On a Method of Solving SAT Efficiently
Using the Quantum Turing Machine

(Preliminary Version)

Takashi Mihara

Tetsuro Nishino

School of Information Science
Japan Advanced Institute of Science and Technology, Hokuriku
15 Asahidai Tatsunokuchi, Ishikawa 923-12, Japan

Abstract

In this paper, under an assumption that a super-
posed physical states can be observed without collapsing
the superpositon, we show that the satisfiability prob-
lem (SAT, for short) can be solved by a quantum Tur-
ing machine in O(2%) time. This assumption is not
widely accepted among physicists, however, Aharonov
et al. [1] conjecture that a physical state actually ez-
ists as a superposition and can be observed without
collapsing the superposition.

1 Introduction

Current computing devices are based on Turing ma-
chines. Since their behavior can be deterministically
described, they are based on the principles of classical
physics. On the other hand, quantum Turing machine
(@TM for short) due to Deutsch [4] is based on the
principles of quantum physics, and involves superposi-
tions of physical states. Recently, several researchers
have proposed possible designs of computers based on
Deutsch’s QTM [7, 8, 12].

The possible advantages of the QTM are as follows :

e Every finitely realizable physical system can be
perfectly simulated by a QTM.

o A computer based on the QTM may be capable of
dissipating very small amount of energy per step.

o Several researchers pointed out the possibilities of
faster computations via QTMs as follows :

— Deutsch and Jozsa found a problem such
that QTM can solve faster than any other
classical models of computation [5].

0-8186-6715-X/94 $4.00 © 1994 IEEE

177

— Shor showed that a QTM can factor inte-
gers and find discrete logarithms in polyno-
mial time with a bounded probability of er-
ror [10].

What are major characteristics of computations
performed by QTMs ? Let us consider a simple ex-
ample. Let f:{0,1}" — {0,1} be a Boolen function
with n variables, and X,Y € {0,1}" be assignments
for the variables in f. Our task is to evaluate the val-
ues f(X) and f(Y). In ordinary computation, we will
evaluate f(X) first, then evaluate f(Y). On the other
hand, in quantum computation, we take the following
procedure :

1. Represent X and Y as the elements X and ¥ of
a certain linear space, respectively.

2. Make a quantum superposition X+Y.

3. Execute an ordinary program to evaluate f once
for the input X+Y. On QTMs, an execution
of an ordinary program induces a linear transfor-
mation corresponding to the program. Let Uy be
such a linear transformation corresponding to the
program for f. Then, by the linearity of Uy, we
have

Us(X +7) = Up(X) + Ug(P).

This type of computation is called guantum par-
allel computation.

We can use the same procedure even when we have
to evaluate the values of f for exponentially many as-
signments. The above equation means that a QTM
can compute a superposition of the values of f quickly.
But, according to the current framework of quantum

physics, it is not certain whether we can read each
value in the obtained superpositon efficiently. This
is because the following observation problem has not
been solved yet.

Observation Problem in Quantum
Physics : Explain what will happen when
we observe a quantum physical object using
the terms of quantum physics.

To find a method to solve NP-complete problems
efficiently is one of the central issues in theoretical
computer science. We have been studying efficient
methods to solve NP-complete problems using QTMs.
Since the observation problem has not been com-
pletely solved, we have been studying relationships
between the restrictions on the observation and the
efficiency of the quantum computation. In [9], we ob-
tained the following result.

Theorem [9] Under assumption A, a QTM can solve
SAT in polynomial time.

Assumption A : We can observe the exis-
tence of a specific physical state S in a super-
position with certainty in polynomial time, if
S exists in the superposition.

Unfortunately, assumption A is not supported in
current quantum physics, however, we also showed in
[9] that

Assumption A = NP C EQP,

where EQP is a quantum analogue of the complexity
class P (i.e. the class of polynomial time languages).
Thus, we have

NP _C]_EQP = —Assumption A.

Namely, if NP —C,— EQP is shown, it follows that the

assumption A is not valid in quantum physics. In this
sense, we established an interesting relationship be-
tween computational complexity theory and quantum
physics.

