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Abstract

The statistical mechanics of combinatorial search
problems is described using the example of the well-
known NP-complete graph coloring problem. A simple
parameter describing the problem structure predicts the
difficulty of solving the problem, on average. However,
because of the large variance associated with this pre-
diction, it is of limited direct use for individual instances.
Additional parameters, describing problem structure as
well as heuristic effectiveness, are introduced to address
this issue. This also highlights the distinction between
the statistical mechanics of combinatorial search prob-
lems, with their exponentially large search spaces, and
physical systems, whose interactions are often governed
by a simple euclidean metric.

1: Introduction

Combinatorial search is among the hardest of common
computational problems: the solution time can grow ex-
ponentially with the size of the problem [8]. Examples
arise in scheduling, planning, circuit layout, spin glasses
and machine vision, to name a few areas. Fundamentally,
the problem consists of finding those combinations of a
discrete set of items that satisfy specified requirements,
e.g., minimizing a cost function. The number of pos-
sible combinations to consider grows very rapidly (e.g.,
exponentially or factorially) with the number of items,
leading to potentially lengthy solution times and severely
limiting the feasible size of such problems.

In practice, heuristics [24] are often used to select
the next combination, or state, to consider. Typically, a
heuristic evaluates a small number of potential changes
to the current state, based on easily computed local prop-
erties of the state, e.g., by considering only some of the
requirements. Often this lcads to a series of choices that
produces a solution much faster than uninformed random
selection. Unfortunately any such evaluation, based on
local information, can also be mislcading with respect to
the overall, or global, requirements.
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When faced with such a search problem, we would
like to know which heuristic is likely to be best, or
determine whether the problem is solvable with available
methods and current hardware speeds. This goal would
be difficult to achieve if each problem or search method
were very different from others. Fortunately, however,
recent studies [2, 5, 9, 17, 18, 22, 25, 29, 30} have
made considerable progress in this direction. Specifically,
for large problems, a few parameters characterizing the
structure of the search problem determine the difficulty
for a wide variety of common heuristics, on average.
Moreover, there are transitions, becoming more abrupt
for larger problems, as these parameters vary. These are
analogous to phase transitions in physical systems and
identify situations in which major gains are possible from
small improvements in the local heuristic evaluations.

Here, these results are summarized for one type of
combinatorial search, constraint satisfaction {20], using
the particular problem of graph coloring. While this work
is encouraging, its use is limited by the large variances
that remain even after the structural parameters are speci-
fied. As a step toward improving this situation, additional
parameters, for problem structure and heuristic effective-
ness, are presented. Finally, some applications and open
issues are discussed.

2: Graph coloring

A graph coloring problem consists of a graph, a speci-
fied number of colors, and the requirement to find a color
for each node in the graph such that adjacent nodes (i.e.,
nodes linked by an edge in the graph) have distinct col-
ors. Many important A.l. problems, such as planning
and scheduling, can be mapped onto the graph coloring
problem. Moreover, as a well-known NP-complete prob-
lem, graph coloring has received considerable attention
[21, 14, 26]. For simplicity, we consider the ensemble of
problems given by random graphs [1), i.e., taking each
graph with the specified number of nodes and edges to
be equally likely.



The experiments presented below used a complete,
depth-first backtracking search based on the Brelaz
heuristic {14] which assigns the most constrained nodes
first (i.e., those with the most distinctly colored neigh-
bors), breaking ties by choosing nodes with the most
uncolored neighbors (with any remaining ties broken
randomly). For each node, the smallest color consis-
tent with the previous assignments is chosen first, with
successive choices made when the search is forced to
backtrack. We measure the search cost by the number
of states in the search tree that are expanded until the
first solution is found or, when there are no solutions,
until no further possibilities remain to be examined. As
a simple optimization, we never change the colorings
for the first two nodes selected by this heuristic. Any
such changes, which could only occur when the back-
track search has failed to find a solution starting from the
initial assignments for the first two nodes, would amount
to unnecessarily repeating the search with a permutation
of the colors.

