Analog Computation with Continuous ODEs"*

Michael S. Branicky!
Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

We demonstrate simple, low-dimensional systems
of ODEs that can simulate arbitrary finite automata,
push-down automata, and Turing machines. We con-
clude that there are systems of ODEs in R® with con-
tinuous vector fields possessing the power of univer-
sal computation. Further, such computations can be
made robust to small errors in coding of the input or
measurement of the output. As such, they represent
physically realizable computation.

We make precise what we mean by “simulation”
of digital machines by continuous dynamical systems.
We also discuss elements that a more comprehensive
ODE-based model of analog computation should con-
tain. The “azioms” of such a model are based on con-
siderations from physics.

1 Introduction

Lately, there has been a renewed general interest in
analog computation (e.g., neural networks). Hardware
implementations of analog computation schemes are
also making a comeback due to advances in technol-
ogy [23]. Theoretically, there has been increased inter-
est in continuous realizations of discrete computations
([10, 11, 12, 36] and the references therein). Another
recent focus has been on complexity theory of compu-
tational machines based on the reals (see [3, 31, 34]
and their references). It remains to see whether these
will threaten the currently entrenched notion of com-
putational complexity (as in, e.g., {17, 20]).

In this paper, we will focus on the computa-
tional power of continuous-time dynamical systems
whose evolution is governed by ordinary differential

*Work supported by the Army Research Office and the Cen-
ter for Intelligent Control Systems under grants DAAL03-92-G-
0164 and DAAL03-92-G-0115.

tE-mail: branicky@mit.edu.

0-8186-6715-X/94 $4.00 © 1994 IEEE

265

equations (ODEs). We demonstrate simple, low-
dimensional systems of ODEs that can simulate ar-
bitrary finite automata (FA), push-down automata
(PDA), and Turing machines (TMs). We conclude
that there are systems of ODEs in R® with contin-
uous vector fields (continuous ODEs) possessing the
power of universal computation. Related in spirit is
the work of [29], in which partial differential equations
mimicking cellular automata are given.

It is well-known that discrete-time dynamical sys-
tems possess the power of universal computation (see,
e.g., [13, 25, 33]). It is also easy to construct sys-
tems of discontinuous ODEs possessing the ability to
simulate arbitrary TMs [1, 7]. Finally, it is a rela-
tively trivial observation that there are systems of con-
tinuous ODEs which possess the power of universal
computation—just write down the differential equa-
tions governing your favorite personal computer or
workstation. However, this requires a system of ODEs
with a (potentially) infinite number of states.

Our work here (which follows [5, 7]) shows that it
is not necessary to have a potentially infinite number
of states nor to resort to discontinuous vector fields.
Further, such computations can be made robust to
small errors in coding of the input or measurement of
the output. As such, they represent more “physically
realizable” computation.

The paper is organized as follows. First, we make
precise what we mean by “simulation” of digital ma-
chines by continuous dynamical systems. The no-
tions are somewhat technical, but intuitive. Next,
we present our simulation results, demonstrating the
computational power of simple, low-dimensional sys-
tems of ODEs. While stated in terms of our definitions
of simulation, these results are quite intuitive and con-
tinue to hold under alternate, reasonable definitions of
simulation. Finally, we discuss elements that a more
comprehensive ODE-based model of analog computa-
tion should contain. The “axioms” of such a model are
based on considerations from physics [16] and previous
work on analog computation [9, 35].

2 Notions of Simulation
2.1 Preliminaries

First, we will develop a little notation. For more in-
formation, the reader is referred to [18, 30]. Through-
out, let R, Ry, Z, and Z, denote the reals, nonnega-
tive reals, integers, and nonnegative integers, resp.

Definition 1 A continuous (resp. discrete) dynami-
cal system in the metric space X is a function q =
f(p,t) which assigns to each point p of the space X
and to each t € R (resp. Z*) a definite point ge X
and possesses the following three properties:

o Initial condition: f(p,0) = p for any pointp € X.
o Continuity on both arguments.

o Semi-group property:
f(f(p7tl)1t2) - f(p7 tl + tZ)

for any point p € X and any t; and t, in RT
(resp. Z%).

Technically, in the mathematical literature of dy-
namical systems, such systems are referred to as semi-
dynamical systems, with the term dynamical system
reserved for those which the semigroups R*, Z* above
may be replaced by the groups R, Z. However, the
more “popular” notion of dynamical system in math
and engineering requires only the semigroup property
[14, 22]. We use the word reversible to distinguish the
group from semigroup case.

In this paper the continuous dynamical systems
dealt with are ODEs (with unique, global solutions).
Throughout, we will use the shorthand continuous
(resp. Lipschitz) ODEs to denote ODEs with contin-
uous (resp. Lipschitz continuous) vector fields, that
is, ODEs whose right-hand sides are continuous (resp.
Lipschitz continuous).

We use the shorthand [X, S, f] to denote the dy-
namical system f defined on X over the semigroup
S. The set f(p,S) = {f(p,i) : i € S} is called the
(positive) orbit or trajectory of the point p. A fized
point of [X, S, f] is a point p such that fp,s) =p
forall s € S. A set A C X is invariant with respect
to f, or simply invariant, if f(A,s) C A for all s € S.
Two dynamical systems [X, S, f], [Y, S, F) are said to
be equivalent (also topologically equivalent or isomor-
phic) if there exists a homeomorphism ¢ : X — Y
such that

$(7(p,9)) = F(W(p),)

forallpe X andse S.

