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Abstract

This paper addresses the relationship between dynamical
systems theory and theoretical computer science, in
particular the dynamical, information-theoretic and
computational properties of systems that compute. These
properties have been studied in cellular automata and
the symbolic dynamics of maps over the unit interval [5-
8, 14-15], but have never been addressed in compact
systems known to be capable of universal computation.
Recent work is described in which the entropy,
periodicity and regular language complexity of a large
number of randomly generated Turing machines were
calculated. The results are discussed in detail and
compared with an identical analysis of a universal
Turing machine. This comparison yields the first direct
quantitative evidence that universal computation lies
between ordered and chaotic behavior. The discussion
concludes with a list of questions remaining to be
answered about the phase-space portrait of
computationally complex systems.

1. Introduction

Dynamical systems theory has become an integral
part of how we understand the time evolution of nature's
physical systems. Fixed points and periodic attractors,
transients, and basins of attraction are the root metaphors
and the quantitative backbone in terms of which many
analyses in physics, chemistry and biology are phrased.
When a fundamentally different mode of dynamical
systems behavior is discovered, the effect on the
scientific community can be electrifying. Note, for
example, the discovery and elucidation of chaos over the
past several decades and the profound effect it has had on
our understanding of many natural phenomena. Over the
same period that chaos was being discovered, however,
another science was being born which is also concerned
with dynamical systems of a special kind: theoretical
computer science.

Despite the ubiquity of dynamical systems theory
and theoretical computer science, little is known about
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how these two theories relate to each other. In particular,
what are the computational properties of a given
dynamical system, and conversely, what does the phase-
space portrait of a computer look like? Is it highly
ordered, or highly chaotic, or does it belong to an entirely
new class of dynamical behavior different from anything
yet encountered? Recent work by Langton [14-15],
Crutchfield [5-8] and others has suggested that dynamics
capable of supporting complex computations occur at a
phase transition separating ordered and chaotic behavior.
However, there has been no direct quantitative evidence
that, in the spectrum of computational systems, universal
computation is found at this transition. The work
described here addresses this point.

We begin with a review of the works by Langton
and Crutchfield that have been crucial to the assertion
that computation lies at a phase transition between order
and chaos. Some central results from theoretical
computer science are also reviewed as background to
Crutchfield's work. We then describe our own work,
which employs a combination of both Langton's and
Crutchfield's techniques to analyze a large number of
different Turing machines, only one of which is capable
of universal computation. Finally, we conclude with a
discussion of some outstanding questions.

2. Background

2.1 Langton's A-parameter and the transition
from order to chaos

Langton [14-15] has explored the relationship
between dynamical systems theory and computation by
studying cellular automata (CA) as a model system. In
this work, a large number of 1- and 2-dimensional CA
were randomly generated and simulated for at least 103
time steps, during which the dynamics were studied
visually and the temporal and spatial entropy and mutual
information were calculated and stored. In addition, the
transient length was recorded, measuring the number of
time steps elapsed before the dynamics either fell into a
periodic orbit or converged to within 1% of their long
time probability distribution. The CA were parametrized



by the quantity A, representing the number of input
neighborhoods not mapping to a randomly chosen state
called the “quiescent state”. The A parameter thus
measures the level of bias in a given rule table towards
the quiescent state.

The dynamics of the CA showed a strong correlation
with the parameter A. At low values of A, the CA quickly
reached a fixed point or entered a periodic orbit, and the
entropy was minimal. At high values, the CA quickly
entered a state of total disorder, perturbations propagated
at the maximum rate possible, and the entropy was
maximal, indicating a chaotic state. Approaching A=0.5
from below, the transient length displayed a sharp peak,
the entropy rose sharply, and the mutual information
peaked and fell gradually. Visual inspection of the
evolving CA revealed that the most complex behavior,
defined by virtue of its being the most qualitatively
unpredictable, occurred in the vicinity of A=0.5. Langton
conjectured that a system capable of universal
computation could not be simply periodic or chaotic, and
used his results to argue that the most computationally
complex behavior of the CA must be occurring at the
transition value of A=0.5, between order and chaos. In
support of this conjecture, the plot of mutual information
versus entropy revealed low values of mutual
information at low entropy (order) and at high entropy
(chaos), while at middle values of entropy the mutual
information was higher.

