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Abstract

We ezamine computation in a framework where the
problem is essentially that of extracting a signal from
noise, a filtering (selective amplification) or an esti-
mation problem. Owur discussion is relevant to com-
putational tasks in sensory communication such as
vision, speech, and natural language processing. We
consider “real” systems, both natural (neural systems)
and human engineered (silicon integrated circuits),
where information processing takes the form of an irre-
versible physical process. We argue, and demonstrate
experimentally, that it ¢s possible to see the emergence
of truly complex processing structures that are com-
mensurate with the physical properties of the compu-
tational substrate and therefore are energetically effi-
cient.

1 Introduction

Computation as performed by “real” systems is an
irreversible physical process and as such it is asso-
ciated with an inevitable amount of energy dissipa-
tion [1, 2]. This is true for both human engineered
VLSI systems (Chapter 9 in [3]), and for Nature’s ma-
chinery, biological systems.

Biological organisms excel at solving problems in
sensory communication and motor control, by sus-
taining high computational throughput with minimal
energy dissipation.! Their effectiveness stems partly
from exploiting prior knowledge about the problems
that they encounter [4]. Such information in the form
of internal models, reflects the statistical properties of
the natural environments in which the systems func-
tion. Since the environment is rarely fixed, model
adaptation and self-organization is necessary.

1Jim Bower, a neuroscientist at CalTech, argues that the en-
ergetic efficiency of the brain is so high that it does not produce
enough heat to keep itself warm and thus we see the evolution-
ary development of a hairy skull.
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Figure 1: An adaptive system and its interaction with
the environment. External inputs to the system are
compared with its internal state (model), to produce
an output. Information from the input and from the
comparison process may be used to adjust the param-
eters of the internal .model. (Adapted from Carver
Mead in [6]).
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Sensory communication problems can therefore be
cast into the canonical form an adaptive system [5,
6]. At each level of processing there is an internal
model that is refined by experience as shown by the
functional-block-level description in Figure 1. Adap-
tation is a pervasive property of neural systems and is
found at many different levels of a hierarchical neural
organization. For example, adaptation can be found
in the electromechanical properties of sensory trans-
ducers, in the network properties of neurons, and all
the way to the abstraction of high level cognitive pro-
cesses. The classical information theory formalism and
the canonical model of a communication channel can
be used to develop theories of how such statistical in-
ternal models help to “optimaly” encode signals in
neural pathways (see for example [7]).

However, the question of how such sophisticated
processing is actually carried out by the “real” sys-




tem, still remains open. “Real” computing structures
must satisfy strict constraints of size, weight, utiliza-
tion of energetic resources, and the ability to oper-
ate at temperatures where favorable conditions exist
for the development of life as “we” know it —vicinity
of 300K~. Algorithms, based on statistical methods
and self-organizing techniques for data processing, are
notorious for their enormous computational require-
ments when implemented on digital computers. How
is such sophisticated processing done in neural struc-
tures?

Carver Mead [8, 6] has eloquently argued that an
answer to this question could perhaps be found if
one looks at algorithms and information processing
structures that emerge from the physical properties
of the computational substrate. Furthermore, Mead
and coworkers propose an analysis by synthesis ap-
proach, where analog methods and VLSI technology
can be used to prototype such “not-so-conventional”
information processing systems. From this perspec-
tive, analog VLSI technology can be viewed as a
modeling tool [8, 9] aimed at capturing the behav-
ior of neurons, networks of neurons, or the complex
mechanical-electrical-chemical information processing
in biological systems. Computationally, analog VLSI
models can be more effective compared to software
simulations. More important, they are “real” mod-
els, constrained by fundamental physical limitations
and scaling laws. Constraints such as: power dissipa-
tion, physical extent of computing hardware, density
of interconnects, gain-bandwidth product limitations
in the gain elements, precision and noise in the charac-
teristics of the basic elements, signal dynamic range,
and robust behavior and stability, may force the de-
velopment of more realistic models. Our work [10]
follows a similar line of thought.

