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Abstract

This paper ezxamines an efficient approach to the
calculation of the entropy of long binary and nonbi-
nary one-dimensional information sequences. The en-
tropy calculation is accomplished in time linear in the
sequence length. The method is ezpanded to estimate
the eniropy of grey-level images which, under raster
scanning, may be represented as one-dimensional in-
formation sequences. The entropy estimate obtained
depends on the image scanning method employed, and,
consequently, to achieve greater reduction in bit rate,
the scanning should be done in the direction of high-
est adjacent pizel statistical dependence. Depending
on the image statistics, it is shown that uniform lu-
minance requantization of an image may not lead to
an appreciable reduction in bit rate. The algorithm
discussed can be applied to areas such as image com-
pression and string entropy estimation in genelics.

1 INTRODUCTION

Entropy is one of the most fundamental and revealing
quantities that can be associated with a stochastic infor-
mation sequence. An accurate estimate of the entropy pro-
vides an indication of the amount of redundancy contained
in the sequence and, consequently, an upper bound on the
data compression possible. This statistical redundancy,
which is related to the correlation and predictability of
the data, can be removed without destroying any informa-
tion. In this work, we examine an efficient approach to
the estimation of the entropy of an information sequence
and extend the method of entropy estimation of binary se-
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quences introduced by Fahner and Grassberger [2] to the
estimation of the entropy of grey-level images.

Suppose that we have an (M x N)-dimensional
monochrome image X, where each pixel can take one of 2k
luminance values with k equal to the number of bits/pixel.
Let a luminance value z have probability of occurence P(z)
in the image and be assigned a codeword length of L(z)
bits. The average codeword length for the image is given
by

L= Z L(z)P(z) bits/pixel. (1)
The entropy, H(X), is defined as
H(X)=- Z P(z)log, P(z) bits/pixel (2)

and provides a lower bound on L, ie., HX) < T for all
decodable, variable length codes that code pixels indepen-
dently of one another [4]. Further bit-rate reduction is
possible if pixels are coded and transmitted in blocks of
n samples, instead of one at a time. This reduction is
achieved by taking any correlation that may exist between
the n pixels in the block into account. In this case, it is
appropriate to express the lower bound on T in terms of
the block entropy, H., which depends on the block size
and is given by

Ha(Xa) = — Y P(Xa)log, P(Xa) bits/block, (3)
X.

where X, = (z1 ... zn) and the z;’s are k bit quantized
values. It is not difficult to show that

(4)

Now, a lower bit-rate is possible without any loss of in-
formation using conditional coding which is lower bounded
by H(zn|z1,..,Za-1) [4), where we have

lHn(xn) < H(X) bits/pixel.
n

H(znl|z1,.2a-1) < %H,.(Xn) < H(X) bits/pixel.
(8)
Taking the limit as n becomes large of the conditional en-
tropy, we define k, as in [2], as

h= lim hq,

n— 00

hn = Hn41 — Ha  Dits/pixel.

(6)



The derivation of k, as the conditional entropy is given
in the Appendix. The proof that the conditional entropy
is less than or equal to the block entropy can easily be
verified from the results given in [1].

Since the computational time for the calculation of H,
in (3) grows exponentially with =, this approach to esti-
mating the conditional entropy from block entropies is not
suitable for large block lengths. A considerably faster al-
gorithm is required and is discussed in the next section.

2 ENTROPY ESTIMATION OF SE-
QUENCES

Fahner and Grassberger introduced a method for mea-
suring the entropy of binary sequences using a suffix-tree
construction algorithm (Algorithm M), previously devel-
oped by McCreight [3]. Given the one-sided infinite string
S = (8132 ...), define its one-sided infinite substrings as
Si = (i 8i41 ...), where i = 1,2,...,,N, and its finite sub-
strings as Six = (8i ... 8i4x-1). The algorithm finds, for
each i, the largest k such that Sz = S; 4, for all J between
1 and N. The entropy is then estimated as

h= lim h, ho= 2828 1)
B0 kmaz

where the average maximal k, Emas, is defined as

k'maz

N
1
=% ki k= max{k|Six = Sju}.  (8)

i=1

A straightforward approach to the computation of kmas
in (8) would simply be to attempt to match a substring
against the main string for each i. This is a very slow
approach, especially as N becomes large, since the com-
putational time does not grow linearly with the sequence
length. In order to efficiently calculate the average maxi-
mal k’s, Algorithm M is used to build an “auxiliary index”
to facilitate the searches for string repetitions. This index
structure can be constructed in time linear in the length
of the main string and enables substring searches to also
be carried out in time linear in the length of the substring.

2.1 Algorithm M

The algorithm builds a tree structure T (auxiliary in-
dex) of the information sequence S, where each path from
the root to a terminal node in T uniquely specifies a suffix
of 8. The last element of S may not appear elsewhere in S,
50 as to guarantee the existence of a unique terminal node
for each suffix of S. If S does not satisfy this property, the
existing sequence is padded with a new character.