While extremely provocative, the force of Langton's
conclusions are limited by one principle shortcoming.
Although the qualitative arguments for computational
complexity at the transition are persuasive, no
quantitative evidence has been given to support this
conclusion. Indeed, since it is precisely the dynamical
signature of computation that this work was attempting
to identify, it seems premature to conclude in advance
that a particular kind of dynamic is computation without
showing that it conforms to any known standard of
computation, or showing that it can in fact compute
anything. This limitation is exacerbated by the tenuous
relationship between CA and computation: while it is
known that certain CA are capable of universal
computation (defined below), for example Conway's
"Game of Life" [1], the size of the CA lattice required to
actually build a functioning universal computer is
astronomical. In the present work, we have attempted to
remedy this problem by applying an analysis similar to
Langton's on a much more compact system whose
computational abilities are known and extensively
documented, the Turing machine.
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2.2 Theoretical computer science, Crutchfield's
€-machine reconstruction technique, and the

logistic map

Theoretical computer science comprises the analysis
of the information processing capabilities of abstract
mathematical systems called formal grammars [11].
These systems consist in a set of symbols forming a
finite alphabet, and a set of production rules which
transform sequences of symbols from the alphabet into
new sequences. The production rules are applied
recursively to a string of symbols to transform it
repeatedly until it reaches a final, irreducible form.
Formal grammars are classified according to the
complexity of their production rules into four classes,
forming the Chomsky hierarchy. Each class subsumes all
grammars in the classes below it in the hierarchy. In
order of increasing complexity, the classes forming the
Chomsky hierarchy are regular, context-free, context-
sensitive, and unrestricted. Each of these classes has
associated with it a device capable of recognizing strings
generated from grammars in that class. These are: for
regular grammars, the finite automaton (FA), represented
by a labeled digraph; for context-free grammars, the
pushdown automaton, represented by a labeled digraph
augmented with a pushdown stack; for context-sensitive
grammars, the linear bounded automaton, a Turing
machine on a finite tape; and for unrestricted grammars,
the Turing machine (TM) itself. Analysis of the
properties of grammars becomes progressively more
difficult as one ascends the Chomsky hierarchy. In fact,
for Turing machines there is in general no finite
procedure for determining if the Turing machine will
even halt on a given input (the halting problem [11}). The
pinnacle of the Chomsky hierarchy is occupied by the
universal Turing machine (UTM), defined by its ability
to simulate the behavior of any other Turing machine.
Any finite algorithm that can be executed by a modemn
digital computer can be executed by a UTM - their
computational abilities are identical.

Formal grammars represent the framework in terms
of which the very notion of computation is rigorously
defined, at least as the term is presently understood. Any
dynamical system purported to be capable of
computation must ultimately be tested against and
classified within the Chomsky hierarchy if its
computational abilities are to be rigorously and
quantitatively defined. Fortunately, Crutchfield has
developed a means for performing precsely this type of
analysis, at least at the level of regular grammars.

Crutchfield [5-8] has addressed the issue of
computation in dynamical systems by analyzing the
computational abilities of the class of 1-dimensional



maps over the unit interval. In particular, the dynamics of
the logistic map f(x)=rx(1-x) have been analyzed by
partitioning its trajectories into a sequence of the
symbols 0 and 1, each representing half of the unit
interval. The principal result of this analysis is a plot of
regular language complexity C versus metric entropy H.
The entropy is the Shannon information of all blocks of
16 symbols appearing at any point in the trajectory of the
map. Since it has been shown that this quantity
converges from above to the sum of the positive
Lyapunov exponents of the system (under appropriate
conditions) [4], this quantity is an indicator of the level
of chaos in the trajectory: low values indicate fixed point
or periodic behavior, while high values indicate chaotic
behavior.

The language complexity is determined using
Crutchfield's process of €-machine reconstruction, a
technique that parses a sequences of symbols from a
dynamical system and deduces from it the simplest
regular grammar capable of producing all symbol
sequences generated by the system. The result is a
labeled digraph representing the finite automaton
corresponding to the minimal regular grammar. A set of
normalized probabilities is defined over the nodes of the
graph by counting the number of times the parsed
trajectory passes through each of the nodes. The
complexity of the graph is then calculated as the Shannon
information of the node probabilities [17].

The complexity and entropy were calculated for
many different values of the parameter r of the logistic
map and plotted against each another [6,8]. At the
minimum and maximum values of the entropy,
corresponding to the periodic and fully chaotic regimes
of the map, the language complexity approached zero. As
intermediate values of the entropy were approached from
below or from above, the complexity increased and
displayed a discontinuous jump indicating the presence
of a phase transition. The highest value of the complexity
occurred for the parameter value of » where the period-
doubling cascade of the map meets the band-merging
cascade, precisely at the border between order and chaos.
By examining the structure of the diverging regular
grammars produced at that point, the dynamic of the map
at the critical value of r was identified as corresponding
to an indexed grammar [8], occupying a position between
context-free and context-sensitive grammars in the
Chomsky hierarchy.