From a more practical viewpoint, it is believed that
such ideas could also lead to the development of VLSI
systems that are more effective in solving sensory com-
munication problems.

In this paper, we discuss how such a methodology
has led to the development of an analog VLSI silicon
system for early vision processing [11]. The architec-
ture is inspired by the processing performed at the
outer plexiform layer of the vertebrate retina. It is
mapped onto silicon using circuits of minimal com-
plexity that exploit native properties of subthreshold
MOS transistors. High computational throughput at
low levels of energy dissipation is achieved by employ-
ing analog processing in a massively parallel architec-
ture; a paradigm that minimizes the “mismatch” be-
tween the physics of the problem and the physics of
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the computational substrate. We begin with a discus-
sion of analog VLSI.

2 Analog VLSI

At the most basic level, analog VLSI technology
offers the possibility of exploring experimentally com-
putation by truly complex, real systems which lie be-
yond digital computing and the symbolic processing
paradigm.

It is appropriate at this point to ask the question:
what kind of computational primitives does one have?
In CMOS silicon these are continuous functions (ana-
log) of time, space, voltage, current and charge. To
help manage the complexity in VLSI systems, these
functions will be considered at three hierarchical lev-
els: the device level, the circuit level and the architec-
tural level. The understanding of complex information
processing in neural systems through a discussion at
different levels, is an approach that was first intro-
duced by Marr and Poggio [12]; also discussed exten-
sively in [13].

Device level: At the lowest level, gain, is pro-
vided by MOS transistors operating in subthreshold
region [8, 10, 14]. In this regime device physics yield
the following functional form for the drain current in
terms of the voltages at its four terminals.

I =1Io SG(r Vep) [H(Vse) — H(VpB)] (1)
where § and H are growing and decaying exponen-
tial functions respectively. The terminal voltages
VeB, Vsp,Vpp are referenced to the substrate and
are normalized to the thermal voltage (kT/q). The
constant Ip depends on mobility (1) and other silicon
physical properties. S is a geometry factor, the width
W to length L ratio the device. The Pauli exclusion
principle dictates that the constant x be less than or
equal to unity. The MOS transistor has excellent cir-
cuit properties as a voltage-input, current-output de-
vice (transconductance amplifier) with good fan-out
capabilities (high transconductance G) and good fan-
in capability (almost zero conductance at the input).

The exponential functions of voltage in the square
brackets of Equation 1, correspond to Boltzmann dis-
tributed charges at the source and drain.

I « [Qs — Qp] (2)
The charge-based representation depicted in Equa-
tion 2, suggests that the MOS transistor in subthresh-
old is a highly linear device; a property that finds




many uses in analog circuit design. This property
was first observed by Kwabena Boahen and discussed
in [11] where the concept of a diffusor was introduced.
The view of an MOS transistor in subthreshold as a
basic diffusive element allows for the effective imple-
mentation of systems that exploit properties of elliptic
partial differential equations.
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Figure 2: Measured drain current I; versus gate-
source voltage Vg for 32 small geometry transistors
(4 x 4pm) fabricated in a 2um n-well CMOS process;
drain-source voltage of Vps=1.5 Volts. The fuzziness
in the current, (mismatch between devices), is con-
stant in subthreshold (on a log(I) scale) and decreases
as the device enters the transition and above threshold
regime. (Data from [15]).

The transfer characteristics of MOS transistors are
plotted in Figure 2 for both the above and subthresh-
old regime. The transconductance per unit current
increases as the current decreases—throughout the
above-threshold and transition regions—and reaches
a maximum in the subthreshold region. In highly in-
tegrated VLSI systems, small geometry devices must
be used to achieve high densities. Small device ge-
ometries and high transconductance per unit current
makes the drain current strongly dependent on vari-
ations of the process-dependent parameters, in par-
ticular Ip, which is the source for the variability ob-
served in the drain currents of Figure 2. The apparent
improvement in device matching for higher values of
gate-source voltage, is simply a manifestation of re-
duced transconductance per unit current as the device
enters the above threshold regime.