3: Problem structure and search cost

For graph coloring, the average degree of the graph v
(i.e., the average number of edges coming from a node
in the graph) is an structural parameter that distinguishes
relatively easy from harder problems, on average. This
parameter, also called the connectivity, is related to the
number of edges e and number of nodes n in the graph
by e = %-m. In this paper, we focus on the case of
3—coloring (i.e., when 3 different colors are available).

The relation between the graph’s structure and the
number of search steps required to color it, or determine
no coloring is possible, is shown in Fig. 1. Specifically,
this shows that sparse and dense graphs are typically easy
to color while those with an intermediate number of edges
are more difficult. The observed peak for random graphs
is at 7 = 4.6. Note this is slightly lower than the value
of 5.1 for graphs not reducible with respect to a variety
of local simplifications [2]. As shown in the figure, this
peak also coincides with the point at which the fraction
of graphs with a solution drops from near one to near
zero. For graphs with more nodes, the peak in search
cost becomes sharper and the fraction of soluble cases
drops more abruptly.

This observation associates a region with a high den-
sity of relatively hard problems with an abrupt transition
in the nature of the problems themselves. That is, the
drop in the fraction of soluble cases represents a transi-
tion from underconstrained graphs with many solutions
to overconstrained ones with none. In the transition re-
gion, graphs typically have many large partial solutions
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Fig. 1. Behavior for 3—coloring of random

graphs with 100 nodes as a function of connec-
tivity + in steps of 0.1. The solid curve shows
the median search cost, and the dashed one is
the fraction of graphs with a solution (ranging
from one on the left to zero on the right).

(i.e., consistent ways to color large subsets of the graph)
but few, if any, complete solutions.

This behavior can be quantified with the following
approximate argument [2, 30, 27). Let b be the number
of available colors. A given edge in the graph eliminates
b of the b? possible ways to color the nodes it connects.
So a choice of colors will satisfy the constraint with
probability 1— -15. Consider a state in which & nodes of the
graph are colored. There are b* possible colorings for this
subgraph, and the probability a given edge will be within
this subgraph is (f,)/('g) ~ (£)*. Thus a coloring of
the k nodes will violate the constraint of a given edge
with probability (%)Z% Assuming independence among
the coloring constraints of the different edges, there will
be, on average,

K21\
Ny = b"(l - (—) l)
n/ b
consistent colorings for these nodes.
The behavior of Ni, shown in Fig. 2, qualitatively ex-
plains the search behavior of Fig. 1. Specifically, each
step of a backtrack-based search method, as used here,
attempts to extend a partially colored subgraph to consis-
tently include one more node, backtracking when there
are no available colors for the new node. From the fig-
ure, we see that when there are few edges, N; increases
monotonically, so on average there will be at least one
consistent way to color the next node considered. This
means that a typical backtrack search will almost always
be able to extend the partially colored subgraph, and go
directly to a solution with little or no backtracking. As
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more edges are added, the number of solutions, Ny, de-
creases very rapidly, while the number of partial color-
ings for smaller parts of the graph decreases less rapidly.
This leads to a maximum in Ny at a value k.. < n.
In this situation, a typical search will proceed with little
backtrack up to k & k.4, but is then unlikely to be able
to proceed further. Thus we can expect a great deal of
backtracking until the search finds one of the relatively
rare partial colorings that does lead to a solution. This
leads to an increase in search cost, which continues as
long as the number of solutions drops more rapidly than
the number of partial solutions at k,,,,. Finally, when
there are very many edges, there are unlikely to be any
solutions in which case all partial solutions must be ex-
amined in the search. However, as seen in Fig. 2, the
number of partial solutions, 5 N, decreases as edges

are added resulting in a lowerekd overall search cost.
This qualitative description of the behavior of the
search cost predicts that the hardest problems will oc-
cur at about the same point as when the number of solu-
tions finally drops to zero, explaining the correspondence
between the search cost peak and the drop in the proba-
bility for a solution to exist. Another observation is that
when there is little or no backtracking (i.e., when Ny
is growing monotonically), the scarch cost should grow
only linearly with the size of the problem, n. Otherwise,
we can expect exponential growth in the search cost as
n increases, due to the exponentially increasing differ-
ence between the number of partial colorings, especially