This result provides solid evidence that maximal
levels of computational complexity in 1-dimensional
maps occur at a phase transition between order and
chaos. However, it has only addressed this question up to
the level of indexed grammars, whose computational
abilities are still far below those of the universal Turing
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machine. The question of where in the spectrum between
order and chaos universal computation is found has been
left unanswered.

We have addresses this question by combining both
Langton's and Crutchfield's methods of analysis and
applying them to the class of 7-state 4-symbol Turing
machines, whose members include Minsky's universal
Turing machine [16], the smallest known UTM.

3. Methods

The 7-state 4-symbol Turing machine consists in a
tape divided into cells, each of which contains one of the
4 symbols, and a read/write head capable of moving back
and forth over the tape and writing new symbols. The
read/write head is attached to a finite state device with 7
states. The machines are defined by three 4X7 transition
tables, mapping the current state and symbol being read
to: (i) a new symbol to be written; (ii) a new state to be
entered; and (iii) a movement of the read/write head one
cell to the left or right [11].

A large number (5X10%) of these machines were
randomly generated. Each machine was positioned at the
centre of a tape 2000 cells long which had been
randomly filled with symbols, and was simulated for
1000 time steps. The choice of random initial tapes is
justified by the algorithmic information theory of
Kolmogorov and Chaitin [2-3, 12-13]. This theory
stipulates that any TM program which does not have high
algorithmic complexity (i.e. is maximally compressed)
can be converted to one that does have high algorithmic
complexity. Since random strings are the most
algorithmically complex TM programs possible, running
a TM on a random string is a good representation of the
TM executing a complex program.

During simulation of the TMs, each symbol written,
state entered, and movement of the machine were
recorded as three separate dynamical sequences. These
three sequences together comprise the complete spatial
and temporal history of a given Turing machine
simulation, and can be used to reconstruct exactly the
output of the machine (the input cannot be reconstructed
in this way unless the transition tables are one-to-one).
2000 separate simulations were carried out for each
machine, producing symbol, state, and movement
dynamical sequences, each 2X10° characters in length.
Throughout each simulation the dynamics were tested for
the existence of periodic orbits up to period 40, and the
transient length prior to entering the orbits was recorded.
These latter data were then compiled to determine the
fraction of time spent by each machine in periodic orbits
and in transients. The above procedure was also carried
out for Minsky's universal machine.
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Figure: Regular language complexity versus metric entropy of 8-symbol blocks for the sequence of
symbols written by Turing machines. Each dot represents one TM. The complexity is low at both low
(ordered) and high (chaotic) values of the entropy. The highest values of complexity are found at
intermediate values of the entropy. Minsky's universal Turing machine is also found in this region.
Inset: Magnification of the box on the lower left of the figure. The marked points are the loci
corresponding to TMs with periodic attractors of period 2, 4, 6 and 8. All purely periodic machines with
no transients fall along a line of slope 1 at the extreme left edge of the graph. As one ascends this line
the periods increase. TMs only admit attractors of even period, so this is where most of the periodic
machines are clustered. Many machines possess several attractors with different periodicities,
however, which appear between the loci of even periods. Emanating from each even-period locus at a
slope just less than 1 is a stream of TMs with the periodicity of the source locus but with increasingly
long transients prior to entering the attractor.

4. Results movement sequence (these limits were imposed by the

amount of available computer memory). The regular

The sequences of symbols written, states entered and language complexity of each sequence was determined
movements made by each Turing machine were analyzed using Crutchfield's €-machine reconstruction technique.

in two complementary ways [9]. The entropy of each (Although it could in priciple be problematic to

sequence was determined by counting the number of model the behavior of TMs, at the top of the Chomsky

occurrences of each possible block of length 8 for the hierarchy, with regular grammars, at the bottom of the

symbol sequence, 6 for the state sequence, and 16 for the Chomsky hierarchy, we have found in practice that this is

230




not a concern. Our experience has been that the behavior
of randomly generated TMs ranges over the entire
spectrum of regular language complexity, rather than all
being clustered at the maximum complexity as one might
naively expect. In addition, the graph indeterminacy of
the €-machine reconstructions, a measure of the extent to
which the reconstructed regular grammar is unable to
capture the details of the sequence [8], was consistently
near zero. While a regular grammar clearly cannot model
exactly the behavior of a TM, regular language
complexity is nonetheless a excellent measure of each
TM's computational power. The conclusion to be drawn
from this result is that the majority of randomly
generated TMs are not very complex, and are certainly
not universal computers.)

