Computational Spacetimes

E. Theodore L. Omtzigt
Geometric Computer Systems

Abstract

The execution of an algorithm is limited by physical
constraints rooted in the finite speed of signal propagation.
To optimize the usage of the physical degrees of freedom
provided by a computational engine, one must apply all
relevant technological and physical constraints to the tem-
poral and spatial structure of a computational procedure.
Computational spacetimes make explicit both technologi-
cal an physical constraints, and facilitates reasoning about
the relative efficiency of parallel algorithms through ex-
plicit physical complexity measures. Similar to Minkowski
spacetime being the world model for physical events, com-
putational spacetimes are the world model for computa-
tional events. Algorithms are specified in a spatial single
assignment form, which makes all assignments spatially ex-
plicit. The computational spacetime and the spatial single
assignment form provide the framework for the design,
analysis, and execution of fine-grain parallel algorithms.

Introduction

Traditionally, models of computation have concentrated
on modelling the complexity of algorithms expressed in
terms of either the number of operations or the amount of
memory required. The classification of algorithms into
complexity classes provides insight into the structure of
computational problems, and how ‘hard’ they are to solve.
However, there is a difference between the analysis of the
time and space complexity of an algorithm, and the analysis
of the efficiency of execution. The complexity of an algo-
rithm under a simplified model such as the random access
machine provides a guideline in the form of upper and low-
er bounds. Evaluating the running time of an algorithm re-
quires a more detailed analysis in which the constraints on
execution are made explicit.

An algorithm specifies a computational procedure. Itis fi-
nite in its description and the procedure consists of discrete
steps that can be carried out mechanically. The Church-
Turing thesis states that an algorithm can be expressed by
a Turing machine, and nothing will be considered an algo-
rithm if it cannot be presented as a Turing machine. It
speaks for the completeness of the Turing machine model

0-8186-6715-X/94 $4.00 © 1994 IEEE

239

that, implicit to its operation, it does not violate the
constraints of spacetime. However, the Turing machine as
a physical system can be improved upon with respect to
computational efficiency through parallelism.

The construction of computational machines inevitably
must rely on technology. Currently, to build either digital or
analog computing machines designers almost exclusively
use integrated circuit technology. The circuit techniques
used to implement binary logic translate the degrees of free-
dom provided by electrons and semiconductor materials
into reliable and robust computing devices. This translation
trades off robustness (or repeatability) with speed of opera-
tion. For the discussion here it is also important to notice
that this translation creates very different resources and in-
teractions for a computational procedure than the resources
and interactions provided by nature. This leads to the ob-
servation that until we are capable of using the principle de-
grees of freedom inherent to the fundamental laws of phys-
ics, technology will be a factor in both the structure of
algorithms as well as the efficiency of their execution.

The efficacy of an algorithm is contingent on the structure
of the machine it is executed on. In a world with limited re-
sources, the intricate interaction between algorithm and
physical machine modulates the utilization of resources. In
the absence of contention, resource utilization depends on
the ratio between computation and communication. Count-
ing operations to estimate the execution time of an algo-
rithm is sufficient only if the computation to communica-
tion ratio is much larger than one. Since communication
delays arise from both physical distances and the properties
of materials, measures that reflect the constraints that na-
ture and technology force on execution are required to de-
sign algorithms that execute efficiently. Otherwise stated:
algorithms should be interpreted as physical systems if the

_computation delay of a basic arithmetic operation is much

smaller than the delay of communicating the output of one
operation to the input of another.

This paper introduces a model, called a computational
spacetime, which makes the temporal and spatial
constraints of a computational engine explicit. To specify
computation and to take physical distances into account,
the algorithm is specified in a spatial single assignment

form. A single assignment form is a specification that
makes all assignments in an algorithm explicit. The com-
putational dependencies between the single assignment
statements define a partial order on the computation. This
partial order must match the geometry of the computational
spacetime for the algorithm to execute efficiently on the
computational engine. The computational spacetime and
the spatial single assignment form provide the framework
for the design, analysis, and execution of fine-grain paral-
lelism.