Our preference for subthreshold operation, (de-
spite to what seems to be worse matching characteris-
tics), is based on the observation that: “Active de-
vices should be used in the region where their
transconductance per unit current is maxi-
mized”. In this way one can minimize the energy
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per operation and maximize the speed per unit power
consumed, i.e. minimize the power-delay product:

speed  1/7 _ gm/C _ 1 (gm)2

= = = 3
power IAV I?/g,, C\I (3)

A squared factor is obtained because both voltage
swings (AV) and propagation delays (7) are inversely
proportional to the transconductance g, for a given
current level. However, only a linear factor is realized
if the power supply voltage is not reduced to match the
voltage swings AV ~ I/gn,,. When the device is op-
erated in subthreshold, the drain-source conductance
saturates at a few (kT/q), (see Equation 1). Power
supplies of a few (kT'/q) are also possible and thus
power supplies can theoretically match the voltage
swing levels. The capacitance C is analogous to an
inevitable “mass” of the switching node. When physi-
cal structures are miniaturized, this capacitance is re-
duced and the power-delay product improves. This
simple scaling “law” has been one of the driving forces
towards high levels of system integration and minia-
turization in the microelectronics industry.

The maximum useful frequency of operation possi-
ble with an MOS transistor, when operating in sub-
threshold is determined by its transition frequency fr
which has an upper limit frmqz. of:

u (kKT/q)
2

T (4)

f Tmaez <
where y is the effective carrier mobility and L is the
device channel length. The transition frequency of
a device is essentially the frequency where its gain-
bandwidth product (as determined by the internal
gain and parasitic capacitances of the transistor) is
unity.

Circuit level: It is at this level where the syn-
thesis of computational structures begins and mani-
fests itself as the emergence of networks. Conserva-
tion laws, that is conservation of charge (Kirchoff’s
Current Law), 3, I; = 0, and conservation of energy
(Kirchoff’s Voltage Law), 3, Vi = 0, are used to real-
ize simple constraint equations. The important con-
cept of negative feedback is also exploited to trade the
gain in the active elements for precision and speed in

the circuits.

Aside from the benefits of a device with a large
gain, the exponential relationships between the con-
trolling voltages and the current depicted in Equa-
tion 1 endow the MOS transistor with some interest-
ing circuit properties. There exists a powerful syn-
thesis (and analysis) procedure which can be used to
generate a wide variety of circuits that perform linear




and non-linear operations in the current domain, and
relies on the exponential form of current-voltage non-
linearities. This procedure is based on what is known
as the Translinear Principle [16] originally used in the
context of bipolar transistors. The synthesized cir-
cuits are called translinear and may involve operations
of one or more variables, such as products, quotients,
power terms with fixed exponents, as well as scalar
normalization of a vector quantity.

The application of the translinear principle to cir-
cuits implemented with MOS devices operating in sub-
threshold saturation, and an extension to the sub-
threshold ohmic regime, can be found in [10]. One fas-
cinating aspect of translinear circuits is that while the
currents in its constitutive elements (the transistors)
are exponentially dependent on temperature, the over-
all input/output relationship is insensitive to isother-
mal temperature variations. The effect of small local
variations in fabrication parameters can also be shown
to be temperature independent.

To demonstrate how computational primitives
emerge at the network level from device physics of
the underlying technology, let us consider an example
of a summing operation, local aggregation. Such lin-
ear addition of signals over a confined region of space
occurs throughout the nervous system. Aggregation
was discussed in Chapter 6 of [8], (also in [17]), and it
is the basis for many neuromorphic silicon VLSI sys-
tems described therein. Here we take a close look at
diffusion, the physical process that underlies local ag-
gregation in the nervous system, contrast it with the
process of diffusion in MOS transistors and come up
with a novel network design technique. )

The diffusion process is described by the following

equation:

dN

— = DV’N(z,y) (5)

N is the concentration of the diffusing species and
D is their diffusivity. Equation 5 applies to the 2-D
case where the concentration is assumed uniform in
the third dimension and N is the number of particles
per unit area. Two alternative analog simulations of
this process on a discrete grid are shown in Figure 3.