Define suf; to be the suffix of S beginning at element
position i (where suf; = S). The algorithm starts by
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building the empty tree T, which contains the root node.
During step 1, a path corresponding to suf; is inserted into
the tree T;_; to produce the tree Ti. Figure 1 shows the
steps involved in building the suffix tree for the sequence
011012.

Define head; as the longest prefix of suf; which is also
a prefix of suf; for any j < i. For the sequence 011012,
heads = 01. Also define tail; as suf; — head;. Now,
consider step 4 in Figure 1 which transforms 73 into Tj.
To insert sufy, which is 012, the algorithm traces T and
discovers that head, is equal to 01 and, thus, splits the
first child of the root node into two parts, 01 and 1012,
and creates a terminal node corresponding to taily, which
is equal to 2. Now suf; and suf, are described by the two
paths from the root node to the two terminal nodes in the
subtree to the left of the root node.

To avoid searching for each head; completely, and,
thus, run in linear time, the algorithm exploits the fol-
lowing Lemma attributed to McCreight.

LEMMA 1. If head;_; can be written as x§ for some
character x and some (possibly empty) string &, then § is
a prefiz of head;.

As a result, suffix links are introduced into the tree
structure which point from the node whose path from the
root node describes the string x§ and point to the node
whose path from the root node describes the string 4.
These auxiliary links enable the construction of 7' in time
linear in the length of the sequence S. A complete dis-
cussion of McCrieght’s algorithm can be found in [3]. An
application and extension of this algorithm for data com-
pression was introduced by Rodeh et al [5].

2.2 Entropy of independent data se-

quences

When the infromation sequence is made up of indepen-
dent data symbols, no further data reduction is achieved
by coding blocks, as opposed to coding each symbol on its
own. Consequently, we expect that the conditional entropy
estimate obtained using (7) will be equal to the entropy
H(X) of (2), where the latter is easily obtained by build-
ing a histogram of the data symbols. Table 1 compares the
two entropies of a binary sequence for a different number
of points and for two cases: the case of equiprobable ones
and zeros, and the case for which the probability of a one
is 1/4 and the probability of a zero is 3/4, where the true
entropies are 1.0 and 0.8113, respectively.

The results are consistent, although entropy estimation
using the suffix tree algorithm and (7) gives slightly lower
values. This can be attributed to the observation that,
although the binary sequence is considered independent,
some correlation might exist since the sequence was gen-
erated by a computer algorithm. In addition, the num-
ber of points used for the entropy estimate is limited by
the memory space available, which, in our case, is about
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Figure 1: The suffix tree of the string 011012

equiprobable P(1)=3, P(0)=3%
No. of points || H(X) bits/pixel || h bits/pixel || H(X) bits/pixel || & bits/pixel
1000 0.999896 0.977165 0.851331 0.811807
10000 0.999829 0.967560 0.818952 0.779897
100000 0.999999 0.980705 0.811056 0.778064
400000 0.999996 0.982795 0.811044 0.781222

Table 1: Entropy of independent binary data

400000 points (this corresponds to a memory requirement
of about 27 MB). Nevertheless, the method provides good
estimates and is expected to be quite useful when the data
is correlated, such as arises in images.

3 ENTROPY OF IMAGES

The importance of the above algorithm for entropy es-
timation is its efficiency, considered to be of particular im-
portance when calculating the entropy of images. Since
pixel values are usually serially transmitted, the transmit-
ted output is a continuous, one-dimensional information
sequence. Consequently, depending on the way the im-
age is scanned, applying the entropy estimation method
discussed in the previous section may result in different
values for the estimate. To test these variations, two im-
ages are used and each scanned horizontally and vertically.
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The first image is “Lenna” , shown in Figure 2, and the
other is “Albert”, an image of the face and the upper chest
of Albert Einstein, shown in Figure 3.

An estimate of the entropy using (2), which does not
take into account the correlation between the pixels, gave
4.182106 bits/pixel and 3.568518 bits/pixel for Figures 2
and 3, respectively. A better estimate of the redundancy
present in these images is obtained using (7) and Algo-
rithm M. Tables 2 and 3 show the results and computa-
tional times of the entropy estimates using Algorithm M
on a Sparc 10 workstation. The implementation of the
algorithm was done in C.