266

If the mapping 4 is only continuous, then [X, S, f]
is said to be homomorphic to [Y, S, F]. The simplest
example of a homomorphism is the situation when the
space Y consists of one fixed point. Homomorphisms
preserve trajectories, segments of trajectories, fixed
points, periodic points, and invariant sets.

Note that these dynamical systems are au-
tonomous, that is, their transition maps do not de-
pend explicitly on absolute time. (The time-varying
case is subsumed by adding another state variable for
time.) Thus, we will sometimes abuse notation below
by saying that the function f, meaning f(-,1), is a
“discrete dynamical system defined on X.”

2.2 Definitions of Simulation

In dynamical systems, simulation is captured by the
notions of topological equivalence and homomorphism
[14, 18, 30]. One can extend these notions to sys-
tems with inputs and outputs by also allowing mem-
oryless, continuous encoding of inputs, outputs, and
initial conditions.

In computer science, simulation is based on the no-
tion of “machines that perform the same computa-
tion.” This can be made more precise, but is not re-
viewed here [4, 24].

Other notions of simulation (for discrete dynami-
cal systems) appear in [21]. All these notions, how-
ever, are “homogeneous,” comparing continuous sys-
tems with continuous ones or discrete with discrete.
One that encompasses simulation of a discrete dy-
namical system by a continuous dynamical system is
required here.

One notion that associates discrete and continu-
ous dynamical systems is global section [30]. The set
Sx C X is a global section of the continuous dynam-
ical system [X,R™, f] if there exists a t, € R* such
that

Sx = {f(P,kto) | k € Z*},
where P is a set containing precisely one point from
each of the trajectories f(p,R"), p € X.

We will develop several definitions of simulation of a
discrete dynamical system by a continuous one below.
These will be aided by some preliminary definitions.

Definition 2 A sequence to, 11,1z, ..
izable (resp. equi-realizable) if

e o<t <ty <:--v,

. of reals is real-

] infl-(ti_H - ti) >0 (resp. tivi —ti=A > O).

A sequence will be called lively if sup,(tiy1 — t;) <
00. A sequence that is both realizable and lively will be
called effective.

A sequence of intervals [0, 7g), {11, 71), [T2, 73], - .. 88
realizable (resp. lively, effective) if {r;, 7/} is realizable
(vesp. lively, effective).

Note that an equi-realizable sequence is effective. The
definition of realizable appeared in the work of [28].

Using the definition of global section for guidance,
we define

Definition 3 (S-simulation) A continuous dynam-
ical system [X,RY,f] simulates via section or S-
simulates a discrete dynamical system [Y,Z%,F] if
there exist a continuous surjective partial function
¥ : X = Y and an equi-realizable sequence {t;} such
that for allz € =1 (Y) and all k € ZT

Y(f(@,te)) = F((x), k).

Note that surjectivity implies that for each y € Y
there exists z € 1~!(y) such that the equation holds.
Here, continuous partial function means the map from
1~ 1(Y) (as a subspace of X) to Y is continuous.

Intuitively, the set V = ¢~ 1(Y) may be thought
of as the set of “valid” states; the set X\V as the
“don’t care” states. In dynamical systems, V may be
a Poincaré section; X'\ V the set of points for which the
corresponding Poincaré map is not defined [18, 19]. In
computer science and electrical engineering, V' may be
the set of circuit voltages corresponding to a logical 0
or 1; X\V the voltages for which the logical output is
not defined.

S-simulation is a strong notion of simulation. For
instance, compare it with topological equivalence.
Typically, though, the homogeneous notions of simula-
tion do not expect time to be parameterized the same
(up to a constant) for both systems. For example, a
universal Turing machine, U, may take several steps
to simulate a single step of any given Turing machine,
M. Moreover, the number of such U steps to simulate
an M step may change from M step to M step. Some
of the notions of simulation defined in [21] also allow
this generality. Further, the definition of topological
equivalence of vector fields (different than for dynam-
ical systems, see [18]) is such that parameterization
of time need not be preserved. Thus, following the
definitions in [21] one formulates

Definition 4 (P-simulation) A continuous dynam-
ical system [X,RY,f] simulates via points or P-
simulates @ discrete dynamical system [Y,Z¥,F] if
there ezists a continuous surjective partial function
¥ 1 X = Y such that for all z € 1Y) there is
realizable sequence {tx} such that

Y(f(z,te)) = F(Y(z), k).

267

One readily checks that S-simulation implies P-
simulation. This is a weak notion. For instance, con-
sider the case where Y is finite, |Y| = N. Suppose
[X,R", f] has a point p such that [f(p,RT)| > N
and p = f(p,to) for some &, > 0. That is, the or-
bit at point p is periodic and contains more than N
points. Clearly, one may associate N distinct points
in f(p,R*) with the points in Y, so that [X,R*, f] P-
simulates [Y,Z*, F]. This weakness persists even if ¥’
is infinite. For example, the simple harmonic oscillator
defined on the unit circle, X = S':

z:l Z2,

Ty =

—T,

along with ¢(z) = z; P-simulates every dynamical
system of the form [[-1,1],Z", F]. These arguments
also show the weakness of some of the definitions in
[21]. Finally, this same example shows P-simulation
does not imply S-simulation: the harmonic oscillator
above cannot S-simulate any {[—1,1],Z™", F] for which
0 is a fixed point and 1 is not a fixed point.