The first network uses voltages and currents (Fig-
ure 3a). Its node equation is

dv, 4G (1

—— = |- (V;+ Vi + V| + V,) -V, 6
dt C(4(]+ x+ l+ m) ‘n) ()

which is homologous with Equation 5 since the term in
large parenthesis is a first-order approximation to the

Laplacian. However, this solution is not amenable to
VLSI integration because transconductances (G) with
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Figure 3: Simulating diffusion with (a) conductances
and voltage/current variables or (b) diffusors and
charge/current variables.

a large linear range consume large amounts of area
and power.

The second network uses charges (positive) and cur-
rents (Figure 3b). Its node equation is

dQ,
dt

=4D G(Qj +Qr+ Qi+ Qm) — Qn) (7)

Note that dQ), /dt is the same as the current supplied
to node n by the network. This solution is easily real-
ized by exploiting diffusion in subthreshold MOS tran-
sistors. As shown in the device section, the current is
linearly proportional to the charge difference across
the channel (See Equation 2). Therefore, the diffusion
process may be modeled using devices with identical
geometry S and identical gate voltages. The former
guarantees they have the same diffusivity and the lat-
ter guarantees that the charge concentrations at all
the source/drains connected to node n are the same
and equal Q,,.

In both of these networks, the boundary conditions
may be set up by injecting current into the appropri-
ate nodes. In the voltage-mode network, the solution
is the node voltages. They are easily read without dis-
turbing the network. On the otherhand, the network
in Figure 7 represents the solution by charge concen-
trations Qs and Qp at source/drains—not the charge
on the node capacitance. The source/drain charge




cannot be measured directly without disturbing the
network. It may be inferred from the node voltage.

Architectural level: At this level, differential
equations from mathematical physics will be employed
to implement useful signal processing functions, still
in the form of constraint equations. For example, the
bsharmonic equation

AV2V2P + & = @, (8)
where V2 = 32/8z? + 02/8y? is the Laplacian oper-
ator, constrains the sum of the fourth derivative of ®
and P itself to be equal to a fixed input ®;,,. From
a statistical signal processing view-point, solutions to
this equation could represent an optimal estimation ®
of the underlying smooth continuous function, given a
set of noisy, spatially sampled observations ®;,,. The
solution is optimal in the sense that it simultaneously
minimizes the squared error and the energy in the sec-
ond derivative—the parameter X is the relative cost
associated with the derivative term. A large value for
A favors smooth solutions while a small value favors a
closer fit.

We have already seen how a diffusive grid can
be used to compute a discrete-approximation of the
Laplacian. In the next section we show how a model
of early visual processing is related to the biharmonic
equation and can be realized using diffusive networks.

3 A Contrast Sensitive Silicon Retina

The analog silicon system is modeled after neuro-
circuitry in the distal part of the vertebrate retina—
called the outer-plexiform layer. Figure 4 illustrates
interactions between cells in this layer [18]. The well-
known center/surround receptive field emerges from
this simple structure, consisting of just two types of
neurons. Unlike the ganglion cells in the inner retina
and the majority of neurons in the nervous system,
the neurons that we model here have graded responses
(they do not spike); thus this system is well-suited to
analog VLSI.

The photoreceptors are activated by light; they pro-
duce activity in the horizontal cells through excitatory
chemical synapses. The horizontal cells, in turn, sup-
press the activity of the receptors through inhibitory
chemical synapses. The receptors and horizontal cells
are electrically coupled to their neighbors by electri-
cal synapses. These allow ionic currents to flow from
one cell to another, and are characterized by a certain
conductance per unit area.
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Figure 4: One-dimensional model of neurons and
synapses in the outer-plexiform layer. Based on the
red-cone system in the turtle retina.