The regular language complexity of the written
symbol sequence is plotted against the entropy in the
Figure. Each dot represents one TM. The inset in the
upper-right is a magnification of the dotted box on the
lower left. This distribution has several interesting
features. All purely periodic machines with no transients
fall along a line of slope 1 at the extreme left edge of the
graph [6,8]. As one ascends this line the periods increase
(inset). TMs only admit attractors of ¢ven period, so this
is where most of the periodic machines are clustered.
Many machines possess several attractors with different
periodicities, however, which appear between the loci of
even periods. Emanating from each even-period locus at
a slope just less than 1 is a stream of TMs with the
periodicity of the source locus but with increasingly long
transients prior to entering the attractor (inset). The locus
of periodic machines at the origin correspond to TMs
whose attractor consisted in writing the same symbol
repeatedly, but changing states at each point in the orbit.

At the lower left corner of the distribution several
lines of fractional slope can be seen emanating from the
origin. We have analyzed these lines [9] and have found
that they belong to a class of TMs that simply erase the
tape, filling it with one symbol interrupted only very
infrequently with a second symbol. These sequence of
written symbols from these machines is homologous to a
2-state Markov process with one state having probability
close to 1, the other close to 0 [9]. In the lower right
comner of the graph are the chaotic machines, few in
number, that randomly produce all possible sequences of
symbols with equal probability. Most of these machines
are simply transcribing the random tape. The machines
with the highest complexity occur at intermediate values
of the entropy. The sequence of written symbols for these
machines is neither completely ordered nor completely
random, but is rather a complex combination of allowed
and disallowed subsequences. The complexity-entropy

plots for the state sequence and movement sequence
showed similar features.

It is noteworthy that the mutual information between
characters of the sequences and characters 1, 2, 4, or 8
sequences later was not a good indicator of
computational sophistication: there was no correlation
between regular language complexity and mutual
information. Instead, mutual information tended to be
highest for simple periodic machines.

The dynamical features of Minsky's universal TM
were distinctive [10]. The symbol sequence for this
machine was extremely complex and had intermediate
values of entropy, but its precise position in the
complexity-entropy plane is occupied by only a few
randomly generated machines. More interestingly, the
state sequence for the UTM was only moderately
complex, and the movement sequence had a very low
complexity. This is straightforward to observe visually if
one watches the UTM in action. In contrast, some TMs
have symbol, state, and movement complexities that are
all maximal. The question remains as to whether these
machines are in some way more computationally
complex than the UTM (although Church's thesis
stipulates that there is no TM with greater computational
ability than the UTM [11]), or whether it is necessary for
the UTM to keep two of its three operations (state
entered and movement made) relatively simple in order
to maintain sufficient coherence to compute effectively.

5. Discussion and conclusions

The work described here provides the first concrete
evidence that the type of dynamics underlying the most
sophisticated forms of computation, including universal
computation, are neither simply ordered or fully chaotic
but rather occur at intermediate values of entropy
between order and chaos. However, this is a coarse
characterization of the dynamics, and is only one of the
first steps in the elucidation of the precise phase-space
portrait of a computer. We believe that one of the
greatest problems in the determination of this portrait
arises from the fact that computation is usually defined
by design, not by observation. Indeed, it is interesting to
ask whether or not a physicist who came¢ across an
unfamiliar device performing a computation would be
able to tell that a computation was being performed. He
or she would likely be unable to tell exactly what was
being computed, since this depends on the subjective
assignment of meanings to the various values of the input
variables. But could he or she identify that a computation
was being performed at all?

There are several specific questions to be answered
about the phase-space portrait of a computer. Clearly,



there must be a countably infinite number of fixed points
(for Turing machines with halting states [11])
corresponding to the countably infinite number of
possible outputs of a Turing machine. But how are these
distributed throughout the phase-space, and what is the
distribution of basin sizes and transient lengths leading
up to the fixed points? If computation is not fully chaotic,
then what is its sensitivity to initial conditions? Is it still
exponential, or is it a power-law? And to what extent do
computational trajectories leading to different results
pass close to each other? What role does dissipation
play? While it has been shown by Fredkin through his
discovery of nondissipating logic gates that dissipation is
not necessary for computation, to what extent is
dissipation part of the behavior of complex Turing
machines? And is rate of dissipation constant throughout
the phase space, or it is heterogeneously distributed? (We
are currently investigating the extent of dissipation in
Turing machines and its correlation with their complexity
and entropy [9]). What is the phase-space signature of
specific but common algorithmic constructs such as
recursion? These questions and many others must be
answered before we will be able to observe nature's many
complex dynamical systems and assess their
computational properties.
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