Coupling Computations through Space

Pedro P. B. de Oliveira
INPE-LAC, Caixa Postal 515
Computing and Applied Mathematics Laboratory
National Institute for Space Research
12201-970, Sdo José dos Campos, SP, Brazil
Email: pedrob@lac.inpe.br

Abstract

A conceptual framework for models of coupled com-
putations is developed based upon the assumption that
the computations are performed by a population of pro-
cessing agents whose structure is derived from Turing
machines. As a fundamental premise, the agents are
embedded in a well-defined space which ultimately pro-
vide constraints on the individual movements, thus en-
abling their autonomous behaviour. The framework
takes the form of a tazonomy, according to which
Turing-machine components - the tape, the state tran-
sition table, or the set of internal states — are let
to be shared among the processing agents. Following
the presentation of the tazonomy, the STA coupling
model — the one that keeps the internal states and
the tape as parts of the processing agents — is picked
out and further developed, its features and advaniages
being stressed in relation to the other models. I is
argued that the key aspect of this model is thal ils
notion of computalion can only be made sense of at
the very interaction between the agenis and their en-
vironment. A weak and a sirong versions of the STA
model are then identified, and an implementation of
the latter is briefly discussed. This implementation
was performed in an artificial-life system that takes
the form of a cellular-automata-based architecture of
autonomous agents, which allows to ezplore the clear-
cut notion of space provided by cellular automata. The
resulting model - that also embeds into it the features
of development and coevolution inherent to the system
1t is implemented on - is then discussed, in particu-
lar by contrasting its features with those possessed by
some well-known systems. The aim of the paper is at
discussing the issues that its theme gives rise to; thus,
no actual computer run derived from a particular set-
up of the resulling model is shown.

0-8186-6715-X/94 $4.00 © 1994 IEEE

160

1 Coupled computations

1.1 Introduction

Complex dynamical behaviours can be obtained out
of the coupling of even a small number of iterated
systems of a same kind. Various such systems have
been reported in the literature, such as coupled maps
of various kinds, cellular automata, etc. An interesting
class of these systems is the one obtained as a result
of coupled computations.

Parallel computations normally refer to the cooper-
ation of computational processes towards the accom-
plishment of a well-known, predefined task. In coupled
computations however, the interest is on the emer-
gence computation that comes out of it.

Depending on the model of computation being used
different coupling schemes can be obtained. In par-
ticular, depending on the way the components of a
model of computation are partitioned, different modes
of coupling can be established. For instance, by shar-
ing memory between various von-Neumann machines,
a coupling scheme is defined that is distinct from the
another built up by sharing, say, one of their internal
registers. In the case of Turing machines, the natural
partition would be the following set of components:
internal states, tape symbols, and state transition ta-
ble.

In this paper a conceptual framework for models
of coupled computations is developed based upon the
assumption that the computations are performed by
a population of processing agents whose structure is
derived from Turing machines (TM). As a fundamen-
tal premise, the agents are embedded in a well-defined
space which ultimately provide constraints on the in-
dividual movements, thus enabling their autonomous
behaviour. The framework takes the form of a taxon-
omy, according to which Turing-machine components
are let to be shared among the processing agents. Fol-

lowing the presentation of the taxonomy, the S7A cou-
pling model — the one that keeps the internal states
and the tape as parts of the processing agents — is
picked out and further developed, its features and ad-
vantages being stressed in relation tc the other models.
It is argued that the key aspect of this model is that
its notion of computation can only be made sense of
at the very interaction between the agents and their
environment. A weak and a strong versions of the
STA model are then identified, and an implementa-
tion of the latter is briefly discussed. This implemen-
tation was performed in an artificial-life system that
takes the form of a cellular-automata-based architec-
ture of autonomous agents, which allows to explore
the clear-cut notion of space provided by cellular au-
tomata. The resulting model — that also embeds into
it the features of development and coevolution inher-
ent to the system it is implemented on — are then dis-
cussed, in particular by contrasting its features with
those possessed by some well-known systems. The aim
of the paper is at discussing the issues that its theme
gives rise to; therefore, no actual computer run de-
rived from a particular set-up of the resulting model
will be shown.

