Phase Transitions and Coarse-Grained Search

Colin P. Williams and Tad Hogg
Xerox Palo Alto Research Center
Palo Alto, CA 94304
CWilliams@parc.xerox.com, hogg@parc.xerox.com

Abstract

Abstraction is a method for solving a variety of com-
putational search problems that uses coarse-graining to
simplify the search. When a coarse-grained, or abstract,
solution is found, it is then refined to give a complete so-
lution. We present a model of this abstraction process for
constraint satisfaction problems, a well-known class of
NP-complete search problems. This model is then used to
identify phase-transition like behavior in the effectiveness
of abstraction as well as determine the type of abstrac-
tion likely to be most useful for relatively hard instances
of these search problems.

1: Introduction

Many computational problems can be couched as a
search through some space of possibilities. Unfortu-
nately, the number of such possibilities often grows ex-
ponentially or worse with the size of the problem. In
such circumstances it is infeasible to search through each
possibility explicitly. Instead computer scientists have
invented ways of guiding the search in some principled
fashion. One of these techniques, called “abstraction”,
consists of mapping the given problem into a simpler
problem, solving the simpler problem and then inverting
the mapping to obtain guidance as to how to solve the
original problem. For example, when planning a trip one
can first solve a simplified, or abstracted, version of the
problem that considers only the possible flights between
various airports. Once that problem is solved, its solu-
tion can be used as a guide to fill in the details, e.g.,
determining how to get to and from the airports. This
illustrates the important aspects of abstraction: to be use-
ful, it must be relatively easy to obtain a solution to the
abstract problem and it must also be possible, without
excessive search, to use the abstract solution to construct
a full solution to the problem. Abstraction is now one of
the most active areas of computer science and artificial
intelligence research [6, 7, 10, 11, 14, 1].

0-8186-6715-X/94 $4.00 © 1994 IEEE

203

Unfortunately, progress in understanding the nature
of abstraction has been slow. Most work to date relies
on logical analyses [6, 7] which generally provide insight
into questions relating to the properties that are or are not
retained under alternate abstraction mappings but they are
not suited to understanding the dynamics of search with
abstraction.

A more productive point of view arises from the obser-
vation that large computational problems involve many
interacting components whose detailed configuration is
unspecified or changing [9]. Moreover, search algorithms
are desired that work reasonably well over an ensemble
of problems rather than only a few special instances (i.e.,
the methods should not be brittle). Both these observa-
tions suggest that most of the detailed structure of large
computational search problems is either not known a pri-
ori or cannot be relied upon by robust algorithms. Hence
we are led to consider classes of problems with many un-
specified or "internal" degrees of freedom. In such cases
it is useful to treat these internal degrees of freedom as
randomly generated by some probability distribution. In
this setting the main issue is then to relate the overall or
global behavior of a search method to a few parameters
describing the problem ensemble and search method. To
be readily measurable, these parameters will generally
relate to local properties of the problems or algorithms.
Thus one might expect that statistical techniques, which
have been so successful in describing physical systems,
will provide a useful framework for understanding the
global behavior of these computational problems, partic-
ularly when moving beyond idiosyncratic small systems.
This approach is likely to provide insight into the generic
phenomena of large software systems, beyond the just the
limits imposed by the physical nature of hardware [8].

In this paper we use these insights to present an
alternate view of the abstraction process. Specifically,
abstraction can be viewed as a type of “coarse graining”
familiar from theoretical physics. This model provides a
more comprehensive picture of abstraction and predicts
certain computational phenomena that are not apparent

Parameter Meaning
o number of variables
b number of values per
variable

number of minimized
nogoods

average size of
minimized nogoods

Fig. 1. A coarse description of a CSP.

from the more traditional “logical” analyses.