Ni..e.» and the number of solutions.
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Fig. 2. Number of partial colorings as a function
of their size. Specifically, this shows In N, vs. k
forn = 100 and b = 3 fory = 1.5 (solid), 4 (dashed)
and 6 (gray).

We can also use Eq. 1 to estimate the regions with
these different behaviors. First, N} increases monoton-
ically as long as v < (b—1)Inb, or 2.2 for b = 3.
Second, a rough criterion for when the number of solu-
tions just reaches zero is N, = 1, i.e.,, at y = ——=28

In(l—l;b)’
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or 5.4 for b = 3. For larger or smaller v, N, approaches
zero or infinity, respectively, as n increases.

In addition, for sufficiently large -, the peak in the
number of partial states will be at kpqar < n which
would give a regime of polynomial growth in the search
cost. In this regime

B\ 2
In N ~klnb—e<—) l
n/ b

with maximum at kpqr = ';—:blnb or kpar = %blnb,

@

and In Ny, ~ 35b(In b)?. Thus we can expect poly-
nomial search cost when this grows logarithmically, i.e.,
when v = O(;2-) (corresponding to edge probability of
2 = O(X;)) This suggests that dense graphs are easy
to color, or determine that no coloring exists, which is
also the case when restricting attention to graphs that do
have a coloring [28, 71.

This theory ignores edge dependencies and the ability
of heuristics to color nodes in an order that increases the
likelihood of early pruning. However, it describes the
essential mechanism driving this transition from under-
to overconstrained problems and explains why hard cases
are likely to be found in the transition region. In more
quantitative terms, it predicts an observed transition from
linear to exponentially growing search cost [12] and de-
termines roughly the parameter values at which these
transitions take place. The peak in the search cost also
appears [30] for methods, such as heuristic repair [21]
or simulated annealing [16], that incrementally modify a
completely colored graph in an attempt to remove con-
flicts. For these methods the peak in search cost is due
to changes in the relative density of solutions among the
complete colorings whose number of conflicts cannot be
reduced by a single change.

4: The search cost distribution

The previous section described an easy-hard-easy tran-
sition in search cost and gave a simple theoretical expla-
nation for this behavior. However, a more complex story
is seen from the full distribution of search costs. Surpris-
ingly, as shown in Fig. 3, exceptionally hard instances
are concentrated not around the peak in the median, but
rather at lower connectivities [12]. Thus, for 100-node
graphs, v = 4.5, near the median peak, gives many more
cases with cost above 1000 than v = 3, but the reverse is
true for costs above 100,000. This suggests that there are
actnally two qualitatively distinct regions of hard prob-
lems: 1) a region containing a high density of relatively
hard problems giving the peak in the median, and 2) a re-
gion, with somewhat lower connectivity, in which most
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Fig. 3. Cost percentiles vs. connectivity for

100-node graphs, based on 50000 samples at
each value of v, given in increments ot 0.1. Two
sets of curves are shown: solid, for the behavior
of all samples, and dashed, for those samples
with solutions. The dashed curves extend only
up to v = 5 since beyond that point few instances
have solutions. For each set of curves, the
lowest shows the 50% cost (i.e., the median).
Successively higher curves show the costs for
the top 0.05, 0.005 and 0.0005 of the problems.

problems are very easy but which also contains a few
exceptionally hard instances.