1.2 From the Turing gas to Turing ma-
chines

One type of coupling scheme is obtained when the
unit of coupling is a computable function defined an
abstract space. An example of this type is the so-
called Turing gas, as defined in [4]. In this system a
population of particles are subjected to pairwise col-
lisions with the possibility of formation of new ones
which, in turn, enter the chain of the already existing
reactions. The Turing gas is a system of coupled com-
putations because the particles are functions coded in
a variant of pure-Lisp called AlChemy (a shorthand
for “Algorithmic Chemistry”), the collisions between
the particles being the evaluation of one of the func-
tions having the second as the argument. The Turing
gas has been used as a model of systems that have
an inherent “constructive dynamics”, that is, the ones
whose components act on each other constructing new
ones which themselves have the ability to take part in
the constructive process; a paradigmatic example of
this kind of system are the chains of molecular reac-
tions.

Another kind of system of coupled computations is
the one based on coupled executions of an assembly-
like language that runs in a (typically) virtual ma-
chine. [11] and [9] are landmark examples of this kind;
[10] is also important, although this work goes beyond

161

the particular coupling scheme currently at focus. It
is worth of note the fact that they (indeed, like [4]),
tackle the issue of coupled computations without hav-
ing, however, the need to explicitly recognise it.

[11] features Tierra, an artificial life world where
a population of programs compete for memory space
and CPU time of their host machine. The programs
are subjected to an evolutionary process so that the
ones that manage to replicate more, get more of these
resources, thus guaranteeing their survival. In partic-
ular, there are situations in which individuals manage
to run instructions that belong to another individual
to their own benefit or fate. Therefore, coupled com-
putations in Tierra occur when an area of memory
contains instructions that belong to an organism, but
are shared by other individuals due to their own indi-
vidual nature.

The systems Venus I and II, and Luna, discussed
in [9] and [10], all implement variants of the idea of
a “soup” of instructions spread over an area of mem-
ory, where a population of program counters coexist
executing the shared code. In terms of coupled com-
putations these systems therefore follow the same ap-
proach of Tierra, which is the sharing of instructions
among the different computing processes.

A lower-level approach to coupled computations is
the one where the unit of coupling are Turing ma-
chines. A reference along this line is [8] (assumedly
an early inspiration for the Turing gas). This work
uses interacting TMs for studying functional self-
organisation, and is based on a binary string encoding
of their transition tables.

Recently Rucker (1993) released a software pack-
age and accompanying book which, in spite of simply
aiming at being an intertainment artificial-life system,
provides an interesting example of coupled computa-
tions. This alife world is inhabitted by a population
of two-dimensional Turing machines whose individual
transition tables are coded in the organisms’ geno-
types. The organisms’ environment is seen as a two-
dimensional tape that is shared among all individuals.
As they move about they leave trails that can be fol-
lowed by the others. The symbols that make up the
trails are, therefore, the symbols that are written on

‘the tape which, when read by other organisms, provide

the efective coupling among the computations individ-
ually defined in each Turing machine.

11ts theme is the more encompassing concept of dynamics
of “self-programmable matter”; although not explicitly recog-
nised in the paper, it essentially corresponds to the notion of
constructive dynamics defined in {4].

1.3 The role of space

The implications of different coupling schemes can
be seen from various perspectives, such as, the de-
gree of perturbation one machine has onto another
(for instance, sharing a register versus sharing the en-
tire memory space); or the adequacy of the scheme,
when it is considered as a model of some phenomenum
(the model of computation used in the Turing gas fits
nicely into the analogy of the Lisp-functions being the
particles or objects of the world, and the capability of
evaluating the functions being the underlying physics).
Another perspective is the role of the space in which
the coupling takes place.

Explicitly or not, some notion of space is embedded
in any coupled computation scheme. For instance, the
notion of space used in systems that rely on coupled
executions of assembly-like languages, like Tierra and
the Venus family, is defined by the memory space of
the computer involved. The space inhabitted by the
organisms in Rucker’s systems is a lattice on the sur-
face of a torus. Even in the context of other applica-
tions rather than coupled computations, a number of
systems have used well-defined notions of space, such
as in neural netwoks, genetic algorithms and robotics.
In contrast, although the activity in the Turing gas
has been metaphorically described as taking place in a
“volume”, this is in fact an abstract, rather ill-defined
space.