Given the computational speed (100ps-1ns) and the prop-
agation delays (1-10ns) of current (1990) technology it is
evident that to make efficient use of computational re-
sources, localized interconnections between functional
units must be used. Any of the thirty two crystallographic
point groups of three-space are possible candidates of paral-
lel computing structures, however, the description of activ-
ity in lattices other than the cubic lattice, are complicated.
By carefully selecting the underlying machine architecture,
we can operate with only spatial structure; in the simplest
case the integer lattice Z". Computation graphs, which
make all computations within an algorithm explicit, are
embedded within such lattices.

The computational spacetime model was created to argue
from first principles that localized interconnections are re-
quired for parallel machines with fast arithmetic units. The
nextsection will define the computational spacetime model
of parallel computation. The model will be used to define
the concepts of tightly and loosely coupled parallelism. The
section on single assignment algorithms describes the spa-
tial extensions to the single assignment form to be able to
specify spatial relations among computations. The fourth
section introduces the framework for the design, analysis,
and execution of tightly coupled parallel algorithms. Final-
ly, the last section summarizes the conclusions.

Computational Spacetimes

The efficiency of physical systems is proportional to the
utilization of their resources. Some amount of work W is re-
quired to solve a computational problem. If the machine
consists of p resources capable of one unit of work per unit

w
ﬁ,, where T

is the total number of time units the machine is occupied.
One hundred percent resource utilization is not sufficient to
ensure an effective computational procedure; the total
amount of energy used to accomplish a computational task
must be minimized.

of time, then the efficiency of the machine is

240

Relaxing this energy argument, assume that energy re-
quirements are proportional to time, then given an individu-
al resource, its computational efficiency is

A comp

Acomp + Acom,

where A, is the time required to complete a computation,
and 4., is the time required to communicate the inputs.
Given a finite time, the neighborhood from which a func-
tional unit can receive its inputs is limited. In current
technologies the delays of logic and simple arithmetic op-
erations are so short that the neighborhoods are confined to
the chip die to obtain a reasonable efficiency of the func-
tional unit. In the case of tightly-coupled, fine-grain paral-
lelism, the spatial organization of many simple operations
is essential to efficient execution, increasingly so when
technology provides faster active elements and higher in-
tegration densities. In the following, the above discussion
is made more precise.

Spacetime provides physics with a model of the world.
The most basic idea of spacetime is that of an event. The
events of spacetime are considered ‘point’ occurrences,
that is, events have no spatial or temporal extent. In free
space, the distance between two neighboring events is giv-
en by the differential squared interval

ng 2,2 _ 2 2 (1.1)

v de dx — dy
where v is the maximum propagation speed of a signal. The
differential squared interval is a description of a spherical
wavefront in three space, or a circular wavefront in two
space. This wavefront is called the null cone. The null con-
es, and the respective displacement vectors, define an order
on the physical events that take place.

= .

In Minkowski spacetime, the speed of light c is used in the
differential squared interval, and the cones are called light
cones. The manifold described by Minkowski spacetime is
richer than is required for a model of parallel computation.
For example, time and space dilations due to relativity are
inconsequential for computation on a stationary grid of pro-
cessors. Important for the discussion here is the separation
of events in different event sets due to the limit on signal
propagation.

To be able to communicate information between two ver-
tices of a stationary lattice, the world line corresponding to
the receiving vertex must cut the null cone that corresponds
to the vertex at which the event originated. Since the cones
are ever-increasing, events that originate at the lattice
points of a stationary lattice will always be able to influence
another site, simply by allowing time to pass. But is this
time available? The efficiency of a computational resource
drops as the time spent communicating the operands in-

creases with respect to the time spent executing. Rewriting
the equation describing the efficiency of a computational
resource yields

ACO
n = —™@ |
Acomp + A:om
Acom = 'l—rl—:'—"'Acamp > (1‘2)

where 7] denotes the efficiency of a computational resource,
A ompis the delay of an operation of the functional unit, and
A om is the delay to communicate the operands.

Spacetime couples space and time; some physical neigh-
borhood, described by the metric of spacetime, corresponds
to some elapsed time. This relationship can be used to de-
fine a spatial extent as a function of a desired efficiency of
the functional units. The event neighborhood, 9, is defined
as

As(t) = vpropagalion B f(x)yrz):

O Acomps) = f(x,,2)

(=

n
)) Acanp * vpropagation . (1.3)

Equation (1.3) effectively truncates the null cones, caus-
ing events that lic within the absolute future of a particular
event to appear spacelike if they cannot be reached in the

1 —_
time given b ———'l‘Ac., . Equation (1.3) uses a gener-
g Yy 7 mp g

ic description of the physical neighborhood. Although
physical events take place in free space, and physical
change can be communicated on the wavefront of an ex-
panding sphere, the communication of an event within a
computational structure tends to have an additional
constraint: the interconnection network.