This behavior also gives rise to a huge variation in
search cost, which is observed to persist as the size of
the problem increases. This is unlike the usual cases in
statistical physics where the relative fluctuations in ther-
modynamic observables go o zero as ﬁ Thus in or-
der to have confidence that most observed searches will
be fairly close to the expected theoretical behavior, a
more detailed description of the search problems is re-
quired. This description can consist of additional infor-
mation about the problem structure (e.g., t0 more pre-
cisely specify the number of partial colorings of different
sizes) as well as a characterization of the effectiveness
of the heuristic search method in avoiding unproductive
choices. These possibilities are discusscd in the next two
sections.

5: Characterizing problem structure
While Eq. 1 gives the expected number of partial
colorings, there is a large variation among graphs with
a given number of edges. One way to make more
precise predictions of these values and hence obtain a
more sensitive measure of problem difficulty, is to use
additional information about the graph.

We can proceed in a systematic manner to obtain ad-
ditional structural parameters. Consider a given coloring
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problem with b colors, n nodes and e edges. Let E be
the set of colorings for the graph that are eliminated by
edge k (namely, all those colorings for which the nodes
connected by that edge have the same color). We define
the size of the intersections of these sets

S, =Y |Enn...NE]| ?3)
where the sum is over all r-subsets of {1, ..., e}, and we
define Sy = b", the total number of possible colorings.
Then the principle of inclusion-exclusion [23] gives the
number of colorings that are not in any of the E}, ie.,
the number of solutions:

N =3 (1S @
i=0

Each edge ecliminates b"~' colorings, so S1 =
€
ST 47t = eb” !, The colorings that are eliminated

{)_yl both of two edges require that two nodes have the
same color and that either another pair have the same
color or a third node has the same color as the first two.
In both cases we have b™~2 eliminated colorings, giving
S, = ()62 Thus we see that the first terms in the
inclusion-exclusion expansion for the number of solu-
tions depend only on the number of edges in the graph.
With three edges, we can have from three to six nodes in-
volved. When there are only three nodes (a triangle), the
third edge does not give any additional pruning, i.e., there
are b™~2 colorings pruned by all three edges. Otherwise,
each edges adds a further restriction pruning only " -3,
Thus we have Sz = (§)b" >+ (b"=2 — b"~3)t where ¢
is the number of triangles in the graph. Further terms in
Eq. 4 involve more complex subgraphs, e.g., squares.

This suggests that the number of triangles in a graph
gives a finer determination of classes of critically con-
strained graphs than just knowing the number of edges.
That this is in fact the case is shown in Fig. 4. In particu-
lar, we see that there is a transition from mostly solvable
10 mostly unsolvable cases depending on the number of
triangles.

6: Characterizing search methods

The second reason for high variance is the scarch
method itself. To characterize the search heuristic, we
return 1o the simple theory of Eq. 1. A search is difficult
when many partial colorings that do not lead to solutions
must be considered. A measure of the effectiveness of
a heuristic method, i.e., its ability to prune unproductive
nodes, can be simply quantified as the probability.p that
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Fig. 4. Fraction of cases with a solution as a
function of number of triangles in the graph and
v for » = 50, b = 3. This was obtained by
generating random graphs at v values in incre-
ments of 0.5 and collecting the results based
on the number of triangles in each graph. The
solid curve shows where half the graphs have
a solution, while the upper and lower dashed
curves show where fractions 0.2 and 0.8 have
solutions, respectively.

an unproductive partial coloring will be recognized as
such in the search!. A partial coloring of size k is
considered only if the smaller colorings preceding it in
the search order did not eliminate it, i.e., with probability
(1-p)*Lif the pruning ability is independent for each
sequence of possible colorings.

The result of this pruning is most simply illustrated
when there is no solution. In such a case the expected

overall search cost is C = No + 5. (1—p)* ',

whose behavior is shown in Fig. 5. kﬁéte first that the
cost decreases rapidly as the heuristic is improved. A
more subtle observation is the change in behavior as the
problem size increases: for poor heuristics, i.e., small D
the cost grows exponentially fast whereas for large p, the
cost is roughly independent of problem size.