The crucial point about space is that it can be used
as a very natural way to integrate the coupled com-
putations, the upshot of it being a substantial gain
in autonomy for the process. This is the alley to be
explored herein. By autonomy we mean the lack of
centrallised control, an intrinsic parallellism, and the
fact that the agents involved have an individual ability
to act.

2 Coupling Turing machines through
space
2.1 Assumptions and definitions
In this section and the next, models for coupling
Turing-machine-based computations will be discussed.

All these models are based on a population of TMs
such that:

e They are embedded in a space, thus becoming
possible to distinguish a TM from its environ-
ment, that is, the rest of the space, apart from
them.

162

¢ They have the autonomy to move in the space.

e Most of the environment is free for the TMs to
move through.

o There is a special part of the environment, de-
noted by interaction site, that can be reached by
the TMs but not traversed by them.

o The only direct interaction between the TMs is
one obstructing the way of another as they move.

Let us consider the situations in which any of the
main components of a TM (tape, state transition table
and internal state) is taken out of each member of the
population, and ascribed to the interaction site. This
situation yields a coupling scheme between all TMs
in the population, insofar as any computation that is
performed at them depends on the content of the in-
teraction site, which is shared among all the machines.
Let us denote the shared component as the coupling
unit.

As a consequence of “disabling” a TM as above, the
entities that are formed by the remaining components
can no longer be characterised as complete Turing ma-
chines; let us think of these moving entities — that can
take part in a computation defined in terms of Turing
machines - as agents.

2.2 Models of coupling

Although the action of a state transition table only
makes sense, by definition, at the very interaction be-
tween tape and states, in a coupling scheme the ta-
ble could well be confined to the environment, to the
agent, or to both at the same time (in which case it
can be thought of as being a part of the entire space
where environment and agents are defined in). In [12],
for instance, the state transition table of the Turing
machines are internally defined in the organisms as
a code in their genotypes (while the two-dimensional
tape is the entire environment inhabitted by the or-
ganisms).

Depending on the choice of which one of the three
components of a Turing machine is let to be shared
among the others, nine distinct coupling models can
be obtained. Figure 1 features three of them; the oth-
ers are irrelevant for present purposes but can be en-
visaged by considering the state transition table either
in the environment or in the agent. In the models
shown the state transition table plays the role of the
“physics” of the world that creates the condition for
a step of computation to be performed involving an
agent. In other words, the state transitions can be

E

| Tape I

STT

TM state

SoA Model
(State-only in the Agent)

E

STA Model
(State and Tape in the Agent)

E
lSTT

Tape

‘ TM state ’

STT

ToA Model
(Tape-only in the Agent)

Figure 1: The three models of coupled Turing machines, in which the state transition table (STT) is part of both
the environment and the agent; that is, it is part of the space they are defined in. The agents are represented at

the bottom and the interaction sites at the top.

thought of as belonging to both the agent and the
environment. The unit of coupling resides in the in-
teraction sites. One possibility is the interaction site
representing either the tape or the state of the TM;
another is to keep the tape and state as part of the
same agent, while allowing the interaction site to act
as the “physical support” for the computations to be
performed. These three models of coupling are named,
respectively, ToA (tape-only in the agent), SoA (state-
only in the agent) and STA (state and tape in the
agent).

The essence of all models of interest here is that
the coupling will happen according to the coordinated
movement of the population of agents in the space
they are defined in. As they move about, they interfere
with each other’s trajectories, then leading different
agents to different interaction sites at different times,
in a totally autonomous and decentralised fashion.

Because the 7oA and SoA models fully share so
fundamental parts of the structure of a TM - its in-
ternal state and the tape configuration — two major
problems arise:

o Both models become too brittle in terms of their
ability to support coupled computations in any
practical way. The outcome of the couplings
would too often lead to meaningless computa-
tions, much like the effect of arbitrarily putting
together pieces of code from a standard program-
ming language.

o The process of identification of the end of a com-
putation becomes irremediably impaired. The

163

end of a computation requires that not only a
final state is reached, but also that the TM head
points at a predefined symbol at the tape. Be-
cause the internal state and the tape are always
disconnected in both 7oA and SoA, there is no
straightforward way to identify when a computa-
tion has been completed. The only possibility is
by fully inspecting the state of the world at each
iteration; but this is a trivially uninteresting sit-
uation.