Computation can be represented by a directed graph in
which nodes represent operations, and arcs denote prece-
dences (or dependences) among the operations. The com-
putation graph makes all operations and their interaction
explicit. A machine can be represented by a graph as well;
the nodes represent functional units, and the arcs represent
communication channels between the functional units. To
execute the computation on a machine, the computation
graph must be embedded in the machine graph. The data
precedence relations in the computation graph are confined
to the communication channels of the machine graph,
which changes the metric of the space in which the com-
putation takes place. A model that characterizes the tempo-
ral and spatial constraints is called a computational space-
time.

241

A computational event in a computational spacetime is a
basic operation, such as an add or multiply, or a logic AND
operation, and is considered a point-occurrence. Computa-
tional events can only take place at computational re-
sources. In a physical system, these resources must be
mounted. This rigging is modelled by a stationary lattice.
At each lattice point, one and only one computational re-
source, or functional unit, can be found. Since a functional
unit is an object having continuous existence and its posi-
tion with respect to the other functional units remains
constant, it is represented in a spacetime diagram by a
straight world line.

A communication event is a communication of one data
element from one functional unit to a direct neighbor. Di-
rect neighbors are functional units that share a physical
communication link. Since data is produced and consumed,
a data element spans only a segment of a world line in the
spacetime diagram. To effectively specify a parallel algo-
rithm, a designer is interested in the global properties of the
communication events within the algorithm and the under-
lying computing machine. The communication between
functional units occurs along some interconnection net-
work. The connectivity of the interconnection network de-
termines the geometry of the space in which communica-
tion events take place. This geometry describes the
computational spacetime. For example, a cubic intercon-
nection network can be described by a cubic lattice with the
metric:

Asppe = vat — (A + Wyl + KY2) (1.4)

In this case, the null cone is an expanding cube. The null
cone of a two dimensional equivalent is given in Figure 1.1.

The intrinsic time step of a computational spacetime is
defined as the smallest time step in the system. This time
step is used to truncate the null cones to ensure a reasonable
efficiency of the functional units in the machine. A space-
time diagram of a stationary lattice is a collection of trun-
cated null cones, or compartments. Within such a compart-
ment only a fixed number of computational activities can
take place, where a computational activity is defined as a
basic operation plus a communication across one and only
one link connecting two vertices. The compartments are an
abstraction of the limit on the speed of signal propagation
and the connectivity of the interconnection network.

The event neighborhoods allow us to precisely define the
otherwise vague concepts of tightly and loosely-coupled
parallelism. Assume a computational spacetime with an
event neighborhood 6(¢), and two communicating pro-
cesses, # and v. The length of a computational event is given
by A4.,mp Assume u and v have some spatial separation 4,,.
Using equation (1.3), the two processes are called tight-

null-like

spacelike

vAt

/

Aent

Figure 1.1 The null cone of a square lattice defined by the metric of equation (1.4)

ly-coupled if and only if
A’O‘ < 6(Acomp’ ’7)) (1.5)

for some efficiency 7. Furthermore, assume an aggregate
of such processes distributed through space. This collection
is called tightly-coupled if and only if for all distances, 4,,,
between communicating processes, equation (1.5) holds.
Any other collection is called loosely-coupled. Equation
(1.5) shows that any computation can be made tightly-
coupled by reducing the efficiency of the computational re-
source.

Single assignment algorithms

Systolic algorithms are tightly-coupled fine-grain algo-
rithms in which spatial movement of data is specified for
each time step of the algorithm. However, two problems are
associated with systolic algorithms. First, in a systolic algo-
rithm both space and time are explicit. Since both space and
time are part of the functionality, systolic algorithms be-
come unmanageable quickly. Second, the lock-step control
mechanism of a systolic algorithm does not address the se-
quencing of independent operations that require service
from the same functional unit in the same clock tick. The
lack of a control mechanism to share resources makes sys-
tolic algorithms useful only for dedicated architectures, but
these architectures can be very fast, explaining their popu-
larity in signal processing applications.