This behavior is conceptually straightforward. If the
heuristic can prune unproductive colorings faster than
their number grows with size k, the search will involve
fairly limited backtracking giving a low cost. This will
be the case when p > % 50 on average each unproductive
partial coloring of size k produces less than one additional
coloring, of size k + 1, to include in the search. A less
powerful heuristic results in a search involving consid-
erable backtracking and an exponentially growing cost.
We thus see another transition behavior, this time due
to changes in search method rather than the underlying
structure of the problem. This transition behavior can

! In practice, such a parameter can be estimated by sampling [3].

0.2 0.4 0.6 0.8 1

Fig. 5. Behavior of search cost when there are
no solutions as a function of heuristic pruning
effectiveness. The plot shows In C vs. p for n of
20 (gray), 50 (dashed) and 100 (solid), with y = 6
so there are unlikely to be any solutions.

also be found in more elaborate models, e.g., including
the possibility that the heuristic incorrectly prunes a par-
tial coloring that does lead to a solution? as well as cases
where there is a solution [13].

7: Generalizations and applications

In summary, we gave a description of the behavior
of combinatorial search using graph coloring as an illus-
tration. Unlike the usual case in statistical physics, the
large remaining variance prevents accurate predictions of
individual cases. To partially address this difficulty, we
introduced an additional parameter which refines the loca-
tion of critically constrained problem instances. We also
described a characterization of heuristic search pruning.
This study provides an interesting contrast with statis-
tical analyses of physical lattice structures: search is a
dynamic process on an exponentially large space which
leads to much larger variance than typical in physical
systems.

If these behaviors applied only to coloring random
graphs, or only to the particular heuristic search used
here, they would be of limited interest. However, these
transitions have been commonly reported for a variety of
combinatorial search problems with a range of very dif-
ferent search methods, as mentioned in the introduction.
Such complexity transitions arise not only for constraint
satisfaction problems, such as graph coloring, but also
for other cases such as optimization [32].

The additional parameter for problem structure gener-
alizes to other constraint problems based on the inclusion-
exclusion result for the number of solutions. These prob-
lems can all be viewed as due to local inconsistencies

2 In this case there is the possibility that the search will incorrectly
conclude there are no solutions when in fact there are.



from the constraints combining to determine which com-
plete states satisfy all the constraints [31]. In this case
the additional parameter relates to the degree of overlap
among the local inconsistencies. More accurate theoret-
ical values for the transition points are possible [30] by
going beyond the “mean-field” theory of Eq. 1.

An important open issue is the systematic structure
of practical combinatorial search problems, and whether
this significantly changes the phenomena reported here
based on random ensembles. As a partial answer, similar
behavior is seen for more restricted classes, such as for
those graphs that have a coloring, are connected or where
certain “trivial” cases are removed, although the quantita-
tive details change slightly. It remains to be seen whether
this continues to be the case for graphs that incorporate
additional structure found in particular applications [15,
19] or the ultrametric topology [10] of hierarchical orga-
nizations and modularly designed artifacts. Thus, while
constraints may be local in the sense of involving only
a few aspects of the problem, the induced structure can
differ greatly from the locality implied by a euclidean
metric in physical systems.

Finally, there are applications of these results to the
design of better search algorithms. For example, the the-
ory gives a domain-independent heuristic to identify sub-
problems that are likely to be particularly hard or easy, on
average. This can be used to improve genetic algorithms
[4] and may also suggest better choices for backtracking.
Knowledge of the likely difficulty of search problems can
also be used to determine when a diverse set of methods,
perhaps running in parallel and sharing partial results, is
most useful [11, 6]. In these cases, improved understand-
ing of the location and nature of the phase transitions in
combinatorial search problems can translate directly into
more effective search methods.
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