Along these lines of research, we have tried to find
more relationships between the restrictions on the ob-
servation and the efficiency of the quantum compu-
tation. Very recently, Aharonov et al. [1] have pro-
posed a new interpretation of the observation. That is,
they conjectured that a physical state actually exists
as a superposition and can be observed without col-
lapsing the superposition. In this paper, we propose
the following restriction on the observation based on
Aharonov’s interpretation.

178

Assumption B: A superposition of configu-
rations is preserved after an observation, and
all of the configurations in the superposition
can be observed in time proportional to the
number of the configurations in the superpo-
sition.

Then, we shall show the following theorem.

Theorem 3.1 Under assumption B, a UQTM solves
SAT in O(2"/*) time, where n is the length of the
description of an instance of SAT.

In the proof of the theorem, we use a determinis-
tic algorithm to find a maximum independent set in
an n-vertex graph in O(2%) time due to Tarjan and
Trojanowski [11].

2 The Quantum Turing Machine

The Definition of the Quantum Turing Ma-
chine

Like an ordinary Turing machine, a quantum Tur-
ing machine M consists of a finite control, an infinite
tape, and a tape head.

Definition 2.1 [3] A Quantum Turing Machine
(QTM) is a 7-tuple M = (Q,%,T, U, g0, B, F), where

Q is a finite set of states,

T is a tape alphabet,

B €T is a blank symbol,

¥ C T is an input alphabet,

6 is a state transition function and is a map-
ping from Q@ xT'x ' x @ x {L, R} to C (the
set of complex numbers),

go € Q is a initial state,

F C Q is a set of final states.

An expression 6(p, a, b, g,d) = ¢ represents the fol-
lowing: if M reads a symbol a in a state p (let ¢; be
this configuration of M), M writes a symbol b on the
square under the tape head, changes the state into g,
and moves the head one square in the direction de-
noted by d € {L, R} (let c; be this configuration of
M), and c is called an amplitude of this event. Then
we define the probability that M changes its configu-
ration from ¢; to c; to be |c|2.

This state transition function § defines a linear
mapping in a linear space of superpositions of M’s
configurations. This linear mapping is specified by
the following matrix Ms. Each row and column of M;
corresponds to a configuration of M. Let ¢; and ¢, be

two configurations of M, then the entry corresponding
to c2 row and ¢; column of My is § evaluated at the
tuple which transforms ¢; into ¢y in a single step. If
no such tuple exists, the corresponding entry is 0. We
call this matrix M;s a time evolution matriz of M.

Condition: For any QTM M, the time evo-
lution matrix Ms must be a unitary matriz.

Namely, if Mg is the transpose conjugate of M; and
I is the unit matrix, then the relations MgMg =
MM} = I must be satisfied by M;.

A Physical Representation of the Quantum
Turing Machine

We can construct ! bif, a minimum unit of infor-
mation, using a 2-state physical system (e.g. a spin-%
system, etc.). We represent the physical states cor-
responding to these two states as [0] and [1]. In the
sequel, we define that

[0]=((1)) and [1]:(2).

For, n > 2, n bits can be realized as a composed sys-
tem of simultaneous observable 2-state physical sys-
tems. Therefore, the physical state {z1,zs,...,]
corresponding to n bits is represented as tensor prod-
ucts of 1-bit physical states as follows:

(21,22, ., 2] L [21] @ [22) @ - @ [n),

where z; € {0,1} fori =1,2,...,n.

A QTM M consists of a finite control, an infinite
tape, and a tape head. Thus, it will be construced
as a composed system of the physical systems corre-
sponding to these three components. We denote a
physical system corresponding to the finite control by
[C], a physical system corresponding to the tape by
[T], and a physical system corresponding to the tape
head by [H]. Each of these physical systems are also
constructed as a composed system of 1-bit physical
systems. Namely, if ¢; € {0,1} for: = 1,2,...,u =
[log|Q], then [C] = [¢1] ® [c2] ® ... @ [cy) And, if M
is S(n)-space bounded, then [T] = [t;|®[t2]®. .. ®[t,),
where t; € {0,1} for ¢ = 1,2,...,v = S(n), and
[H] = [7] ® [h2] ® ... ® [hy], where h; € {0,1} for
i=12,...,w=[log S(n)].