Now consider a single assignment algorithm. Since a
single assignment algorithm has no notion of space or time,
its functionality is much easier to design than the corre-
sponding systolic algorithm. When the computation graph
is embedded in some physical structure, out of the inherent
composition of the algorithm activity will evolve, modu-

242

lated by the laws of physics, resource constraints, and the
timing of the inputs. The association of spatial and temporal
dimensions to the computation graph can be postponed un-
til run-time, which makes single assignment algorithms
perfectly suited to specify massively parallel algorithms.

In the previous section we have seen that efficient parallel
computation requires short physical distances between de-
pendent computations. A sequential language is defined
with respect to a featureless memory in which spatial rela-
tions are ‘flattened’; no notion exists of a location depen-
dent time difference between memory cells. An abstraction
to specify spatial relations between computations must be
added. Since in a single assignment algorithm each and ev-
ery operation is made explicit, the computation graph is ex-
plicit in the program text. Spatial relations can be added by
embedding the computation graph in a lattice with a dis-
tance measure.

In a single assignment algorithm, a unique name for the
result of each operation is required. Assuming the lattice
Z", the physical embedding of the computation graph and
the assignment of unique names can be combined by
associating an index to a variable. This index is interpreted
as the lattice point at which this operation takes place. For
example, an algorithm for vector addition might embed the
vectors in a one-dimensional lattice Z', and assign each in-
dividual addition to a lattice point,

{O|1=i<N |
+ z

i

Xi = Y
This results in three data items per lattice point plus a func-
tional unit capable of performing the add. The domain
{G) | 1 = i < N}iscalled the index domain of the algo-
rithm.

This type of regular algorithm, ubiquitous in parallel
computation, can be described by a set of equations F; de-
fined over convex domains D; and lattices L;

algorithm = {(F, D, L) | 1<i<f},

where fdenotes the number of equations in the algorithm.
A computation is specified as a dependence relation, which
isamap f from an index point p to another index point pf,

pB = pB + b,

where B is the linear part of the dependence map, and b is
the affine part. For example, in the following single assign-
ment statement, the functionality is a multiply-add

T Viik " Zie s

with dependence maps given in equation (1.6). These par-
ticular dependence maps are uniform, that is, the linear part
of the map is the identity matrix which implies that the map-
ping is independent of the position of invocation. If the lin-
ear part is not the identity matrix then the transformation is
an affine dependence map.

Xijk Xijr-1

By definition, the left-hand-side of an equation has stan-
dard indices. Each equation F; defines a recurrence vari-
able, or rvar. In the above example, the recurrence variable
is x. The variables on the right-hand-side of the equation are
recurrence variables as well, but they are defined else-
where. The recurrence variable represents a collection of
communicating processes; it is an aggregate object with a
well-defined extent given by D; and L,. D; is called the do-
main of computation of the recurrence variable, and L, the
lattice of computation.

Low level specifications of algorithms that take physical
constraints into account can be found in [Hennie, 1961,
1968]. Systolic algorithms [Kung, 1982][Leiserson, Saxe,
1984] are similar to the systems studied by Hennie, and
have been extended by a number of authors, most notably
[Quinton, 1983], [Moldovan, 1983], [Cappello and Stei-
glitz, 1983], [Delosme and Ipsen, 1986], and [Mauras, et
al., 1990]. The earliest study into the formal characteristics
of recurrence equations can be found in [Karp and Miller,
1966], and [Karp, Miller, Winograd, 1967]. A complete
framework for the design, analysis, and execution of affine
extensions to uniform recurrence equations studied by
Karp, Miller, and Winograd, is presented in [Omtzigt,
1992].

A framework for the design, analysis, and
execution of fine-grain parallel algorithms

Every computing machine creates some computational
spacetime, described by the lattice of processors and an
event neighborhood. The interconnection structure be-
tween the processors determines the metric of the computa-
tional spacetime. Combined with the intrinsic time step,
provided by the shortest computational delay in the system,
this metric defines the shape and extent of the event neigh-
borhood.

If this procedure is applied to existing parallel architec-
tures one realizes that to determine the computational
spacetime created by a machine is not that easy. Intercon-
nection networks have rarely been designed to be uniform
with respect to three-space, resulting in complicated neigh-
borhood functions. Moreover, global interconnection net-
works are laid out across different technologies in such a
way that improvements in technology change the charac-
teristics of the neighborhood functions significantly. This
changes the trade-offs between computation and commu-
nication causing the efficiency of an algorithm to be depen-
dent on the size of the machine and technology used to im-
plement the machine.