In the biological system, contrast sensitivity —the
normalized output that is proportional to a local mea-
sure of contrast— is obtained by shunting inhibition.
The horizontal cells compute the local average inten-
sity and modulate a conductance in the cone mem-
brane proportionately. Since the current supplied by
the cone outer-segment is divided by this conductance
to produce the membrane voltage, the cone’s response
will be proportional to the ratio between its photoin-
put and the local average, i. e. to contrast. This is a
very simplified abstraction of the complex ion-channel
dynamics involved. The advantage of performing this
complex operation at the focal plane is that the dy-
namic range is extended (local automatic gain con-
trol).

The basic analog MOS circuitry for a one dimen-
sional pixel with two neighbor connectivity is shown
in Figure 5. The analysis of the system can be found
in [11, 10], here we present an outline and approxima-
tions to the main results.

We begin with the non-linear aspects of system op-
eration, its contrast sensitivity. The non-linear op-
eration that leads to a local gain-control mechanism
in the silicon system is acheived through a mech-
anism that is qualitatively similar to the biological
counterpart, but quantitatively different (see discus-
sion in [11]). Refering to Figure 5, the output current
I.(Zm, yn) at each pixel, can be given (approximately)
in terms of the input photocurrent I(x,,,y,) and a
local average of this photocurrent in a pixel neigh-
borhood (M, N). This region may extend beyond the
nearest neighbor. The fixed current I, supplied by
transistor M3 normalizes the result.

I "m: n
Ic(xmyyn) =1I, (I Y ) (9)
(1Em, vn) + S [(@0,5))
At any particular intensity level, the outer-




Figure 5: One-dimensional implementation of outer-
plexiform retinal processing. There are two diffu-
sive networks implemented by transistors My and M5,
which model electrical synapses. These are coupled to-
gether by controlled current-sources (devices M; and
M) that model chemical synapses. Nodes H in the
upper layer correspond to horizontal cells while those
in the lower layer (C) correspond to cones. The bipo-
lar phototransistor @ models the outer segment of the
cone and M3 models a leak in the horizontal cell mem-
brane. Note that the actual system has a six neighbor
connectivity.

plexiform behaves like a linear system that realizes
a powerful second-order regularization algorithm for
edge detection. This can be seen by performing an
analysis of the circuit about a fixed operating point.
To simplify the equations we first assume that § =
(In)g, where (I} is the local average. Now we treat
the diffusors (devices My) between nodes C and C’ as
if they had a fixed diffusitivity §. The diffusitivity of
the devices M5 between nodes H and H' in the hor-
izontal network is denoted by h. Then the simplified
equations describing the full two—dimensional circuit
on a square grid are:

ﬁhvzszh(I,y)‘i’Ih(l', y) = I(Eiv y]) (12)

This is the biharmonic equation used in computer
vision to find an optimally smooth interpolating func-
tion Iy(z,y) for the noisy, spatially sampled data
I(z;,y;); it yields the function with minimum energy
in its second derivative [22]. The coefficient A = gh
is called the regularizing parameter; it determines the
trade—off between smoothing and fitting the data.

A one dimensional solution to this equation can be
obtained using Green’s functions valid for vanishing
boundary conditions at plus and minus infinity:

In(z: X) = 53177 exp(~lal/ VEN/4) cos (

e
V2A1/4 4

-6 e -2 2 Nt 6
Figure 6: Plot for the one dimensional solution of the
biharmonic equation; A = 1

In the original work {11}, the chip was fabricated
with 90 x 92 pixels on a 6.8 x 6.9 mm die in a 2pm n-
well double metal, double poly, garden variety digital
oriented CMOS technology and was fully functional.
More recently the same system has been fabricated
with 230 x 210 pixels on a 1 x 1 c¢m die in a 1.2pm n-