A physical state [M] corresponding to M is repre-
sented as a composed system of these physical systems
as follows:

M) =[C) o [H] & [T).
Thus, a state of M is represented by

[ClO®[H]|@[T]=c1,---scu, iy vy hagy by ooy by

179

This is a vector of length 1 in the 2%****_dimensional
Hilbert space. In general, a state of M corresponds to
a superposition of configurations of M. If a state of
M is not a superposed one, the state of M is equal to
a configuration of M.

Finally, if M has k tapes Ty,..., T}, the physical
state of M will be represented as follows:

M]=[Cl@[H]® - @ [H]®[T1]®--- @ [Tk],

where H,,...,H} are heads on Ti,...,T, respec-
tively.

Computation and Observation

Computation by M is an evolution process of a
physical system defined by the unitary matrix Mg. Let
[#(0)] be an initial state of M which is represented as
follows:

[¥(0)] = lgo] ® [1] ® [To],

where Ty denotes the tape contents before the execu-
tion, which is an input string written from the first
square followed by an infinite sequence of B’s. If we
denote the state at time s by [¢(s)],

[¥(rt)] = M{[x(0)],

where 7 is the time required by M to execute a single
step.

In quantum mechanics, since observations from out-
side will change the state of the physical system, we
can not observe the tape content of a QTM from
outside before the computation has been completed.
Therefore, as in [4], we must define one bit of the finite
control as a halting flag so that M can signal actively
that the computation has been completed. Only this
bit can be observed from outside without changing the
state of M. The halting flag is set to 0 initially, and
will be changed to 1 when M halts.

When the halting flag becomes 1, the tape content
will be observed as follows: if the vector (a superposi-
tion of configurations) 9 =), av;c; is written on the
tape, for any vector ¢, we can observe with probabil-
ity |(¢,%)|? that ¥ is parallel to ¢. Especially, we can

observe with probability |a;|? that 9 is parallel to c;.

The Universal Quantum Turing Machine

Deutsch’s universal QTM U can executes all opera-
tions of ordinary reversible Turing machines, and uni-
tary transformations for 1-bit state space[4]. Notice
that the ordinary Turing machines can not execute
these unitary transformations. Deutsch’s universal

QTM can execute the following eight types of trans-
formations:

% - (CO'SO! Sin), 1/1 — (.CO.SC! 181 o),
—Ssina cosa isilna cosa
e 0 10
Vz:(o 1)’V3=(0e"°)’

Va=Vol Ve=Vh Ve=Vl V=Vl

where « is any irrational multiple of w. In this paper,
we define a as follows:

™
a = —,
4

A QTM U; which simulates Bennett’s reversible
universal DTM M can be constructed in a way that
Deutsch showed in [4]. This QTM Uj runs in the same
number of steps as M. The universal QTM which we
will use in the sequel is the QTM that will be obtained
from Uy by adding the abilities to execute the above
eight types of unitary transformations. Without loss
of generality, we use the following convention when we
evaluate the execution time of the universal QTM.

Convention: The universal QTM executes
a single step of the reversible DTM in a sin-
gle step, and each one of the eight types of
transformations above in a single step.

By the way, notice the following:

A QTM can simulate a DTM M if and only
if the time evolution matrix of the QTM con-
structed from the state transition function of
M is a unitary matrix. -+ (%)

Of cource, the reversible DTMs satisfy the condition
(%).

Deutsch’s universal QTM (UQTM, for short) is de-
fined to be the QTM which simulates the reversible
universal DTM. Namely, Deutsch’s UQTM directly
simulates the reversible universal DTM in the case
of operations of ordinary Turing machines. The exis-
tence of the reversible universal DTM has been shown
in [2].

But according to the construction in [2], the UQTM
must record its history. On-the other hand, it is not
known whether there exists a UQTM which satisfies
(*) and runs without history. Therefore, we assume
that UQTM in this paper simulates such a reversible
universal DTM which records its history.

The UQTM U consists of a finite control and the
following three tapes: an input tape T}, a work tape

180

T,, and a history tape T3. Let H;, H,, and H; be
heads on these three tapes, respectively.