So far we have considered the interaction site as a
singleton. This has been done because it is easier to
convey the idea of coupling with an unique coupling
unit. However, multiple interaction sites could alter-
natively be used. The major consequence is that the
resulting coupling scheme would be even tighter, inso-
far as the interference possibilities between agents and
sites would certainly increase. Naturally, the problems
mentioned above for the 7oA and SoA models would
become even more critical.

3 The STA model

Because of the problems aforementioned a case will
be made in this section for the advantages of using the
STA model. First of all, let us assume that multiple
interaction sites are in use.

The role of the interaction sites is really twofold:
they are an essential part of the computation (for in-
stance, by being the repository of the tape in the 7oA

model), and they provide a spatial reference for when
the coupling should effectively take place.

While in 7oA and SoA the interaction sites already
possess one of the defining components of the TMs, in
STA they do not, since tape and TM state are con-
fined to the agents. From this observation it is clear
that the coupling in S7A is not as as tight as it is
in the other two. Brittleness therefore has decreased,
thus leaving room for multiple interaction sites to be
used. It is worth noting that this scheme is indeed
more appealing than a single interaction site, insofar
as it explores the parallel nature of the various coupled
computations.

Another consequence is that the problem men-
tioned above of the identification of the end of a com-
putation is now solved. Whenever the individual has
reached a final state and the head of the correspond-
ing TM is pointing at the last symbol it should, the
computation has finished and the corresponding tape
represents its outcome.

Finally, the STA model necessarily leads to a modi-
fied Turing machine where, in addition to the standard
TM components, the new dependency on the state of
the interaction sites would have to be made explicit.2
In fact, two (equivalent) possibilities for creating the
new state transition table would be: the addition of
the site state as a new entry variable, thus yielding
a three-dimensional table; or the modification of the
original table, by replacing the TM state entry by a
new entry formed by pairs of the two kinds of states.
The model thus has a “hint” of the 704 model, in
the sense that the coupling scheme works as though
the interaction site would be the repository of a new
state which the steps of computation become depen-
dent upon.

Depending on the extent of these table modifica-
tions, which are related to the degree of coupling that
is allowed for the interaction site, two distinct possi-
bilities for the S74 model can be distinguished: the
weak and the strong versions.

3.1 The weak STA model: only the form
of the table is modified

In the weak S7A model the role of the interaction
sites is to enable or not a computation step. That
is, some sites would allow the step of computation
to normally occur, as defined in the state transition
table, and some would prevent it, leaving the state-
tape configuration unchanged at that point. At the

2Naturally, it is possible to think of table modifications also
in SoA and ToA; but while this would be a deliberate action in
them, it is a necessity in STA.

164

same time, the state of the interaction site might be
modified, according to the agents’ configuration. But
no new entries in the table would be created, keeping
its original content the same. They would only have
to be modified to reflect the new table format.
Hence, coupling in the weak S7TA refers only to the
fact of whether a step of computation will be able to
be performed as the result of an interaction. What is
at stake is the speed at which the (entire) computa-
tion will be performed, or whether it will be completed
at all (not getting stuck at some entry of the transi-
tion table). For different runs, any computation that
starts with the same initial state-tape configuration
will lead to a final configuration that will be the same
in all runs. In other words, all computational path-
ways (sequences of steps of computation as defined by
the entries in the state transition table) are unique,
regardless of their being related to a correct computa-
tion or not. Naturally, this behaviour is nothing more
than the one normally expected from functioning pro-
grams written in standard programming languages.
By contrasting this weak version of the STA model
with SoA and 7oA models, it is clear that while the
coupling provided by the latter two is too tight (too
much coupling), in the weak S7A scheme it is too loose
(too little coupling). So, while the interaction sites in
7oA and SoA are primary agents of the coupling, in-
sofar as they incorporate fundamental components of
the computations, the role of the interaction site in
the weak STA is simply one of enabler of a computa-
tion step. The desired degree of coupling should be
somewhere between the two extremes; one that would
allow the computation steps to become dependent, in
a stronger way, on the state of the interaction sites.