2: A Universal Model of Constraint
Satisfaction Problems

To convey some sense of the generality of our results
we will frame our discussion in the context of “constraint
satisfaction problems” (CSPs). We chose to think of
CSPs that could be represented as a set of constraints
over u variables, each of which can take on one of b
values. Each constraint determines whether a particu-
lar combination of assignments of values to the variables
are consistent (“good”) or inconsistent (“nogood”). Col-
lecting the nogoods of all the constraints and discarding
any that are supersets of any other we arrive at a set of
m “minimized nogoods” which completely characterize
the particular CSP. In general these nogoods can involve
different numbers of variables but for simplicity we’ll as-
sume they are all of size k. Thus in our model, a CSP
can specified using just 4 parameters, {g,b, m, k}. On
average any such tuple will admit (N,,;,) solutions (a
solution being a set of assignments of values to variables
such that all the constraints are satisfied simultaneously)
where In (N o) ~ u[]n(b) +BIn (1 - b‘k)] (see [15,
161).

A concrete example is provided by the graph colouring
CSP. This consists of a graph containing 1. nodes (i.e.
variables) that each have to be assigned one of b colours
(i.e. values) such that no two nodes at either end of an
edge have the same colour (i.e. such that no constraints
are violated). As there are b possible colours, each
edge introduces exactly b nogoods each of size k = 2.
Consequently, in total, there are m = ¢b nogoods where
e is the number of edges in the graph.

What is interesting is that this coarse level of descrip-
tion turns out o be sufficient to predict parameter regimes
in which CSP instances will be especially costly to solve.

204

1 2 3 4 5 6 7

connectivity

Fig. 2. Behaviour for 3—colouring of random graphs
with 100 nodes as a function of connectivity v in steps
of 0.1. The solid curve shows the median search cost,
and the dashed one is the fraction of graphs with a
solution (ranging from one on the left to zero on the
right).

3: Phase Transitions & Problem Structure

“Computational cost” has traditionally been taken to
be the number of elementary search steps that some
algorithm must take in order to solve a particular problem
or to prove it insoluble. At one time people were content
to estimate best, worst or average cost across a sample
set consisting of all instances of problems of a given
size. For example, if one were considering the problem
of colouring a graph consisting of » nodes with at most
b colours then the different problem instances would
correspond to different possible choices of the number
and placement of the edges. More recently, attention has
shifted to a finer grain analysis. Instead of lumping all
graphs together the new experiments partition the sample
into equivalence classes consisting of graphs with equal

numbers of edges, e or equivalently equal connectivity!,
2e

vy = =,

If tt?c median cost for solving the sample of problems
in each equivalence class is plotted as a function of
the average connectivity, v, (see Figure 2) a sharp
peak is revealed at a particular connectivity which, for
the case of 3—colouring, occurs around v = 4.6 [3,
15]. This peak appears to coincide with the transition
from underconstrained to overconstrained problems, as
evidenced by a step in the probability that a problem
instance has a solution. Moreover if the experiment is
repeated with larger sized problems (i.e. bigger n’s)
the location of the peak remains fixed but it becomes
even sharper and taller. More surprising still, if the
experiments are repeated with different graph colouring

' Connectivity is a quantity that can be kept invariant as the size of the
graphs under investigation is increased thereby allowing more mean-
ingful comparisons to be made between graphs containing different
numbers of nodes.

algorithms the location of the peak remains more or less
the same although the absolute values of the search costs,
in particular the peak costs, changes. This suggests that
the location of the peak in the median has more to do
with the intrinsic structure of the problems rather than the
idiosyncracies of particular graph colouring algorithms.

A similar study of k-SAT (2, 13, 15, 16, 12, 5], a
different NP-complete problem, for which the structural
parameter is the ratio of the number of clauses to vari-
ables, reveals a similar easy-hard-easy pattern.

4: Relating Abstraction to
the Phase Transition

Whatever the precise details, all methods of abstrac-
tion begin by mapping the ground problem into some
other problem. In terms of our model we can therefore
think of an abstraction as a mapping between two rep-
resentations:

{u,0,m, k} — {p', 0, m k'} 1)
with a corresponding change in the expected number of
solutions from N, — NJ,. Then a “solution” in
the abstract space is mapped back to the ground space to
guide the search for a solution to the original problem.