Let us consider the case where U simulates a QTM
Q. For brevity, we assume that @ has only one tape.
Inputs for U are an input z for @, and a program P
for Q (i.e. a set of state transition functions of Q).
The input z is written on the work tape 75, and P is
written on the input tape 77. The machine U writes
a state s, a head position h, and a tape content ¢ of
Q (initially, ¢ =) on the work tape T, and then by
decoding P, simulates Q given the input z. On the
history tape T3, the numbers of the state transition
rules of U, which are used during the simulation of Q,
are written. The machine U behaves as follows: (1) U
accepts z if and only if @ accepts z, (2) U rejects x if
and only if @ rejects z, and (3) U does not halt for =
if and only if @ does not halt for z.

If Q becomes a superposition of two configurations
@, and @, U will also become a superposition of two
configurations U; and U,. The configuration U is the
configuration in which U simulates ¢, and U is the
configuration in which U simulates Q,. Every time the
time evolution matrix of U is applied, both of U; and
U, evolve one step at the same time. The cases when
Q is a superposition of more than two configurations
are explained in a similar fashon.

Notice the following points:

1. In general, the progress of the computation in U;
is different from that in U,. For example, even
when an execution of P has been completed in
U, it is possible that an execution of P has not
been completed yet. This is because the number
of steps required to execute P in U, is different
from that in Us, in general.

2. The state of a finite control, head positions, and
tape contents in U; are different from those in
U,, in general. Especially, histories written on
the history tape in U; are different from those in
U,.

3 Results

To find a method to solve NP-complete problems
efficiently is very important problem in theoretical
computer science. We have been studying efficient
methods to solve NP-complete problems using QTMs.
Since the observation problem in quantum physics has
not been completely solved, we have been studying re-
lationships between the restrictions on the observation
and the efficiency of the quantum computation. In [9],

we obtained the following result.

Theorem [9] Under assumption A, a QTM can solve
SAT in polynomial time.

Assumption A : We can observe the exis-
tence of a specific physical state S in a super-
position with certainty in polynomial time, if
S exists in the superposition.

Unfortunately, assumption A is not supported in
current quantum physics, however, Aharonov et al. [1]
have proposed a new interpretation of the observation.
That is, they conjectured that a physical state actually
exists as a superposition and can be observed without
collapsing the superposition. In this paper, we propose
the following restriction on the observation based on
Aharonov’s interpretation.

Assumption B: A superposition of configu-
rations is preserved after an observation, and
all of the configurations in the superposition
can be observed in time proportional to the
number of the configurations in the superpo-
sition.

In this section, we show a method of solving SAT
in O(2%) time using Deutsch’s UQTM under the as-
sumption B, where n is the total length of a description
of a logical formula f whose satisfiability should be de-
cided, and a description of m which is the number of
variables in f.

As mentioned above, the UQTM U has an input
tape T1, a work tape T3, and a history tape T3. Let
H,,H,, and H; be the heads on the tapes Ty, T», and
T3, respectively (see Figure 1). All of the heads Hj,
Hj, and Hj can read and write. As shown in Figure 1,
a program P that U simulates is written on the input
tape Ti. On the right-hand side of P, infinitely many
blank symbols are written. Notice that the length of
the description of P is a constant which is independent
of the length of an input given on T.

The program P consists of state transition rules of
one-tape standard DTMs and sentences corresponding
to the eight unitary transformations above. Let

V(n,i)
be the sentence corresponding to these unitary trans-
formations, where 0 < n < 7. This sentence represents

that

“apply the transformation V, on the ¢th bit
of the work tape”.

When U simulates an execution of a one-tape standard
DTM M, it will move as follows. Let g be a state of M
written on T3, and a be a symbol that the head of M
scans. Then, U will scan the set Py of state transi-
tion rules of M written on T from the leftmost square
of Py to right, and will find only one state transition
rule of the form 6(g,a) = --- (we assume that Py al-
ways has one such a rule). If U finds such a rule, it will
memorize the rule using its finite control. And then,
U moves Hy to the right until the rightmost square of
Pys is reached. If Hy reaches to the rightmost square
of Py, then U moves H; to the leftmost square of Pyy.
After that, U will change the configuration of M writ-
ten on T, according to the found state transition rule.
From this, in all configurations in a superposition, U
can simulate a single step of M in the same number
of steps.