Li@m,yn) = I@myn) +9 D {Ie(2i,95) = I(@m, Un) kyell double metal, double poly, digital oriented CMOS

i=mx1l
i=ntl

Ic(xmvy‘n) = Iu + h E {Ih(xm»yn) _Ih(mi’yj)}
i=m=1

k2 1

Using the second—difference approximation for the
laplacian, we obtain the continuous versions of these
equations

Ih(Ivy) = I(x)y) + QV2IC(I,y) (10)
Ic(-'b',y) Iu - hV2Ih(‘7"7 y) (11)

with the internode distance normalized to unity. Solv-
ing for Iy (z,y), we find

I

technology. The chip incorporates 590,000 transistors,
48,000 pixels, operating in subthreshold/transition re-
gion with power dissipation on the order of a few mW
when powered from a 5V power supply. Temporal re-
sponse is in the order of a few microseconds.

To find the energetic efficiency of this system we as-
sume that a total of 18 low precision operations (OP)
are performed per pixel. Six operations are necessary
for the convolution with with bandpass kernel of Fig-
ure 6, six for the Laplacian operator (Equation 11)
and six for the local gain control computation (Equa-
tion 9). If the system is biased so that at the pixel
level the frequency response is 100Khz, approximately




1 x 10'2 low precision calculations per second are per-
formed in the (210 x 230) pixels. The power dissi-
pation under the above biasing conditions is about
50mW when operating from 5 Volt power supplies.
This is equivalent to 0.05 pW/OP. This performance
is a result of an optimization done at the system level,
by mapping the problem on an effective physical com-
putational model, rather than trying to optimize the
energetic efficiency of an individual gate.

An image captured through the silicon retina is
shown in Figure 7. Note the edge enhancement prop-
erties of the system and the absence of a dynamic
range (flat image).

Figure 7: An image of the author as captured by the
silicon system.

4 Discussion

On the approach: In the previous sections, we
have seen how an analysis by synthesis methodol-
ogy [8] using analog computation and VLSI technol-
ogy has led to the development of an energetically ef-
ficient analog VLSI system for early vision. Crucial
to the success of our endeavor is a hierarchical view
of information processing as discussed in Chapters 1
and 7 of [13]. Marr strongly believed however, that
computational theory should be on top of the hier-
archy and plays the most important role, while the
particulars of the implementation have only a periph-
eral role (see Figure 8a). Our work suggests that it
may be beneficial to view the different levels from a
slightly different perspective, one that is depicted in
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Figure 8: (a) Marr’s three levels of looking at complex
information processing systems. (b) what could be
called the “physics of computation” view.

Figure 8b. We begin with the physics of the problem
and the physics of the computational substrate. Good
algorithms and representations emerge as a result of
constraints imposed at this level.

On algorithms and architectures: We have ex-
perimentally demonstrated that in considering possi-
ble algorithms and architectures for solving sensory
communication problems one need not be restricted
to a particular model of computation. The a-priori
assumption should be made that a structure exists
(within a well defined set of “real” constraints consis-
tent with the computational substrate). This incor-
porates the best possible model of computation. The
particular mapping of a model to a computational sub-
strate is thus guided by fundamental limitations of the
basic elements, the properties that make the solution
scalable, and the existence of a synthesis procedure
that enables the emergence of a complex structure.

For example, it is easier today to write software that
implement a filter function on a digital computer, than
to implement the filter function using ASIC digital cir-
cuits, than to design and implement analog filters as
analog integrated circuits, than to design and manu-
facture a filter based on the physical properties of some
mechanical silicon micro-structure. Given the subject
matter of this paper, there is no reason to believe that
the last solution is not the preferred solution given ad-
equate research resources to solve “algorithmic” and
technological problems.