Thus, P-simulation need not correspond to an in-
tuitive notion of simulation. The reason is that one
wants, roughly, homeomorphisms from orbits to or-
bits, not from points to points. As mentioned in Sec-
tion 2.1, this is achieved with continuous dynamical
systems. However, this is not possible with nontrivial
nonhomogeneous systems since a discrete orbit with
more than one point is a (countable) disconnected set
and any non-constant continuous orbit is an (uncount-
able) connected set. Thus, there exist homeomor-
phisms between discrete and continuous orbits only
when both are constant.

If X is connected and Y is a discrete topologi-
cal space, this situation exists even with points, i.e.,
the only continuous functions from X to Y are con-
stant functions [27]. One way to remedy this is sim-
ply to place topologies on X and Y other than their
usual topologies, so that continuous maps are possi-
ble [6, 28]. There are several ways to accomplish this.
One approach is to use so-called small topologies on
X. Another is to append a single element {1} to
Y, which stands for “don’t care” or “continue,” and
topologize Y’ = Y U {1}. For more information and
other approaches see [6, 28].

Here—and with a view towards simulating systems
defined on discrete topological spaces—we strengthen
the definition of P-simulation in two ways. First, we
require that the “simulated state” be valid on some
neighborhood and for at least some minimal time pe-
riod. Physically, this allows one to use “imprecise sam-
pling” to obtain discrete data, providing a robustness

that is lacking in the definition of P-simulation. Sec-
ond, we require that the “readout times” are exactly
those for which z(t) € ¥~ (Y).

Definition 5 (I-simulation) A continuous dynam-
ical system [X,RY,f] simulates via intervals or I-
simulates a discrete dynamical system [Y,Z%,F] if
there exist a continuous surjective partial function
¥:X =Y and e > 0 such that V = ¢~1(Y) is open
and for allz € V the set T = {t € RY | f(z,t) € V}
is a realizable sequence of intervals (1i, ;) with

Y(f(z,t)) = F(¥(z), k),
for all ty € (1x, 7).

Clearly I-simulation implies P-simulation. However,
S-simulation and I-simulation are independent no-
tions.

The extra requirement that 1) ~!(Y) be open implies
that the inverse images of open sets in Y are open in
X (and not just in 4~1(Y) as before). This is proba-
bly too strong a requirement in the case of a general
topological space Y. However, in the case of Y a dis-
crete topological space, it has the desirable effect that
1~ (y)isopenforall y € Y. .

One might also have required an output map that is
zero (or any distinguished output value) on the com-
plement of T' and non-zero otherwise. This amounts
to, in the case of a universal Turing machine simu-
lating a machine M, the existence of a distinguished
state meaning “a step of the simulated machine is not
yet completed.” Here, it is related to the append-
ing of a symbol {L} to Y as above and extending
¥ X = Y' =Y U/{Ll} by defining ¢(z) = {L} if
z € X\~ 1(Y) [1, 6, 28]. In this case, the require-
ments on ¢ may be replaced by requiring ¥ to be
continuous from X to Y’ (in a suitable topology) af-
ter extension. Finally, if X is a metric space one could
introduce a “robust” version of I-simulation by requir-
ing the inverse image of y € Y to contain a ball with
at least some minimum diameter.

Below, “simulation” is a generic term, meaning I-
simulation, S-simulation, or both. SI-simulation de-
notes S-simulation and I-simulation. If a machine is
equivalent, or simulates one that is equivalent, to a
universal Turing machine, one says it has the power of
universal computation.

3 Simulation of FA, PDA, and TMs

In this section we concentrate on general simulation
results and the simulation capabilities of continuous
ODEs.

268

We first construct low-dimensional discrete dynam-
ical systems in Z" that are equivalent to finite au-
tomata (FA), pushdown automata (PDA), and Turing
machines (TMs). Later, we give some general results
for continuous ODEs in R2™*! simulating discrete dy-
namical systems in Z". Combining allows us to con-
clude simulation of arbitrary FA, PDA, and TMs. By
simulating a universal TM, one obtains continuous
ODEs with the power of universal computation.

3.1 Discrete Dynamical Systems Equiva-
lent to FA, PDA, and TMs

We start by showing that every TM is equivalent
to a discrete dynamical system in Z? and then con-
sider systems equivalent to PDA and FA. Later, we
refine these results to discrete dynamical systems in Z
equivalent to TMs, PDA, and FA.

The FA, PDA, and TMs considered here are de-
terministic. Thus their transition functions naturally
give rise to discrete dynamical systems. These are de-
fined on state spaces of input strings and states; input
strings, states, and stacks; and states, tape head po-
sitions, and tapes, respectively.

Here, the states, input strings, stacks, and tape
configurations of automata and Turing machines are
taken in the discrete topology; Z™ as a topological or
normed space is considered as a subspace of R™ (in
particular, it has the discrete topology).

An inputless FA (resp. PDA) is one whose input
alphabet is empty, i.e., one whose transition function
depends solely on its state (resp. state and top stack
symbol). See [20] for precise definitions of FA, PDA,
and TM.

Proposition 6 1. Every TM is equivalent to a dis-
crete dynamical system in Z°.

2. There is a discrete dynamical system in Z° with
the power of universal computation.

3. Every FA and inputless PDA is equivalent to a
discrete dynamical system in Z. Every PDA is
equivalent to a discrete dynamical system in Z*.

Proof

1. Assume that the tape alphabet is T
{7:m,-+ -, Ym—-2}, m > 2, with v the blank
symbol; and that the set of states is @
{90,---,qn—1}, n > 1. Define p = max{m,n}.
As is customary, the one-sided infinite tape is
stored in two stacks, with the state stored on the
top of the right stack. The coding used is p-ary.