The UQTM U starts the execution given a logical
formula f and the number m of variables in f on the
work tape T, and the program P to simulate on the
input tape T;. The number m of variables in f need
not be supplied as an input!, however in order to sim-
plify the following presentations, we assume that m is
also supplied as input. U simulates the program P,
and records the history of the simulation on Tj.

The time complezity of the UQTM U is the sum
of the number of steps executed by U until it finally
changes the halting flag to 1 and the number of steps
needed to observe the output. The time complexity
of U is represented as a function of the length of the
input (in this case, the total length of the descriptions
of f and m) given on Ts.

Theorem 3.1 Under assumption B, the UQTM U
can solve SAT in O(2%) time, where n is the total
length of the description of a logical formula f whose
satisfiability should be decided and the description of
the number of variables in f.

proof In the sequel, we show a program P that U
simulates in order to solve SAT in O(2%) time. Let
us consider the satisfiability of an m-variable logical
formula f(z1,%2,...,2m), where z;, 1 = 1,2,...,m
are Boolean variables. Without loss of generality, we
can assume that the variables z,,...,z,, are named
in such a way that if ¢ < j then the number of occur-
rences of z; in f is not larger than that of z;.

The machine U writes an assignments to the vari-
ables in the logical formula f together with the cor-
responding value of f on the tape T,. We show the

!Initially, U can scan the description of f on Ty from left
to right, and count the number of variables appearing in that
description.

uQT™ U

T, : work tape of U

H, : Read & Write

T, :input tape of U

H,: Read & Write

T, : history tape of U

b

H,

H, : Read & Write

Figure 1: The UQTM U.

program that U will simulate in Figure 2. For exam-
ple,

V(4,9)
means that “apply a matrix V; to [z;]”. In the se-

quel, we explain the behavior of U according to this
program.

1. The initial configuration

The descriptions of the logical formula f and the
number m of the variables are given as input on
the work tape T, and the program P that U
simulates is given on the input tape 77. In the
sequel, we identify a configuration of U with a
description of an assignment to the variables in
f and the corresponding value of f, which are
written on the tape T» (this description is writ-
ten on the right-hand side of f and m on T3). Let
[z1],...,[@m], and [Zm41] be the bits correspond-
ing to #1,...,Zm and the value of f under the
assignment in this configuration, respectively. In
the sequel, let

[1"1’ e ,Im»$m+1] = [1'1] ® - Q [mm] ® [zm+1]
be a configuration of U. That is, actually,

[U] = [C] ® [H1) ® [H2) ® [H3] © [T1] ® [T2] @ [T3]

holds, but we are indicating only [z1,...,Tm, Tm41]
in [T%]. Let
(0,0,...,0;0]
e’
m

182

be the initial configuration of U. In order to
simplify the presentation, we separate the assign-
ments for the variables from the value of f by
semicolon(;).

. Preparation of partial assignments

There exist 2™ different assignments for m vari-
ables of f. Initially, U makes a superposition
of all the configurations where [Zt] variables,
T1,...,T[m], are fixed. U will perform this by

applying .
1 -1
w1 7))

to each bit corresponding to [Zt] variables in or-
der. U can execute the transformation by V4 in a
single step. In the execution of the for loop, the
initial configuration is transformed as follows (see

Figure 3):

U.,-U.
[l
[0,0,...,0;0] — 7
1 1

1
ﬁ%zz Z [11732,...,1:[%_1,0...,0;0],

z1=0z2=0 z[_Tq:O

where the matrix M, representing the unitary
transformation U, is
Mg, =]Q@ - QI@Va@I® ---Q1.
N e’ N e’
1—1 m—1
Because U can execute each transformation U,

in a single step, it can execute all the transforma-
tions Url,---,UI”’,‘” in [2] steps.

begin

%%% Preparation of partial assignments

1 fori=1to [}] do

2 V(4,1)
od ;
%%% Computation of the values of f
3 Reduce an instance of SAT on |3]-variable formula
to the corresponding maximum independent set problem.
4 Solve the obtained maximum independent set problem

using the algorithm of Tarjan & Trojanowski.

end.