Three key notion characterize an abstraction: its re-
liability (the probability p with which each step in the
search in the abstract space induces the correct steps in
the ground space when it is mapped back), its strength,
-‘% (the ratio of the size of a solution in the ground
space to that in the abstract space) and its provability,
a = N, (the number of solutions or “proofs” in the
abstract space).

Since abstraction maps a given search problem to a
smaller one, this in effect produces a "coarse graining"
of the original problem. This can take place in a variety
of ways. A simple example is when several variables are
grouped together into a single macrovariable. Alterna-
tively, the possible values can be grouped together, e.g.,
into various ranges, and finally the constraints can be
weakened or strengthened. In all cases, abstraction pro-
duces a new, hopefully simpler, search problem whose
solutions may give a coarse representation of one or more
solutions to the original problem.

As the critical value of the structural parameter de-
pends upon the variables mentioned in Eqn. 1 different
abstraction mappings can not only lower search costs by
reducing the size of the search space (i.e. by lowering
p and/or b) but also by shifting a problem farther from
the “hard” region. Elsewhere we describe how particular
abstraction mappings translate into explicit maps. But for

205

&

/

Fig. 3. Characterization of constraint satisfaction
with 1 level of abstraction. The steps in the abstract
search define islands through which the search in the
ground space is focussed.

the purposes of this paper we will now introduce a simple
phenomenological model of the effects of abstraction on
the ground and abstract search spaces.

5: Phenomenological Model of Abstraction

In previous analyses [7, 10] it has always been as-
sumed that the abstraction is perfectly reliable (i.e. p =
1) in the sense that once an abstract solution is found, a
ground solution can be induced by expanding each step
in the abstract search as a sequence of small search trees
(each of size T say) rooted at the image of one abstract
node and terminating at the image of the adjacent node in
the abstract search? (see Figure 3). Indeed, these stud-
ies also showed that the net cost was minimized when
the “gaps” in the ground search were of equal size. In
this case each of the little tree searches induced along
the image of some abstract solution path can be crudely
estimated to be of size T = b*/#".

We extend this work in a realistic direction by relax-
ing the assumption that the “mapping back” is perfect.
This allows us to estimate the net search cost using one
level of abstraction as a function of the reliability of the
abstraction. We discover that there is a regime in which
the net cost of constraint satisfaction with (imperfect) ab-
straction is worse than direct ground space search and that
there is a critical reliability at which the net search cost,
when using abstraction, suddenly drops abruptly. This

2 That the large original ground tree can be replaced with a path of
smaller search trees is precisely the reason why abstraction can be
advantageous.

Parameter Interpretation
Reliability of the Abstraction:
v probability with which each step in

the abstract proof can be successfully
expanded in the ground space

Strength of the abstraction: ratio of
uly the length of a proof in the ground
space to that in the abstract space

average size of the search tree
generated for each step of an abstract
proof expanded in the ground space

T = pu/w

Provability of the Abstraction:
number of "proofs" in the abstract
space

a=N!

soln

the average trial, in a successful use
of abstraction, at which an abstract
proof first "goes through" in the
ground space

1<(A) <a

the average number of steps, in a
failing trial, at which the ground
proof actually fails

1<) <

Fig. 4. Definitions of parameters In the model.

suggests that, in the vicinity of the critical reliability, a
small improvement could significantly reduce the cost.

To make the model more quantitative, we take the net
cost of performing search with abstraction to be the sum
of

1. the cost of making the abstraction(s)

2. the cost of search in the abstraction level(s)
3. the cost of making the unabstraction(s)

4. the cost of search in the ground level

As a first approximation we shall assume that the cost
of the abstraction and unabstraction processes can be
neglected compared to the costs of search in the ground
and abstract spaces.