In particular, suppose the TM is in configuration
C, with tape

T=’Yiu"'a'YiN_U'Yt'Ny'Y‘iN.H""1

head positioned at cell N, and internal state g;.
Encode the configuration C in the integers

N-1
T, =fH(C)= Y plina+p¥(m-1),
=0
(=<}
Tr =£(C)= i+ Pinte.
k=1

The second sum is finite since only finitely many
tape cells are non-blank. The integer (m — 1) is
an end-of-tape marker. The TM is assumed to
halt on moving off the left of the tape, so

that (m—1,Tg) in 72 is a fixed point for all valid
Tg. On all other valid configurations, C, define
transition function G in Z? by

G(£1(0), £(0)) = (f(C"), £2(C)),

where C’ is the configuration resulting when the
next move function of the TM is applied to con-
figuration C.

2. Use part 1 with any universal TM.

3. The inputless cases are immediate from part 1.
For the cases with input, note that we encode the
input string in an integer like the left part of the
tape of a TM above, the results following.

a
Note that one can perform the above encodings of
TMs, FA, and PDA with [0, p] replacing Z. Merely re-
place p by p~! in the formulas. The important thing
added is compactness, and other encodings, e.g., with
[0,1] replacing Z, follow similarly. There is a prob-
lem using these encodings since two distinct tapes may
have the same encoding, e.g., 3,2,0 and 3,1“. One
can get around this by “separating” each tape encod-
ing by replacing p with 2p and using 2i for the ith sym-
bol. Namely, the tape of length N, T = v;,,...,%iy, I8
encoded as 3"n_, (2p)~*2ix. Such “Cantor encodings”
were used in [31). We still do not use such encodings
here, however, since later we want to ensure a mini-
mum distance between any two tape encodings.
Finally, a wholly different approach is to use encod-
ings inspired by those in [13]. Suppose we are given an
arbitrary TM, T'. Let g, h, [, and r be integer codings
of its state, position of its read-write head, the parts

269

of the tape on the left and on the right of its head,
respectively. A configuration of T is encoded in the
integer 293h5!77,

More generally, any discrete dynamical system in
Z" is equivalent to one in Z by using such encodings,
viz., by associating (i1,%2,...,is) With pi'p3?...p¥,
where p; is the ith prime.

We could have used such constructions instead of
those in Proposition 6. However, we retain them since
their transition functions have properties which those
arising from the “prime encodings” do not (cf. Section
3.2). In any case, we conclude

Proposition 7 Every TM, PDA, inputless PDA, FA,
and inputless FA is equivalent to a discrete dynamical
system in Z. There is a discrete dynamical system in
Z with the power of universal computation.

It is important to note that one can extend the
transition functions in Z"™ above to functions taking
R™ to R®. We may extend any function f : AC Z" —
R™ in such a manner, by first extending arbitrarily to
domain Z"™ and then using linear interpolation. Here
is an example, used below:

Example 1 A continuous mod function may be de-
fined by £ modc m equals

Later results require extensions that are robust to
small input errors. That is, one would like to obtain
the integer-valued result on a neighborhood of each
integer in the domain. For instance, one may define
a continuous nearest integer function, {]c : R = R,
that is robust in this manner as follows:

L i—-1/3<z<i+4+1/3,
[x]cs{gz_zi_l’ [3<z<itl/

i+1/3<z<i+2/3.
More generally, define IT : R® — R, by
(z) = [[z1]e, . - - [Talc)-

Then given any function f : R™ - R™, with f(Z") C
Z™, we can define a “robust version” by using the
function f oII.

Thus, given [4,Z%, F], A C Z", its transition func-
tion may be extended to a continuous function from
R™ to R™ which is constant in a neighborhood of each
point in A. Such a remark is actually a byproduct of
a more general result needed below [27, p. 216):

(lzj modm)+z - |z], 0<|zJmodm <m -1,
(m-1)(lz] +1-12), |z) mod m =m — 1.

Fact 1 Any continuous function f : A - R™, A a
closed subset of R™, may be extended to a continuous
map f:R™ 5 R™.

Throughout the rest of this section we use contin-
uous extensions as in the fact above, the notation f
always denoting such an extension of f.

3.2 Continuous Dynamical Systems Sim-
ulating TMs, PDA, and FA

It is possible to construct smooth systems of ODEs
with inputs that “simulate” finite automata. For in-
stance, in [10] Brockett used a system of his so-called
double-bracket equations (also see [11]) to “simulate”
the step-by-step behavior of a FA. This was done by
coding the input symbols of the FA in a function of
time that is the “control input” to a system of double-
bracket equations. Specifically, if the input alphabet
is I = {u1,...,uUm}, the input string wiq, ui,, Uiy, . .-
is encoded in a time function, u(t), that is 7; on the
intervals [2kT, (2k + 1)T] and zero otherwise. (In this
paper, we encode the full input string in the initial
condition of our simulations.)