The description of a computational procedure typically
involves three levels; the overall structure of the algorithm,
the individual arithmetic and/or logic operations, and the
bit-level implementation of the basic operations. All these
levelsrequire control, which itself is a form of computation.
Depending on the amount of resource sharing required,
specification of control varies. In a sequential machine, al-
most all code specifies control, whereas for the single as-
signment algorithms almost all code specifies computa-
tional structure. The problem of this state of affairs is that
it makes an algorithm very dependent on the implementa-
tion of the machine. This dependency complicates the au-
tomation of moving programs from one machine architec-
ture to another.

It is easier to design efficient algorithms, or to construct
an optimizing compiler, for uniform architectures because
the interactions between constraints are simplified. If the
interconnection network of the machine is symmetric with
respect to three-space, and the event neighborhood is cho-
sen such that the architecture can support the same com-

x = x pB = pB + b
x —>y pB = pB + b
x = z pB = pB + b

pl + [00 —1]

pl + [0 0 0

(1.6)

pl + [0 0 0.

243

putation and communication ratio across several genera-
tions of technology then the basic operation of the machine
can be held constant. In this case, an algorithm can be de-
signed independent of the size and implementation technol-
ogy of the machine..

Computational crystals

The separation of events due to fast state transitions of
high-speed devices and a limit on signal propagation, com-
plemented by the limited wire density of electronic technol-
ogies, makes localized architectures faster, more efficient,
easier to compile for, and easier to manufacture than non-
localized architectures. Nature provides many examples of
localized configurations; every solid is a localized configu-
ration of atoms. In three-space there are thirty-two different
crystal lattices, such as cubic, tetragonal or ortho-rhombic
lattices. By arranging computational resources along the
structure of some crystal lattice, a computational structure
is created where the communication links between the
‘atoms’ are localized, and the computation-to-communica-
tion ratio is independent of the number of atoms. At the
same time, such a computational crystal allows enough
flexibility in the implementation of the machine to keep the
ratio constant across several generations of integrated cir-
cuit technology. The crystal lattices form crystallographic
point groups, and the generators of these groups can be used
to create routes between the vertices.

For the development of a method to execute a computa-
tion graph on a fixed-size architecture, the cubic lattice is
most suited. If the event neighborhood contains only direct
neighbors then the spacetime diagram of a three-dimen-
sional orthogonal lattice becomes a four-dimensional lat-
tice of compartments that have their vertices on the lattice
points of Z* Similarly, lower dimensional orthogonal lat-
tices are subsets of the cubic lattice. Higher dimensional
lattices can be mapped onto lower dimensional lattices
through projections along the axes. The computation to
communication ratio of the lower dimensional lattice is
identical to the higher dimensional lattice under the as-
sumption that the control mechanism keeps physical dis-
tances within some bound.

However, the computational activity of a parallel algo-
rithm projected along the axes of Euclidean space may ex-
hibit inefficiencies due to collisions of activity. A direction
of projection other than along the axes may avoid such col-
lisions, and should not be excluded. To remain in Z”
oblique projections must be used. The relaxation of using
oblique projections can cause local communication pat-
terns to become non-local, creating possible resource con-

244

tention that was not modelled in the original algorithm. The
spatial reductions must thus be chosen with care.

This suggests the following method to design, analyze,
and execute algorithms with tightly-coupled, fine-grain
parallelism.

1. Assume an orthogonal lattice Z” and equate this with
the machine graph. The communication links are given
by the basic vectors of the lattice,

2. embed the computation graph in this lattice, allowing
only a fixed number of computational events at a single
vertex,

3. rewrite communication vectors that span multiple event
neighborhoods to be collections of single event neigh-
borhoods,

4. select projection directions along which to reduce the
dimensionality of the computation graph without caus-
ing excessive activity clashes and unnecessary dilation
of communication vectors,

5. execute the projected computation graph on some ma-
chine (preferable a machine that produces the lattice 2"
as vertices in the computational spacetime it embodies).