Assume there is a single solution path to be found
in the ground space, corresponding to the original prob-
lem being roughly in the “hard” region (N,,;, = 1), and
N, ,n = a solution paths in the abstract space. As an
abstraction mapping may be imperfect, we cannot guar-
antee that an abstract solution path will necessarily guide
the ground solution path in the correct manner. Con-
sequently, there is a chance that every abstract solution
path fails to induce the right ground solution path. In
this case, one must eventually resort to exhaustive search
in the ground space in order to find the ground solution.
The net cost of performing a search for a ground so-

206

lution should therefore reflect the relative likelihood of
success and failure of the abstraction procedure. Hence,
we write the net cost as:

C= (ngt:gc + C.?gzc)psucﬁ'(c%?l + C}’ﬁ,’-z) (1 = Psuce)

)
where p,,.. is the probability that the search in the ab-
stract space will ultimately guide the search in the ground
space to a correct solution, C,,.. is the average cost of
such a (2-level) search and Cy,;; is the average cost
of an unsuccessful search i.e. one that ultimately re-
sorts to direct exploration of the ground space. Each of
these costs can be partitioned into contributions arising
from the search in the ground space (CI.2., C};‘:,) and
contributions arising from search in the abstract space
(C2bs.,Cts)). Due to the assumption in our model that
there is a solution to be found in the ground space,
all searches ultimately result in finding it. The “succ”
subscripts refer to the case when the ground solution
was found because an abstract solution focussed atten-
tion along the right path. Similarly, the “fail” subscript
indicates that the ground solutions was only found after
all abstract solution paths had lead to dead ends and the
search returned to exhaustive exploration of the ground
space.

Net Cost

By a similar analysis to that described in [14] we
show that this cost can be approximated as:

o= fm -+ LI 1))

R

e+l

oNT+——7 WA b-1

3)

’ a
where pyyee = 1 — (1 —p*) , which resembles a step
function, is the probability of at least one of the ab-

stract solution p?ths inducing a successful ground search,
1-(1-p*)" . .
(A) =~ —(-p“,—- is the average trial at which an ab-

stract solution path first goes through all the way in the
ground space and () = 1—1__& is the average number of
steps in a failing trial at which the trial fails.

6: Consequences of the Model

Analysis of this solution reveals the following com-
putational phenomena:

1. there is a critical threshold reliability above which
abstraction is beneficial and below which it is not
(see Fig 5)

RelCost (p)

Fig. 5. Relative cost of constraint satisfaction with
abstraction to that without as a function of the re-
liability of the abstraction, p for three values of the
strength £, =3, & =54 =7 (dark to light). Notice
the abrupt drop in the relative cost above a critical
value of reliability.

RelCost {mu/mu’)

-7
1. 10
-8
8. 10
-8
6. 10
-8
4. 10
-8
2. 10 k
mu/mu’
0 5 10 15 20 25

Fig. 6. Relative cost of search with abstraction com-
pared to that without, as a function of the strength
of the abstraction, f, for o = 1,b = 2,4 = 50,p = 1.
Note that this case corresponds to a perfectly reliable
abstraction (because p = 1) and confirms that there
is an optimal strength for the abstraction at £ = 6.5.
Similar results hold when p < 1.

2. there is an optimal strength, ﬁ to an abstraction (for
both the case of perfect and imperfect abstraction —
see Fig. 6)

3. abstraction can work not only by reducing the size
of the search space but also by shifting a problem
in a hard region to an easier region.

4. abstraction has the most pronounced effect for prob-
lems (in the ground space representation) that are at
the phase transition point.

207

7: Conclusions
We have described how a statistical model of the ab-
straction mapping for search provides insight into a vari-
ety of computational phenomena. These include the trade
off between reliability and strength of the abstraction and
the observation that abstraction could be improved, on
average, by mappings that move away from the phase
transition region with its concentration of relatively hard
problems. Since the hard cases appear to arise from crit-
ically constrained problems, by weakening or strengthen-
ing some constraints, the resulting abstract problem will
no longer be critically constrained and hence is likely to
be easier to solve. Counterbalancing this is the ques-
tion of reliability. However, even if the abstract solution
does not expand to a complete solution to the original
problem, it could still be useful in obtaining fairly good
partial solutions.