In comparing horizontal and vertical scanning for the
Lenna image, the entropy estimates agree with the fact
that statistical dependence in television pictures is greater
in the vertical direction than in the horizontal direction
[4]; most televison scanning rasters have a smaller verti-
cal pixel spacing (within a frame) than horizontal pixel
spacing, which results in a lower entropy for the sequence



Figure 2: Lenna; 512x480 pixels (256 grey-levels)

Figure 3: Albert Einstein; 320x200 pixels (256 grey-levels)
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Scanning Method

Entropy (bits/pizel)

Number of pixels

Time (sec)

Horizontal scanning

1.589725

245760

16.1

Vertical scanning

1.157746

245760

15.6

Table 2: Entropy of the “Lenna” image

Scanning Method

Entropy (bits/pizel)

Number of pixels

Time (sec)

Horizontal scanning

1.237511

64000

3.1

Vertical scanning

1.323543

64000

3.1

Table 3: Entropy of the “Albert Einstein” image

generated by vertical scanning. This property is further
exaggerated in this case by the image background which is
dominated by vertical edges. On the other hand, horizon-
tal and vertical scanning gave very close entropy estimates
for the Albert image. Since the number of pixels is rela-
tively small (64000 pixels), the entropy estimation is less
accurate. In addition, no edges are present in the back-
ground; therefore, we expect the information content of a
face, regardless of its orientation, to be approximately the
same. This is reflected in the entropy estimates in Table
3.

Another scanning method that we explored was to alter-
nate the scanning direction on consecutive scanned lines.
For example, in the case of horizontal scanning, if one
line is scanned from left-to-right, the next line is scanned
from right-to-left. Intuitively, we expect the entropy of
the one-dimensional sequence formed using this scanning
method to be lower than the normal raster scan, since a
higher statistical dependence should exist between the ad-
Jjacent pixels in the sequence. This was observed in most of
the experiments, although the decrease was slight (0.025
bits/pixel reduction, on average).

3.1 Effects of quantization

Both the Lenna and the Albert images have 256 uni-
formly spaced grey-levels in their “natural” format. In
this section, the effect on the entropy of requantizing the
images in a uniform manner is examined.

In general, it was found that uniformly requantizing
the pixel values gave lower entropy estimates. The de-
crease was not significant for the Albert image until 8-level
quantization was reached, as can be seen from Table 4.
For the Lenna image, no significant decrease in the en-
tropy was observed until 16-level quantization was used.
This can be explained by examining the grey level image
as it is scanned, where we noticed that adjacent levels, in
most cases, were either equal or differed by more than 10
grey-levels. This implies that requantization from 256 to
32 levels by uniform quantization has little effect on the
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entropy. The same applies for the Albert image, although,
in this case, most of the grey-levels of adjacent pixels were
equal or differed by more than 30 levels.

These results indicate that no real benefit, in terms of
entropy, is achieved by lowering the number of grey-levels
used in images, although individual results may vary. In
addition, although it may be impractical to increase the
number of grey-levels from 256 to 512 levels, only a slightly
higher bit rate is needed, if the results in Table 4 were to
be extrapolated.

4 CONCLUSIONS

The algorithm used in this paper for the estimation of
the entropy of images is very fast, especially when com-
pared to direct methods that attempt to match substrings
to the main strings. The method described takes on the
order of seconds, while direct methods take on the order of
hours. This large increase in speed, however, is traded off
against the additional memory space required which effec-
tively limits the length of the information sequence that
can be processed.

Estimating the entropy of images using the method de-
scribed in this paper is limited in accuracy to the number
of points in the sequence, which, for images, is equal to the
number of pixels. Consequently, we expect the entropy es-
timation of small images to be less accurate. In addition,
as the number of points used by the algorithm is increased,
the entropy estimates converge towards a value, but tend
to oscillate about that value. Since the entropy estimate of
an image depends on the scanning method used, scanning
in the direction of maximum statistical dependence of the
pixels will lead to a lower bit rate.

Although the algorithm gives a good estimate of the en-
tropy, and, thus, a good estimate of the redundancy that
can be removed, it does not give an indication on how this
bound can be achieved. To approach such limits, condi-
tional coding may be used, which, in most cases, gives a
lower bit rate when compared to block coding.



Quantization levels Lenna Albert Einstein
Horiz. Scanning || Vert. Scanning || Horiz.Scanning || Vert. Scanning
256 levels (8-bits) 1.589725 1.157746 1.237511 1.323543
127 levels (7-bits) 1.584278 1.154312 1.237511 1.323543
64 levels (6-bits) 1.580616 1.152054 1.237511 1.323543
32 levels (5-bits) 1.545643 1.131540 1.237511 1.323543
16 levels (4-bits) 1.271702 0.901792 1.237511 1.323543
8 levels (3-bits) 0.941907 0.660785 0.629062 0.564703
Table 4: Entropy of uniformly quantized images
APPENDIX
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Derivation of the Conditional Entropy

Let x;,j,j > 1, denote the sequence (zizi41...2;). The

conditional entropy is given by
hn = Hn.+1 - Hn

= p(x1n41) log, P(X1mi1)

Xi,n

+) p(x1n) logy P(X1m)

X1,n
= Y p(Xint1) logy p(X1me1)
X1i,n41

+ ) p(X1n41Za41) logy P(X1m)
Xi,n41

X1in
- Y plximi) 10822}(;(;(;—:)1')

Xi,nt1

= - Z P(X1,n41) log p(zautilX1,n
X1, n41

H(zny1|x1,n)

In words, h, signifies the additional information present in
pixel z,41, given knowledge of all previous pixels, X3, =
(z122...z0).