3.2 The strong S7A model: the table con-
tent is modified

This stronger dependence means that the result of
an interaction should be expressed not only in terms
of the corresponding step of computation being able
to be performed or not, but also in terms of which
one it will actually be. That is, new entries should be
created in the state transition table with new actions
corresponding to the new, possible interactions.

With the modification of the transition table (for
example in either of the ways suggested earlier in this
section), a coupling scheme is achieved that, depend-
ing on the sequence of interaction sites the agent comes
across, the agent may be led into a distinct sequence
of computational steps, that is, into distinct computa-
tional pathways. The major consequence is that, for
different runs, the same initial state-tape configuration

may lead to distinct final configurations. And finally,
no computational pathway is uniquely determined by
its corresponding initial configuration.

Assuming the table has been modified, there is no
unique way to traverse it. Naturally, the model pre-
supposes that it will take place through the coordi-
nated movement of the population of agents.

So, even though an experiment can be run with a
single state transition table various distinct functions
can be identified. How the transition table should be
modified is a matter of implementation, the possibil-
ities being the composition of state transition tables
from distinct, well-formed functions; the addition of
state transitions that do not necessarily constitute a
full function; or the mixing-up of state transitions from
whatever origin. The new table formed as above then
has the potential to yield not only the original func-
tions that might have been used, but also others that
are the result of “interferences” between the individ-
ual contents of each one of the primitive tables, or the
individually added state transitions.

Summing up, what we have gained with the strong
S8TA model is a tighter model of coupling than the
weak version, one that opens up the possibility of dis-
tinct functions to emerge. But at the same time, the
coupling is loose enough to provide us with a way to
identify the end of a computation.

4 Embedding the S7A model in an
artificial-life system

In this section we hint at the implementation of the
strong version of the S7.4 model within an artificial-
life system, and discuss what is gained out of this
mix in terms of a model of coupled computations that
incorporates the aspects of coevolution and develop-
ment of the artificial-life system. No actual computer
run derived from a particular set-up of the resulting
model will be shown; only the conceptual issues that
emerge will be of interest for present purposes. An in-
depth analysis of the results associated with a partic-
ular set-up of coupled computations will be discussed
elsewhere.

4.1 Background: Enact, an artificial-life

world

The implementation was performed within Enact,
a family of two-dimensional cellular automata whose
temporal evolution on a periodic background can be
described in terms of the metaphor of an artificial-life

165

world where a population worm-like agents undergo
a coevolutionary process. During their lifetime, the
agents roam around, sexually reproducing, interact-
ing with the environment, and being subjected to a
developmental process.

Whenever possible Enact’s agents move; by design,
they move either leftwards or diagonally, and never
“bump” into each other. Agents can only “touch” en-
vironmental configurations that play the role of inter-
action sites. By designing specific state transitions to
be active only in these sites, it is possible to have spe-
cific, controlled interactions taking place between en-
vironment and agents. Any agent then interacts with
any other in the world through the environment. Since
each agent’s individual movement may influence the
way the other agents move, their developments have
a major interdependence through movement. Many
additional details about Enact can be found in [1] and
[2].

Enact is a system that embeds the models of com-
putation discussed here, in particular the STA model,
in either of its versions; for instance, in {2] an imple-
mentation the So4 model was showed, and in [3] we
showed within Enact the implementation of a popu-
lation of Turing machines that would be able to act
along the lines of the strong version of the S7.4 model.
Its main feature is that it casts the issue of coupled
computations in terms of an artificial-life world. Most
importantly, it is the lifetime history of coupled move-
ment of the population that determines what an in-
dividual agent will develop into. And it is an agent’s
development that is interpreted as a function, the final
state of the agent being the outcome of the function.

