
PhysComp '92

Workshop on Physics and Computation

PhysComp '92

October 2–4, 1992 Dallas, Texas

Proceedings of the Workshop on Physics and Computation October 2–4, 1992 Dallas, Texas

> Sponsored by Dallas IEEE Computer Society Texas Instruments Incorporated

Workshop on Physics and Computation PhysComp '92

Proceedings of the Workshop on Physics and Computation October 2-4, 1992 Dallas, Texas

Sponsored by

Dallas Chapter IEEE Computer Society and Texas Instruments, Inc.

IEEE Computer Society Press Los Alamitos, California

Washington

Brussels

Tokyo

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

Published by the IEEE Computer Society Press 10662 Los Vaqueros Circle PO Box 3014 Los Alamitos, CA 90720-1264

© 1993 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970. For other copying, reprint, or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number 3420-02 Library of Congress Number 92-74438 ISBN 0-8186-3420-0 (paper) ISBN 0-8186-3421-9 (microfiche)

Additional copies can be ordered from

IEEE Computer Society Press Customer Service Center 10662 Los Vaqueros Circle PO Box 3014 Los Alamitos, CA 90720-1264 IEEE Computer Society 13, avenue de l'Aquilon B-1200 Brussels BELGIUM IEEE Computer Society Ooshima Building 2-19-1 Minami-Aoyama Minato-ku, Tokyo 107 JAPAN

Production Editor: Edna Straub
Cover: Joe Daigle
Printed in the United States of America by McNaughton & Gunn, Inc.

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Message from the Chairman

The Workshop on Physics and Computation, PhysComp '92, was a big success, thanks to all the efforts of the committee members and each of the participants. This workshop was long overdue since the first major conference on the Physics of Computation was held at MIT over a decade ago. The eager participants were thrilled that another conference in this area was finally organized. It was agreed that another workshop or conference would be organized for 1994.

Almost 60 papers were presented and nearly 100 people attended representing five countries. The attendance was an interesting mix of people from industry, universities, government agencies, and the press. Most participants felt the workshop exceeded their expectations. Many new collaborative efforts have started since the workshop. An electronic mailing list was started (subscribe by sending mail to physics.computation-request@hc.ti.com) allowing easy contact with other people in this emerging field.

This workshop was organized as a result of an IDEA grant from Texas Instruments. My justification in applying for this grant was based on my interest in formalizing a Theory of Computation/Software that is consistent with General Relativity and Quantum Theory, the two most successful theories of our time. A successful predictive theory of computation would lead to a better understanding of using parallel physical mechanisms as computing engines and also to a better understanding of how the universe is organized. It is my belief that progress on these theoretical topics is necessary to keep the computer industry growing. I want to thank Texas Instruments for the support of the IDEA grant program, which allowed this kind of work to be funded.

The keynote speaker, Rolf Landauer, deserves a special thanks. He committed very early to be the keynote speaker, and thus almost guaranteed a successful workshop due to his association with the program. A huge thanks also goes to the banquet speaker, Edward Fredkin, who gave a stimulating and entertaining talk. Both of these men were co-sponsors of the 1981 conference and they always seem to be adept at challenging conventional ideas.

Many thanks go to Steve Ford, the Arrangements Chairman. Because of his contribution, the arrangements at The Harvey Hotel, Addison, were flawless and this allowed all the participants to concentrate on the real task at hand. James Bondi, Paul Chiang, and Gene Meyer of the Dallas Chapter of the IEEE Computer Society deserve a big thanks. The Dallas IEEE sponsorship and their help were instrumental in a successful workshop. I would also like to thank the program committee members Rob Farrow, Riley Jackson, Andy Penz, and Paul Stanford, who helped organize and coordinate the panel sessions that encouraged maximum participation.

A real thanks goes to all the participants who believe this work is fundamental to the computer industry and our understanding of nature. We must keep working hard to understand the emerging relationship between physics and computation.

