithm in 1994
- Quantum Fourier Transform for factoring primes
- Quantum polynomial time algorithm

Solutions to some problems don't fit in classical universe!!

Computing Paradoxes

Property	Choices	Contradiction
Size	Larger/Smaller	Larger is less localized
Speed	Faster/Slower	Faster is more localized
Power	Less/more	Less power is slower
Grain Size	Gates/wires	No distinction at quantum level
Dimensions	More/less	Physical vs. mathematical dims
Parallelism	Coarse/fine	Sequential vs. Concurrent
Complexity	Less/More	Makes programming hard
Noise	Less/More	Use noise as resource
Velocity	Fast/Slow	Time Dilation slows computing

Computing Myths

- Quantum/Neural/DNA don't solve scaling
 - Quantum only applied to gate level
 - Not generalized computing systems niches
 - Nano-computers (nanites) are science fiction
- Smarter Computers? What is Genius?
 - No generalized learning Failure of AI
 - No general parallel computing solutions
 - Computers don't know anything (only data)
 - Computers don't understand (speech&image)
 - Computers have no meaning (common sense)

Scaling Predictions

- Semiconductors will stop scaling in ~10 yrs
 - Nanocomputers won't stop this; only delay it
 - Breakthrough required or industry stagnates
 - College students consider non-semiconductor careers
- Research needed in these areas:
 - Deep meaning and automatic learning
 - Programming probabilistic parallel computers
 - Noise as valued resource instead of unwanted
 - Higher dimensional computing
 - Investigate non-local computing
- __Quark, quark!
- Biological inspired computing Quantum Brain?

Conclusions

- Computer scaling creates uncertainty
- Quantum Computing not yet a solution
- Watch for unexpected aspects of noise
- Industry is not open on scaling problems
- Research money is lacking
- Costs may slow before limits
- Must think outside 3d box
- Focus on Human Acceleration

D. Matzke, L. Howard, 1986, "A Model for providing computational resources for the human abstraction process", EE Technical Report, Electrical Engineering Department, Southern Methodist University, Dallas, TX.

D. Matzke, "*Physics of Computational Abstraction*", Workshop on Physics and Computation, PhysComp 92, IEEE Computer Society Press 1993.

D. Matzke, "Impact of Locality and Dimensionality Limits on Architectural Trends", Workshop on Physics and Computation, PhysComp 94, IEEE Computer Society Press 1994

D. Matzke, "Will Physical Scalability Sabotage Performance Gains?", IEEE Computer 30(9):37-39, Sept 1997.

D. Matzke, "*Quantum Computing using Geometric Algebra*", Ph.D. dissertation, University of Texas at Dallas, TX, May 2002, http://www.photec.org/dissertations.html

D. Matzke, P. N. Lawrence, "Invariant Quantum Ensemble Metrics", SPIE Defense and Security Symposium, Orlando, FL, Mar 29, 2005.