Figure 2: The program that the UQTM U simulates.

Let us consider the unitary transformation U,
applied to the initial configuration [0,0,...,0;0]
in detail. The initial configuration ¢; of U is
transformed to a superposition of a configuration
c2 where [0,0,...,0;0} is written on T3 and a con-
figuration ¢z where [1,0,...,0;0] is written on T
as follows (notice that the following is an abbre-
viated notation):

u.
[0,0,...,0;0] =3
715[0,0,...,0;0]+ 715[1,0,..‘,0;0].

This transformation will be carried out immedi-
ately after the head H; of U reads V(4,1) on Tj.
Let g; be the state of U immediately after H;
reads V(4,1) on T3, and j the position of H; at
that time. Then each configuration of U is pre-
cisely represented as follows:

a = [pleplekele[Pe
[f,m,[0,0,...,0;0]] ® [Z,],
2 =p]el]ek+l]e]e[Ple
{f,m,]0,0,...,0;0]] ® [Z1],
s =[plellek+1]el]e[P]le
[fam7[170a70)0]]®[zl]7

where [P] is the representation of T} including the
program P, and [f,m,[0,0,...,0;0]] etc. are the
representation of 7. And, Z; appearing in [T3]
is the history (i.e. a series of the numbers of the
state transition rules used by U) of transitions
made by U until it reaches to the configuration
c1. And, ¢z (or c3) is a configuration obtained
from ¢; by rewriting 0, which is written in the
kth square on T, to 0 (or 1) and moving H, one
square to the right.

183

By the way, c; and c; are the configurations ob-
tained from c; by applying the unitary transfor-
mation V; to [z;]. Namely, both of the c; row
and c¢; column entry and c3 row and ¢; column
entry in the time evolution matrix M; are %
Therefore, if U reaches to the configuration ¢;
and then Mj; is applied, the U’s configuration is
transformed to the superposition of the configu-
rations, 71502 + 71503.

Since U does not enter into ¢z (or c3) from ¢; by
using a state transition rule, the contents of T3
(i.e. history) have not been changed in ¢; (or c3).
Notice that the same thing will always happen
in the executions of the eight types of unitary
transformations defined above.

So, when U completes the execution of the for
loop in Figure 2, in all configurations contained in
the obtained superposition of U’s configurations,
the history Z1Z5 -+ Z,, is written on T;. Here,
Z; (2 < i < m) is the history of the U’s tran-
sitions from the configuration immediately after
the execution of V(4,7 — 1) to the configuration
immediately before the execution of V(4,1).

. Computation of the values of f

Now, in the logical formula f, the variables

z1,...,2rm) are fixed and the other La—;"—J vari-

ables are free. If we evaluate f as much as we

can, the length of the description of f will be less
3

than or equal to 32 by the assumption on the

name of variables.

In the third line in Figure 2, U transforms this
logical formula to the corresponding instance of
the maximum independent set problem in the fol-
lowing way. Let f = Fi AF, A--- A Fy be an

An Execution of
Tarjan & Trojanowski’s
Algorithm

Figure 3: The computation executed by U.

expression in CNF, where each F; is a clause of
the form (z;; V z;3 V--- V z;,,), where each T
is a literal (i.e. either a variable or the nega-
tion of a variable) and n; is the number of literals
in clause F;. U constructs an undirected graph
G = (V, E) whose vertices are pairs of integers
(4,7),1 €2 < q,1 £ j < n;. The vertex (2,7)
represents the j-th literal of the ¢-th clause. The
edges of the graph are [(3,7),(k,1)] if = k or
z;; = Zx1. Notice that the number of the vertices
in the instance is less than or equal to %ﬁ, because
the length of the description of f is less than or
equal to 37“. And this construction has the prop-
erty that G has a maximum independent set of
size q if and only if f is satisfiable. This transfor-
mation can be executed in polynomial time (for
details, see [6] for example).

Next, in the fourth line in Figure 2, U solves
this instance of the maximum independent set
problem using the algorithm of Tarjan and
Trojanowski[11]. This process can be performed
in O(23%) = O(2%) time. Figure 3 illustrates
the whole computation executed by U.