These observations also suggest a further refinement.
In many CSPs with local constraints, some variables will
appear in more constraints than average, while others
are in fewer. Combined with the general theory of
CSP hardness described above, this could form the basis
for abstractions that selectively strengthen or weaken
constraints involved in different parts of the search space
based on the likely hardness of the subproblems defined
by those parts. Although it remains to be seen how well
such a method would work in practice, this approach has
provided a way to improve a different search method,
genetic algorithms, in some cases [4].

References

[1] F. Bacchus and Qiang Yang. Downward refinement and
the efficiency of hierarchical problem solving. Technical
Report CS-92-45, Dept. of Computer Science, Univ. of

Waterloo, Ontario, Canada, 1992.

Peter Cheeseman, Bob Kanefsky, and William M. Taylor.
Where the really hard problems are. In J. Mylopoulos and
R. Reiter, editors, Proceedings of IJCAI9I, pages 331-
337, San Mateo, CA, 1991. Morgan Kaufmann.

Peter Cheeseman, Bob Kanefsky, and William M. Taylor.
Computational complexity and phase transitions. In Proc.
of the Physics of Computation Workshop. IEEE Computer
Society, October 2-4 1992.

Scott H. Clearwater and Tad Hogg. Exploiting problem
structure in genetic algorithms. In Proc. of the 12th Natl.
Conf. on Artificial Intelligence (AAAI94), pages 1310-
1315, Menlo Park, CA, 1994. AAAI Press.

James M. Crawford and Larry D. Auton. Experimental
results on the cross-over point in satisfiability problems.
In Proc. of the 11th Natl. Conf. on Artificial Intelligence
(AAAI93), pages 21-27, Menlo Park, CA, 1993. AAAI
Press.

(21

3]

[51

(61

g

(8]

91

[10]

{11]

F. Giunchiglia and T. Walsh. Abstract theorem proving.
In 11th IJCAI, 1989.

F. Giunchiglia and T. Walsh. Using abstraction. Technical
Report IRST Tech. Rep. 9010-08, Istituto per la Ricerca
Scientifica, Trento, Italy, 1990.

T. Hogg and B. A. Huberman. Artificial intelligence and
large scale computation: A physics perspective. Physics
Reports, 156:227-310, 1987.

J. O. Kephart, T. Hogg, and B. A. Huberman. Dynamics
of computational ecosystems. Physical Review A, 40:404—
421, 1989.

C. A. Knoblock. Search reduction in hierarchical problem
solving. In AAAI-91, pages 686—691, 1991.

C. A. Knoblock and J. D. Tenenberg. Characterizing
abstraction hierarchies for planning. In AAAI-9], pages
692697, 1991.

208

[12]

[13]

(14]

[15]

{16]

Tracy Larrabee and Yumi Tsuji. Evidence for a satisfiabil-
ity threshold for random 3CNF formulas. In Haym Hirsh
et al., editors, AAA! Spring Symposium on Al and NP-Hard
Problems, pages 112-118. AAAI, 1993,

David Mitchell, Bart Selman, and Hector Levesque. Hard
and easy distributions of SAT problems. In Proc. of the
10th Natl. Conf. on Artificial Intelligence (AAAI92), pages
459-465, Menlo Park, 1992. AAAI Press.

C. P. Williams. Imperfect abstraction. In AAAI Workshop
on Abstraction and Approximation, 1992.

Colin P. Williams and Tad Hogg. Using deep structure
to locate hard problems. In Proc. of the 10th Natl. Conf.
on Artificial Intelligence (AAAI92), pages 472-477, Menlo
Park, CA, 1992. AAAI Press.

Colin P. Williams and Tad Hogg. Extending deep struc-
ture. In Proc. of the 11th Natl. Conf. on Artificial Intelli-
gence (AAAI93), pages 152-157, Menlo Park, CA, 1993.
AAALI Press.