On physical models: The Ising spin model and



the dynamical systems formalism employed by Hop-
field [19] is one example of a physical model that has
become popular in the field of neural networks. The
Hopfield model is of great intellectual value because
it demonstrates how a physical dynamical system can
be employed for information processing tasks. How-
ever, its practical value is limited. The charge-based
formulation and analog VLSI implementation of the
silicon retina presented here is another example of a
physical model that could also be cast in the dynam-
ical systems framework (a relaxation network). It is
mathematically interesting, and at the same time per-
haps more practical. Indeed, by judiciously employing
“physical models” of computation such as the Hop-
field network [19] or a detailed biophysical model of a
retina [11] the inherent parallelism, nature of physical
laws [21] is exploited in the computational process.

The biologically motivated solution to early vision
processing is attractive from a computational perspec-
tive because contrast, an invariant representation of
the visual world, has been obtained with a front-end
that is robust, small, and extremely low power (a
few mW). There is also an engineering benefit be-
cause subsequent processing stages are not burdened
with handling and processing signals of wide dynamic
range.

It can be argued that the analog VLSI retina model
has an a-priori internal model of the world; one that
assumes that the intensity is either uniform or, in the
case of non-uniform illumination, is a linear function
of space. The output of the system is the difference
between the input intensity field and the model. As
such, the output is a measure of the second spatial
derivatives (or the Laplacian) of the intensity field. In
the field of computer vision, linear methods based on
regularization theory are used to impose smoothness
constraints [22] on the discretely sampled and noisy
real world data. These computational demanding al-
gorithms are run on general purpose digital hardware.

In the physical realization of a computational sys-
tems, the same “regularization” benefits could be ben-
eficial in dealing with the “noise” introduced by the
variability in gain of MOS transistors (see Figure 2).2.
Thus we see how in the organization of the system
one could account for the properties of the computa-
tional substrate at the architectural level, that which
is irrelevant when implementing algorithms on gen-
eral purpose, digital computers. In digital computers
and symbolic processing machines, structural variabil-
ity and noise in the basic elements is handled at a

2Noise here denotes structural variability, as opposed to noise
in a thermodynamic sense
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much lower level, at the gate level. Switching levels
are choosen so that adequate noise margin is intro-
duced for large scale reliable computation.

In the context of the biological model, the func-
tion of the horizontal cells (corresponding to nodes H)
is to compute “optimaly” a smoothed version of the
image (through a convolution with the kernel shown
in Figure 6) while the cones (corresponding to nodes
C) perform edge detection by taking the Laplacian of
the smoothed image as given by Equation 11. The
space constant of the solutions is A1/ or (gh)/4. The
model suggests that specialized structures in biolog-
ical systems could mitigate some type of “wet-ware
regularization” to compensate for the inherent ran-
dom variations in the neuronal characteristics, which
in turn could lead to robust performance in the pres-
ence of “noise”. The latter statement is just a hypoth-
esis subjected to experimental verification.

The notion of an “optimal” computation step has
been introduced by Bialek and Owens [23]. They have
considered the signal and noise characteristics of the
photoreceptors in the outer retina, and they have de-
rived “optimal” temporal filters to further process the
receptor signals. Our work [11] addresses a similar
problem in the space domain where “noise” is intro-
duced by the structural variability in the gain of the
individual elements, and spatial smoothing is needed
to increase the information capacity of the system.

The contrast sensitive silicon retina, is an archi-
tecture that yields the ON-center/OFF-surround re-
sponse at the level of the cone (photoreceptor) net-
work. Even though from an engineering perspective
one can employ this function for edge enhancement,
and we have done so, the question of why such struc-
ture exists in the neural system is still open. To put
it more succinctly; is edge enhancement the goal or is
it simply an emerging property from a computational
function that is aimed at dealing with signals of large
dynamic range using imprecise components?

Analog VLSI and neural systems: a discus-
sion in contrasts. The exponential characteristics
of a subthreshold MOS device offer the strongest non-
linearity relating a voltage and a current in solid state
devices [24] (within the constant x). When plotted
on a logarithmic axis, it manifests itself as a linear
function with a constant slope (see Figure 2).