In [10], Brockett was interested in the capabilities
of his double-bracket equations. However, the result-
ing “simulations” of FA happen to behave poorly with
respect to our definitions of simulation. Nevertheless,
the key idea of his simulations of FA is that the in-
put coding, u(t), is used in such a way that it al-
ternately switches between two different systems of
double-bracket equations. The effect of the compu-
tation is that on alternating segments of time one
computes the next state, then copies it, respectively.
Then, the process may be repeated. In the most gen-
eral sense, one has simulated the C program:

for(k =0;;k++) { hetr = F(zk,uk); Tpt1 = hk+1;}

It is not hard to see that one could use the same
approach as that in [10] but more well-behaved sys-
tems of ODEs to simulate the step-by-step behavior of
FA. Consider a FA with transition function 4, states
Q@ = {q1,---,9-}, and input alphabet I as above.
Code state g; as ¢ and consider the first two equations
of Eq. (2) below. Choose 8 = n and replace, respec-
tively, S1, S2, and G with hy (u(t)), h—(u(t) — 1), and

D:{1,...,n} x{1,...,m} = {1,...,n},
defined by D(i,5) = k if 6(gi,u;) = gk. The result
is that any FA may be Sl-simulated by a system of
ODEs in R? with input. This was announced in [5].

It is also possible to simulate FA, PDA, and TMs
using discontinuous vector fields {1]. However, the
simulations used there are not robust to small errors.

In the present paper we concentrate on more gen-
eral results and on coding the input as part of the

270

initial state instead of a function of time. In addition,
we do not allow access to precise timing signals or dis-
continuous vector fields, which considerably increases
one’s capabilities [7].

Above, we used an exact timing pulse or “clock” to
precisely switch between two different vector fields in
order to simulate discrete dynamical systems in R".
Even if one does not have access to a precise clock
or allow discontinuous vector fields, one can still sim-
ulate discrete dynamical systems defined on subsets
of Z". (In fact, the theorem we prove below is not
specific to Z™.) Again, the essential idea behind the
simulations is to alternately switch between two differ-
ent vector fields. However, when simulating systems
in Z", if one uses “robust versions” of their transi-
tion functions, and chooses well-behaved ODEs, it is
not necessary to precisely time these switches using an
exact clock. Indeed, we can use continuous functions
to switch among vector fields.

It is still convenient to ensure, however, that only
one vector field is active (non-zero) at any given time.
To this end, we define the following.

Definition 8 (Inexact Clock) Here, we give a Lip-
schitz continuous differential equation with output
which implements an inezact clock.
Define #(t) = 1/T, initialized at 7(0) = 0. Now,
define
S1.2(r) = ha[sin(rr),

where
0, r<4/2,
hi(r)=< 2r/8, 6/2<r <4,
1, o<,

h_(r) = hy(—7), and 0 < § < v/2/2.

What is key is that the inexact clock above does not
require discontinuous vector fields, discontinuous func-
tions, or discrete dynamics. Thus, one can switch be-
tween two different systems of ODEs with (Lipschitz)
continuous functions of the state of another (Lips-
chitz) ODE. This is why 2n + 1 dimensional ODEs
are used below to simulate an n-dimensional discrete
dynamical system.
We also need the following technical definitions:

Definition 9 (Nondegeneracy, finite gain) A
function f : R®™ — R", is nondegenerate (resp. finite
gain) if there exist constants 8 > 0, M > 0, such that

lzll < M||f(x)|+8, (resp. ||f(x)ll < Mllz||+8B),
foralze X.

Now we are ready for our main simulation result:

Theorem 10 Every discrete dynamical system F de-
finedonY C Z"

1. can be SI-simulated by a system of continuous
ODEs in R*™1.

2. such that F(-,1) is finite gain and nondegener-
ate can be I-simulated by a system of continuous
ODEs in R*™11,

3. such that Y is bounded can be SI-simulated by a
system of Lipschitz ODEs in R*™*1,

Proof Let G = F(-,1) and 0 < € < 1/3. S;2 and
& are as in the preceding example. For each y € Y,
define the set H, to be those (z, z,7) such that all the
following hold:

Iz = yllo <e,
sin(n1) < 6/2,

“z - yllco <¢,
7 mode2 < 1/2.

Set ¥(z,z,7) = II(2) = y if (z,2,7) € Hy. Note that
the ¢~(y) = H, are open and disjoint.
Initialize x(0), 2(0), 7(0) in ¥ (), y€ Y.

1. Choose

_5_2[1 — é(H(Z))]SSI(T))
_5_2[2: - H(z)]352(7)1

T = 1

r =

It is straightforward to verify I1(2(2k)) = G*(y),
k € Z*, and the interval constraint.

2. Let @ and L, B and M each be one more than the
finite-gain, nondegeneracy constants of G under

norm || - ||eo. Choose
& = -2z - G(I(2))]S:1 (),
¢ = -2z — I(z)]S2(),)
= 1/la+ B+ Ll|zllec + Ml|z|lco] -

It is straightforward to verify I1(z(t)) = G*(y) on

an interval about the time #; where 7(t) = 2k,
kezt.

3. Let 8 = max{|li — jlloo | ¢,7 € Y}. Choose

T = —-2ﬂe_1[z —_ G(H(Z))]Sl (T)’
2 = =20z~ (z)]S:2(7), 03]
T = 1

It is straightforward to verify I1(2(2k)) = G"(y)
k € Z*, and the interval constraint.

271

Note that nondegeneracy and finite gain of the ex-
tension G need not hold for points not in Y. Note also
that the simulations above are “robust” in the sense
that there is a neighborhood of initial conditions lead-
ing to the correct simulations. The import of part 2
of the theorem is that if G = F(-,1) is nondegenerate
and may be extended to a Lipschitz function, then the
ODEs used in the I-simulation are also Lipschitz.

Note also that the theorem continues to hold for
any discrete dynamical system defined on Y C R"
such that there is some minimum separation between
any two distinct points of Y.