Doug Matzke Workshop Chairman

PhysComp '92

Conference Chairman

Douglas J. Matzke

Arrangements Chairman

Steve Ford

Program Committee

Rob Farrow Riley Jackson Douglas Matzke Andy Penz Paul Stanford

Arrangements Committee

James Bondi Paul Chiang Steve Ford Gene Meyer

Acknowledgements

Paul Cox
Rolf Landauer
Jim Luscombe
Fredrick Turner
IDEA Grant Program of Texas Instruments
All participants of workshop

For information contact

Douglas Matzke Texas Instruments PO Box 655474, MS 446 Dallas, TX 75265 matzke@hc.ti.com (214) 995-0787

Contents

Message from the Chairman Conference Committee	
Session 1	
Information is Physical	1
Session 2	
What are Nature's "Natural" Ways of Computing?	5
Artificial Physics: The Soul of a New Discipline	10
Nonlinear Time and the Human Brain	21
Linguistic Mechanism, Physical Mechanism, and Secondary Non-r.e.ness of the Physical World	24
Physics of Computational Abstraction	34
Session 3	
Theory of Thermodynamics of Computation	42
Computational Entropies	47
Physical Laws and Information Content	52
The Second Law, Computation, and the Temporal (A)Symmetry of Memory	58
Computational Complexity and Phase Transitions	63
Information and Available Work in the Perturbed Baker's Map	69
Session 4	
Logical Depth and Other Algorithmically Defined Properties of Finite Objects C.H. Bennett	75
The Energy Content of Knowledge	78

Physical Limits, and Information as a Form of Matter	83
P.N. Lawrence	0.0
Landauer's Principle and Black-Hole Entropy	86
C. Fuchs	0.0
Entropy and Information for an Automated Maxwell's Demon	
Use of Information Theory in Molecular Biology	
Computational Biosequence Analysis by Neural Networks	111
Session 5	
A New Cosmogony E. Fredkin	116
Natural versus "Universal" Probability, Complexity, and Entropy	122
A Complex Logic for Computation with Simple Interpretations for Physics R.G. Shoup	128
Drift, Diffusion, and Boltzman Distribution in Simple Genetic Algorithm H. Kargupta	137
Complexity of Neural Network Learning in Real Number Model	146
Quantum Mechanical Neural Networks: An Isoperimetric Extremization	151
Galois Spinor Fields: A Home for All Computer Calculations?	153
Session 6	
Storage and Retrieval of Quantum Information	155
Quantum Neurodynamics, or "Where is the State Vector?"	159
Linear Logic for Generalized Quantum Mechanics	
The Two Extremes of Information in Quantum Mechanics	
Physical Meaning of Computation	184
Session 7	
Computation and Quantum Superposition	192
Oracle Quantum Computing	195
A. Berthiaume and G. Brassard	

Cryptographic Primitives and Quantum Theory	200
C. Crépeau	
On Convolution	205
D.B. Benson	
Physical Information Theory Part I: Quasiclassical Systems	210
L.B. Levitin	
Physical Information Theory Part II: Quantum Systems	215
L.B. Levitin	
Information in Direct and Indirect Quantum Measurements	220
Gibbs Paradox and Equivalence Relation between Quantum Information and Work $L.B.\ Levitin$	223
Session 8	
Towards Practical Reversible Logic	227
Competition as an Organizational Principle for Massively Parallel Computers? W. Banzhaf	229
Entropy, Fault Tolerance, and Multicomputer Networks	232
An Electroid Switching Model for Reversible Computer Architectures	237
Physics Analogs in Communication Models	248
A Bridge of Bits	253
Session 9	
Gain in Nanoelectronic Devices	258
A Principle of Least Computational Action	262
Adiabatic Switching, Low Energy Computing, and the Physics of Storing and	
Erasing Information	267
Entropy Flow in a Mesoscopic Conductor and the Entropy of Erasure	271
Information in Dynamics	276
Other Papers	
Paradoxes and the Distribution of Probabilities	281
K. DePryck	
Reversible Agents Need Robots Waste Bits to See, Talk, and Achieve?	284

Function Optimization Based on Advanced Simulated Annealing	289
B. Rosen	
The Interplay between Gravitation and Information Theory	294
M. Schiffer	
Aspects of Computability in Physics	299
J. Shipman	
Quantum Statistical Inference	315
R.N. Silver	
Author Index	327
Appendices	328