An Observation

When U completes all the computation of above and
sets the halting flag to 1, we will observe all of the su-
perposed 2/ %1 configurations. If all the output bits of

184

these configurations are zero, f will be unsatisfiable.
On the other hand, if at least one output bit is one,
f will be satisfiable. We can observe each of these
configurations, because the superposed configurations
are preserved after the each observation by assump-
tion B. These observations can be executed in O(2%)
time again by the assumption.

The Time Complexity of UQTM U

Since the first line in Figure 2 is executed [3] times
in total, U can execute the for loop within O(n) time.
As mentioned above, U can execute the third line in
polynomial time, and the fourth line in O(2%) time.
Finally, U can execute the observations of all the con-
figurations in O(2%) time. Therefore, U/ can execute
the procedure in Figure 2 in O(2%) time in total. This
complete the proof of Theorem 3.1.]

Corollary 3.1 If there exists a deterministic algo-
rithm to solve the maximum independent set problem
in O(2°") time (0 < € < 1), the QTM U can solve
SAT in O(277") time under assumption B.

proof The QTM U executes a quite similar pro-
cedure as shown in the proof of Theorem 3.1. In
this case, U makes 2/7™ different assignments
for zq,... » B[2m] variables in the preparation step.
Then U executes the same procedure shown in the
proof of Theorem 3.1. Solving the maximum indepen-

dent set problem and the observation can be executed

in O(27¥1™) time in this case. 0o

4 Conclusions

In this paper, we showed that, if the maximum in-
dependent set problem can be solved in O(2°") ‘Q{ <
£ < 1) time, the QTM U can solve SAT in O(27+1")
time under assumption B. But we cannot expect that
U solves SAT faster than O(2¢™) time using the same
method, because it is known that Tarjan & Tro-
janowski type algorithms for finding a maximum in-
dependent set must use 2°™ time in the worst case, for
some small positive ¢[11].

It is to be expected that more relationships between
the restriction on the observation and the efficiency
of the quantum computation can be established. It
is an important open question to show whether NP-
complete problems can be efficiently solved on QTMs
under only assumptions supported in current quantum
physics.

References

[1] Y. Aharonov, J. Anandan and L. Vaidman,
“Meaning of the Wave Function”, Phys. Rev., A
47, pp. 4616-4626, 1993.

[2] C. H. Bennett, “Logical Reversibility of Computa-
tion”, IBM J. Res. Dev., 17, pp. 525-532, 1973.
[3] E. Bernstein and U. Vazirani, “Quantum Com-
plexity Theory”, Proc. of 25th ACM Symposium
on Theory of Computing, pp. 11-20, 1993.
{4] D. Deutsch, “Quantum Theory, the Church-Turing
Principle and the Universal Quantum Computer”,
Proc. R. Soc. Lond., A 400, pp. 97-117, 1985.
[5] D. Deutsch and R. Jozsa “Rapid Solution of Prob-
lems by Quantum Computation”, Proc. R. Soc.
Lond., A 439, pp. 553-558, 1992.
(6] J. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

[7] S. Lloyd, “A Potentially Realizable Quantum
Computer”, Science, 261, pp. 1569-1571, 1993.

[8] S. Lloyd, “Envisioning a Quantum Supercom-
puter”, Science, 263, p. 695, 1994.

185

[9] T. Mihara and T. Nishino, “Quantum Computa-
tion and NP-Complete Problems”, In Proc. Fifth
Annual International Symposium on Algorithms
and Computation, 1994.

[10] P. W. Shor, Algorithms for Quantum Computa-
tion : Discrete Log and Factoring, DIMACS Tech-
nical Report 94-37, June 1994.

[11] R. E. Tarjan and A. E. Trojanowski, “Finding a
Maximum Independent Set”, SIAM J. Compt., 6,
pp- 537-546, 1977.

[12] W. G. Teich, K. Obermayer and G. Mahler,
“Structural basis of multistationary quantum sys-
tems II: Effective few-particle dynamics”, Phys.
Rev., B 37, pp. 8111-8121, 1988.