The discrete dynamical systems equivalent to TMs
given by Proposition 6 have transition functions that
are both finite gain and nondegenerate. Unfortu-
nately, the transition functions of systems equivalent
even to PDA need not be Lipschitz. Consider a PDA
which pushes a tape symbo! v on input symbol ¢; and
pops v on input symbol i and test with inputs of the
form i7", i74;. One may check that the “prime en-
codlngs mentioned earlier lead to transition functions
that are neither finite gain nor nondegenerate.

Thus, relating the theorem back to simulation of
TMs, PDA, and FA, we have many results, the most
striking of which are:

Corollary 11 Every TM, PDA, and FA can be SI-
simulated by a system of continuous ODEs in R3.

Every FA (resp. inputless FA) can be I-simulated
(resp. SI-simulated) by a system of Lipschitz continu-
ous ODEs in R3.

Using SI-simulation, there is a system of continu-
ous ODEs in R® with the power of universal computa-
tion.

Proof Everything is immediate from the theorem
and Propositions 6 and 7 except that the FA transition
function is Lipschitz, which is readily checked. (]

All the simulation results for discrete dynamical
systems on Z can be extended from continuous to
smooth vector fields by using C* interpolation (with
so-called “bump” functions [14]) rather than linear in-
terpolation in extending their transition functions and
the functions [-]¢ and hy, and by replacing ||+ f|oo With
I -l in Eq. (1).

4 Towards an ODE Model of Analog
Computation

Performed computation is a physical activity.
Thus, all computational processes are subject to gen-
eral physical constraints. Such ideas are at the core of

Turing’s machines and Church’s thesis. We take the
following physical computability axioms from [16]"

P1. The speed of propagation of information is

bounded.
P2. The amount of information which can be encoded
in the state of a finite system is bounded.

P3. The topology of space-time is locally Euclidean

(a limit on circuit connectivity).

For further discussion, see [2, 15, 16, 32, 33]. As a pro-
totypical example of a state which stores information,
we consider the voltage on a capacitor.? The reader
can surely think of many others.

We now discuss a model of analog computation via
differential equations, based largely on [35]. We will
deal with ODEs with output:

(X)),
QX(2))

where X (t) and Y (t) are elements of R™ and R?, re-
spectively. This represents the constraint that

X(t)
Y(t)

X(tO) = XO (3)

I

C1. The state and output dimensions are finite for any
given computation.

The output function Q is assumed to have the prop-
erty that its output can be “read out” unambiguously
with respect to small changes, i.e., we will assume that
Q(X(ts), P) is constant on some ¢ ball around X(ty) if
the “answer” is computed via the differential equation
in time t;. Thus

C2. Inputs (including initial conditions) can be spec-
ified, and outputs can be read only to absolute
precision, e.

This has many implications (see [6, 28]).
We also want to only consider equations for which
the following hold (from P1, P1, and P2, respectively):

C3. f is locally Lipschitz.
C4. R =max,,<i<t, || X(8)]| < o0

C5. All states and their derivatives are bounded in
infinite time for any given computation.

1A subset of Fredkin and Toffoli’s axioms, not their
numbering,.

2As considered in circuit theory: a continuous variable de-
spite the fact that charge is carried by discrete electrons.

272

In terms of our capacitor model, the amount of
charge that can be stored—and the rate at which
we can store charge—are globally bounded quantities.
This assumption, along with our € precision condition
implies that the information we can store in a sin-
gle physical variable is bounded. The fact that these
bounds are only for “any given computation” is very
important if one is to allow the power of simulating
TMs. It also allows us to consider physical digital
computers as analog computers. Otherwise, the effect
of C1, C2, and C5 would reduce us to a finite au-
tomata. It is analogous to the fact that the number
of tape cells used in any given TM computation can
be bounded. Together, C3 and C5 imply that for each
computation there is a nonnegative constant A such
that ||f(X1) - f(X2)|| < A"Xl - X2|| A is necessar-
ily a measure of resources as scaling it scales the time
necessary to complete the computation.

Finally we would also like a constraint on the com-
plexity of the function f. We are trying to avoid the
construction of f’s so complex that they are just look-
up tables for the computations at hand. Thus, we
want something like

C6. The f; must be computable by a polynomial-sized
circuit.

This is a constraint on the (circuit) complexity of com-
puting the function f using, say, the adders, multipli-
ers, and constant scalers of analog devices. We will
not be more precise than this here, but it is easy to
see why such an assumption is desirable. For instance,
one could have as the right-hand side functions which
effectively compute the final answer one was trying
to achieve in the first place. Thus, the complexity of
computing the f; needs to be considered in any com-
plexity theory of analog computation via ODEs.

More concretely, consider the following example. In
[11], Brockett notes that the following set of differen-
tial equations can, among other things, sort n distinct
numbers:]

H = [H,[H,N]].

Here, H is a symmetric n x n matrix with H(0) chosen
so that its eigenvalues are the numbers to be sorted,
N =diag{1,2,...,n}, and [4, B] = AB — BA. These
equations perform the computation of sorting numbers
in the sense that (except for some initial conditions
in a set of measure zero) as t - oo, H(t) converges
to a diagonal matrix whose diagonal entries are the
numbers sorted in increasing order (see [11] for more
details).

Now we know that sorting n numbers is an
O(nlogn) operation. But just computing the right-

hand side of the above ODE takes O(n?) operations.
Comparisons are further hindered by the fact that
time of sorting on a digital computer depends on the
number of bits needed to represent numbers, while in
Brockett’s case, one is sorting reals (cf. [3]).