The importance of this limiting steepness has long
been recognized by engineers involved in the design
of analog linear integrated circuits, and in their litera-
ture it is referred to as the “Boltzmann limited” slope.
Carver Mead often points out to the striking similar-
ity between the electrical properties of excitable mem-




branes and the MOS subthreshold characteristics, (see
Figure 1 in [6]) as both exhibit the Boltzmann limited
behaviour. Furthermore, he cites this similarity, as
one motivation for pursuing the synthetic approach in
analog VLSI using subthreshold MOS devices. Hav-
ing pursued such an approach, we are tempted to ask a
question that has two do with differences rather than
similarities. What is fundamentally different at this
level of description, that could have implications at
the system level?

A careful examination of the slopes in Figure 1 of {6]
(also Figure 4.6 in [8]) reveals that in biological struc-
tures the constant & in the exponent (see Equation 1)
is larger than unity! That is, the slope is not lim-
ited to a value equal to or greater than (kT/q) mV
per e-fold of current change. Not being limited by
the Pauli exclusion principle, the conductance depen-
dence is steeper in excitable membranes because of
correlated charge control of the current (see discussion
on page 55 of Hille [25]). In subthreshold MOS oper-
ation, the slope can only asymptotically achieve the
minimum value of (k7'/q) mV per e-fold of current
change. The minimum value can however be seen in
bipolar transistors and in junction field effect transis-
tors when operating in subthreshold.

The ramifications of this fundamental difference
can be appreciated if one attempts to realize physi-
cally an information processing system that operates
in the neighbourhood of 300K from power supplies
that are only 4 x (kT/q) = 100mV (biological hard-
ware operate under these conditions). The advantage
of reduced power supplies is reduced power dissipa-
tion and thus an improved figure for the power delay
product (see Equation 3). 3

We now consider a very simple operation at this
reduced power supplies, the quantization of a scalar
signal for reliable communication. This could be an
inverter circuit in VLSI or the generation of an ac-
tion potential in biology. The effects of thermal ag-
itation in the system make reliable operation of the
quantizer possible only when the energy barriers that
separate the two states are more than a few (kT) eV
apart. This has been discussed extensively in the lit-
erature (see for example [1, 2]). The problem becomes
more serious in large, complex information systems
such as VLSI with millions of computational elements
and where structural variability i.e. “noise” in the

3The adopted figure of merit is quadratically related to the
transconductance per unit current. A device with exponential
voltage to current characteristics is always better. Bipolar tran-
sistors, field effect transistors operating in subthreshold, or any
other barrier controlled device capable of power gain with the
“Boltzmann limited” steepness, is “optirnum” in this sense.
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individual components, has to be taken into account
(see transistor data in Figure 2). The problem of com-
ponent variability in complex VLSI systems has been
addressed by Mead and Conway in Chapter 9 of 3]
and by Keyes in Chapter 4 of [26].

So, how is it possible for an information processing
system that has the complexity of biological systems
to operate reliably with power supplies of the order of
a few (kT'/q) Volts?

The issue of structural “noise” in biological systems
can be addressed at the arhitectural level, through ro-
bust algorithms and representations much like it was
done for our silicon retina, or through local adapta-
tion —learning— mechanisms. The problem of “noise”
in a thermodynamic sense is a more difficult one. It
can perhaps be addressed by the fine details of signal-
amplification mechanisins that are found in biological
systems. For example, biophysics of excitable mem-
branes allow polyvalent charged entities of charge z
to respond as a unit rather than independently to an
applied potential energy differential. This is a cooper-
ative phenomenon that produces Boltzmann limited,
non-linear effects that are stronger than those possible
in solid-state. This would correspond to an effective
“cooling” of the system to a temperature (T/z)! At
lower temperatures, undesirable, thermally activated
events would become less frequent, resulting in a more
reliable system operation. It is unlikely that the ques-
tion posed in the previous paragraph has a simple an-
swer and therefore our explanations must be inade-
quate. They do, however, point to some intriguing
possibilities worth further consideration.
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