Conclusions

Fine-grain parallelism requires carefully designed spatial
relations to execute efficiently. A computational spacetime
models the spatial structure and temporal constraints that
influence the execution of an algorithm. An event neigh-
borhood is defined as the spatial extent a computational
event can influence during some intrinsic time step. By
embedding the computation graph, which makes all com-
putation and communication explicit, into a computational
spacetime, spatial and temporal constraints are accounted
for. However, this embedding requires the designer to dis-
tinguish between space and time, desirably deferred until
run-time. The properties of an orthogonal lattice are instru-
mental in providing this relaxation.

The computational spacetime of an orthogonal lattice can
be made uniform in space and time by choosing the intrinsic
time step such that an event neighborhood contains only di-
rect neighbors. The vertices of the truncated null cones fall
on the lattice points of an n+1 dimensional Euclidean
space Z"*', for n < 3. Otherwise stated, under the stipula-
tion that dependent computations must be placed at direct
neighbors, all computational resources and their intercon-
nectivity are made explicit by embedding the computation
graph in Z*, for n < 3.

The physics of computation combined with a dose of
technical realism has an opportunity to alleviate the funda-
mental problem of machine dependency of algorithms. Ex-

cept for the work in systolic algorithms and cellular autom-
ata, the current state of algorithm design ignores physics at
the conceptual level. The approach followed in systolic al-
gorithms and cellular automata, in increasing order of
religion, is that the physics defines a machine, which de-
fines an algorithm. Ultimately, when we are able to use the
degrees of freedom available in nature directly, the physics
determines the algorithm without the need of some com-
putational engine which abstracts these fundamental de-
grees of freedom into something less efficient, but closer to
the conceptual computation step of the Turing or random
access machine.

References

[1] Cappello, P.R. and K. Steiglitz, “Unifying VLSI
Array Designs with Geometric Transformations,” Proceed-
ings of the International Conference on Parallel Proces-
sing, 1983, pp. 448-457.

[2] Delosme, Jean-Marc and Iise Ipsen, “Systolic
Array Synthesis: Computability and Time Cones,” Parallel
Algorithms and Architectures, M. Cosnard et al., (editors),
Elsevier Science Publishers, 1986, pp. 295-312.

[3] Hennie, F.C., Iterative Arrays of Logical Circuits,
The MIT Press and John Wiley & Sons, Inc., 1961.

[4] Hennie, F.C., Finite State Models for Logical Ma-
chines, John Wiley & Sons, Inc., 1968.

[5] Karp, Richard and Raymond Miller, “Properties of
a Model for Parallel Computations: Determinacy, Termina-
tion, Queuing,” SIAM Journal of Applied Mathematics, vol.
14, no. 6, 1966, pp. 1390-1411.

245

[6] Karp, Richard, Raymond Miller and Shamuel Wi-
nograd, “The Organization of Computations for Uniform
Recurrence Equations,” Journal of the Association of Com-
puting Machinery, vol. 14, no. 1, 1967, pp. 563-590.

[7] Kung, H.T., “Why Systolic Architectures,” Com-
puter Magazine, vol. 15, no. 1, January 1982

[8] Leiserson, Charles E. and James B. Saxe, “Opti-
mizing Synchronous Systems,” Journal of VLSI and Com-
puter Systems, vol. 1, no. 1, 1984.

[9] Mauras, C., P. Quinton, S. Rajopadhye and Y.
Saouter, “Scheduling Affine Parameterized Recurrences by
means of Variable Dependent Timing Functions,” Proceed-
ings of the International Conference on Application Specif-
ic Array Processors, IEEE Computer Society, 1990.

[10] Moldovan, Danl., “On the Analysis and Synthesis
of VLSI Algorithms,” IEEE Transactions on Computers,
vol. ¢-31, no. 11, November 1982, pp. 1121-1126.

[11] Moldovan, Dan I., “On the Design of Algorithms
for VLSI Systolic Arrays,” Proceedings of the IEEE, vol.
71, no. 1, January 1983, pp. 113-120.

[12] Omtzigt, E. Theodore L., "Domain Flow and
Streaming Architectures,” in Proc. of the Int’l Conference
on Application Specific Array Processors, IEEE Computer
Society, 1990

[13] Omtzigt, E. Theodore L., Domain Flow and
Streaming Architectures: A paradigm for efficient parallel
computing, Ph.D. Dissertation, Yale University, 1992

[14] Quinton, Patrice, “The Systematic Design of Sys-
tolic Arrays,” IRISA Research Report, no. 193, March
1983.