Of particular importance are systems like those we
used in Section 3, which (with constant U) globally
asymptotically converge to a single value; the proto-
typical example being X (t) = AX(t) + BU, where A
and B are constant matrices of size n X n and n x m,
respectively, and A is strictly Hurwitz. Here U rep-
resents a subset of the state that is constant (for in-
stance, to code inputs) or changes on a much faster
time scale than X (as in our inexact clock above). See
[9] for a discussion of more models with properties akin
to this. The additional constraint of ¢ absolute pre-
cision allows models with this property to converge
to a quantized answer in finite time. Further, these
models are both robust to small noise and modeling
errors [8] and will “maintain” the correct answer (up
to quantization) for all time after convergence, making
the timing of readout and switching noncritical.

5 Conclusions

We defined notions of simulation of a discrete dy-
namical system by a continuous dynamical system. S-
simulation, or simulation via section, was motivated
by the definition of global section in dynamical sys-
tems [30]. Relaxing this to allow different parame-
terizations of time we considered P-simulation, which
was seen to be weak. To remedy this, we defined
I-simulation, or simulation via intervals. Both S-
simulation and I-simulation imply P-simulation. S-
simulation and I-simulation are independent notions.

We found that one can simulate arbitrary discrete
dynamical systems defined on subsets of Z™ without
resorting to discontinuous vector fields, exact timing
pulses or “clocks,” or infinitely many state variables.
Instead, one can use an approximation to an exact
clock, implemented with a one-dimensional Lipschitz
ODE. The result is that we can perform SI-simulations
(resp. I-simulations) using continuous (resp. Lipschitz)
ODEs in R**1.

Related to our general simulation results is a theo-
rem by N. P. Zhidkov [37] (see also [30, p. 135]), that
states if a reversible discrete dynamical system is de-
fined on a compact subset K C R", then there exists
on a subset of R>**! a reversible continuous dynam-
ical system that is defined by ODEs and has K as a
global section.

273

As far as computational abilities, we saw that there
are systems of continuous ODEs possessing the ability
to SI-simulate arbitrary pushdown automata and Tur-
ing machines. Finite automata may be SI-simulated
with continuous, Lipschitz ODEs. By SI-simulating
a universal Turing machine, we concluded that there
are ODEs in R® with continuous vector fields possess-
ing the power of universal computation. Further, the
ODEs simulating these machines may be taken smooth
and do not require the machines to be reversible (cf.
26, p. 228)).

The import of S-simulation here is that such sim-
ulations take only “linear time” [13]. The import of
I-simulation is that the readout times for which the
state/tape is valid are non-empty intervals. Indeed,
the intervals are at least some minimum length. Also,
the simulations were “robust” in the sense that they
can tolerate small errors in the coding of the initial
conditions. Though not required by our definitions,
the sets of “valid” initial conditions contained balls of
at least some minimum diameter.

We now turn to some discussion. To demonstrate
the computational capabilities of continuous dynami-
cal systems, we first constructed low-dimensional dis-
crete dynamical systems in Z" equivalent to Turing
machines (TMs), pushdown automata (PDA), and fi-
nite automata (FA). It is well-known that certain dis-
crete dynamical systems are equivalent to TMs and
possess the power of universal computation (see, e.g.,
[13, 25, 31]). Our systems were constructed with the
goal of simulation by continuous/Lipschitz ODEs in
mind. One notes that while it is perhaps a trivial ob-
servation that there are systems of (Lipschitz) ODEs
with the power of universal computation—just write
down the ODEs modeling your personal computer—
this requires a system of ODEs with a potentially in-
finite number of states.

Our simulation of arbitrary Turing machines was
announced in [5]. It is now a special case of the current
results. These results imply that, in general, questions
regarding the dynamical behavior of low-dimensional,
well-behaved ODEs are computationally undecidable.
See [25, 26] for a discussion of such questions.

The best definition of “simulation” is not apparent.
While stated in terms of our definitions of simulation,
the simulation results of Section 3 are intuitive and
would probably continue to hold under alternate def-
initions of simulation. Our discussion of a model for
analog computation is preliminary in nature. These
remain topics of research.

Condition C5 of Section 4 may be achieved by the
simulations of Theorem 10 (hence Cororollary 11) by
turning off the last equation in certain conditions (e.g.,
upon halt or input read) or by using an inexact clock
based on a variable-rate harmonic oscillator (in S! or
R21 eg., T=—v(z,2)p, p= ’Y(:L’,Z)T)-

Acknowledgements

This work was supported by the Army Research
Office and the Center for Intelligent Control Systems
under contracts DAAL03-92-G-0164 and DAALQ3-92-
G-0115. Foremost, thanks to Sanjoy K. Mitter for his
guidance and support. The author would also like to
thank Eduardo Sontag for an engaging discussion on
analog computation and Sandro Zampieri for one on
definitions of simulation.

References

[1] E. Asarin and O. Maler On some relations between

dynamical systems and transition systems Preprint.
Nov. 1993. Submitted to JCALP ’94.

C.H. Bennett. Computational measures of physical
complexity. In Lectures in the Science of Complezity,
pp. 787-798. Addison-Wesley Longman, 1989.

L. Blum, M. Shub, and S. Smale. On a theory of
computation and complexity over the real numbers.
Bull. American Math. Soc., 21(1):1-46, 1989.

L.S. Bobrow and M.A. Arbib. Discrete Mathematics.
W. B. Saunders, Philadelphia, 1974.

M.S. Branicky. Equivalence of analog and digital com-
putation. In Workshop on Continuous Algorithms and
Complegity, Barcelona, Oct. 1993. Centre de Recerca
Matematica. Abstract.

M.S. Branicky. Topology of hybrid systems. In Proc.
32nd IEEE Conf. on Decision and Conitrol, pp. 2309-
2314, San Antonio, TX, Dec. 13-17, 1993.

M.S. Branicky. Universal computation and other ca-
pabilities of hybrid and continuous dynamical sys-
tems. TR LIDS-P-2218, Lab. Information Decision
Systems, MIT, Dec. 1993. (To appear in Theoretical
Computer Science).

M.S. Branicky. Continuity of ODE Solutions. Applied
Math. Lett., (to appear).

R.W. Brockett. Pulse driven dynamical systems. In
A. Isidori and T.J. Tarn, eds., Systems, Models, and
Feedback, pp. 73-79, Birkhauser, Boston, 1992.

R.W. Brockett. Smooth dynamical systems which re-
alize arithmetical and logical operations. In H. Ni-
jmeijer and J.M. Schumacher, eds., Three Decades of
Mathematical Systems Theory, pp. 19-30. Springer,
Berlin, 1989.

R.W. Brockett. Dynamical systems that sort lists,
diagonalize matrices, and solve linear programming
problems. Lin. Alg. and Its Appl., 146:79-91, 1991.
M.T. Chu. On the continuous realization of iterative
processes. SIAM Review, 30(3):375-387, 1988.

(2]

(3]

(4]

(6]

(7]

I8

[0

—

(10]

(11]

(12]

274

[13] M. Cosnard, M. Garzon, and P. Koiran. Computabil-
ity properties of low-dimensional dynamical systems.
In Proc. 10th Symp. Theoretical Aspects Comp. Sci-
ence, LNCS 665, Springer, 1993.

R.L. Devaney. An Introduction to Chaotic Dynamical
Systems. Addison-Wesley, 2nd edition, 1989.

E. Fredkin. Digital mechanics. Physica D, 45:254-270,
1990.

E. Fredkin and T. Toffoli. Conservative logic. Int. J.
of Theoretical Physics, 21(3/4):219-253, 1982.

M.R. Garey and D.S. Johnson. Computers and In-
tractability. W. H. Freeman, New York, 1979.

J. Guckenheimer and P. Holmes. Nonlinear Oscilla-
tions, Dynamical Systems, and Bifurcations of Vector
Fields. Springer, New York, 1990.

M.W. Hirsch and S. Smale, Differential Equations,
Dynamical Systems, and Linear Algebra, Academic,
San Diego, 1974.

J.E. Hopcroft and J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

P. Kurka. Simulation in dynamical systems and Tur-
ing machines. TR, Dept. of Math. Logic and Philos-
ophy of Math., Charles Univ., Praha, Czechia, 1993.
D.G. Luenberger. Introduction to Dynamic Systems.
John Wiley and Sons, New York, 1979.

C. Mead. Analog VLSI and neural systems. Addison-
Wesley, Reading, MA, 1989.

M.L. Minsky. Computation: Finite and Infinite Ma-
chines. Prentice-Hall, Englewood Cliffs, NJ, 1967.
C. Moore. Unpredictability and undecidability in
dynamical systems. Phys. Rev. Lett., 64:2354-2357,
1990.

C. Moore, Generalized shifts: unpredictability and
undecidability in dynamical systems. Nonlinearity,
4:199-230, 1991.

J.R. Munkres, Topology, Prentice-Hall, Englewood
Cliffs, NJ, 1975.

A. Nerode and W. Kohn. Models for hybrid systems:
Automata, topologies, stability. TR 93-11, Mathe-
matical Sciences Institute, Cornell Univ., Mar. 1993.
S. Omohundro. Modelling cellular automata partial
differential equations. Physica D, 10:128-134, 1984.
K.S. Sibirsky. Introduction to Topological Dynamics.
Noordhoff, Leyden, Netherlands, 1975.

H.T. Siegelman and E.D. Sontag. Turing computation
with neural nets. Applied Math. Lett., 4:77-80, 1991.
T. Toffoli. Physics and computation. Int. J. of The-
oretical Physics, 21(3/4):165-175, 1982.

T. Toffoli. Cellular automata as an alternative to
(rather than an approximation of) differential equa-
tions in modelling physics. Physica D, 10:117-127,
1984.

J.F. Traub and H. Wozniakowski. Theory and ap-
plications of information-based complexity. In 1990
Lectures in Complex Systems, pp. 163-193. Addison-
Wesley, Redwood City, CA, 1991.

A. Vergis, K. Steiglitz, and B. Dickinson. The com-
plexity of analog computation. Math. and Computers
m Simulation, 28:91-113, 1986.

D.S. Watkins and L. Elsner. Self-similar flows. Lin.
Alg. and Its Appl., 110:213-242, 1988.

N.P. Zhidkov, Nekotorie svoistva diskretnikh di-
namicheskikh sistem, Mosk. Gos. Univ. Lomonosova
Uch. Zap., 163, Matematika 6:31-59, 1952 (Russian).

[14]
[15]
[16]
[17)

[18]
[19]
[20]
[21]

(22]
(23]
(24]

(25]
[26]

(27]

[28]

(29]
(30]
(31)
(32]

(33]

(34]

(35]

(36]

(37]