4.2 Enact’s approach to coupled compu-
tations in perspective

Although recognising cellular automata as provid-
ing
“...a powerful approach to the study of the

emergence of loops between objects and func-
tions ...”,

Fontana ([4, page 198]) then remarks that it

“...becomes, however, difficult to study the
consequences of such a loop at the same level
of description that has been used to study its
emergence.”

A related concern is expressed in [10, page 219] when
discussing cellular automata as “self-programmable”
systems. In that paper it is stated that the

“...main difficulty with the CA approach
seems to be associated with ... the extreme
low-level representation of interactions.”

It should be noted that the approach used in Enact
provided an effective way to solve the worries above,
insofar as the use of a population of autonomous
agents — the processing units involved in the compu-
tations — are realised at a higher level than the one
Enact itself is implemented at. That is, while En-
act is defined from basic state transitions, the popu-
lation of processing agents is mainly defined through
the high-level concepts of the system (such as agents,
phenotypes, memetypes and so on.)

Several issues can be explored in a comparison be-
tween the STA model of coupled computations in En-
act and other approaches. What follows is an attempt
to compare some of the aspects, mainly with respect to
the Turing gas and Tierra. The model just discussed
has the following features:

e Bvolutionary capabilities. Just like Tierra, the
model can be used within an evolutionary con-
text, even though the actual evolutionary possi-
bilities is not the same for each of them. The
Turing gas however lacks this feature, which is
even explicitly recognised in [4].

o Focussed emergent computations. The model can
be used to tackle the problem of emergent compu-
tations (or, in particular, of emergent functions)
even in small regions of the function space. The
point is that the function space implicitly defined
by the state transition table — that characterises
the interactions between the agents and the envi-
ronment — can be controlled in an independent
fashion. This is possibly the most fundamen-
tal aspect of the system. The tractability that
is gained implies that it becomes possible to ap-
proach the issue of functional emergence by look-
ing at the actual functions that emerge. In fact,
we have already performed extensive analyses of
a set-up which enables the emergence of a wealth
of functions that operate over a sequence of num-
bers, such as sorting them in increasing order;
these results will be reported elsewhere.

o Ability to link functional emergence to such
the (apparently) disconnected concept as “phase”
transition. By enabling the process of functional
emergence to be focussed in a region of the func-
tion space, it becomes possible to create a link
between the issues of functional self-organisation
and phase transitions in some dynamical spaces

(see [6]).® For instance, it becomes possible to
refer to criticallity phenomema by means of the
situations in an agent’s lifetime which are deter-
minant of its long term development. That is, the
critical points that determine which computable
function the development of an agent will end up
being characterised by. Aspects of the reversibil-
ity of computations also come up in this context.
These aspects have also been addressed in the set-
up mentioned above

o Copying or reproductive function is not essential.
A copy or reproduction function does not play
any major role in Enact as they do in various of
the experiments discussed for the Turing gas, or in
virtually all reported experiments performed with
Tierra. Indeed, all insteresting reported outcomes
from the latter system depend on the existence of
the so-called “Ancestor”, a self-reproductive func-
tion that is innoculated in the Tierran soup at
the start of a run. A step towards an exception
was reported in [13]; with the addition of a new
register to Tierra, selective pressure was allowed
according to the processing of the content of the
register. By acting as a connection of Tierra with
the outside world, the added feature provides an
additional way to drive Tierra’s evolution beyond
mere reproduction.

o Functions with any number of parameters. For
the purposes of making AlIChemy’s implementa-
tion easier, it can only handle functions of a single
parameter. Naturally, this is a strong constraint
that restricts the sorts of emergence that can be
observed; Fontana (1992) himself recognises the
problem. But again, it should be clear that the
problem is not a consequence of the model, but
only of its implementation.

¢ Robustness. The major problem when computer
programs become the subject of evolutionary and
of self-organisation processes is how to achieve
robustness, i.e., how to escape from the brittle-
ness of their semantics when arbitrarily putting
chunks of code together. One way or the other
this problem has been solved in AlIChemy, Tierra
and various other systems. Turing machines have
a very robust semantics because they simply han-
dle states, which are indifferentiable from each

3The primary concern on phase transitions presented in [6]
was its characterisation in the rule space of cellular automata.
The fact that Enact is implemented as cellular automatais even
more appealing with this respect.

other. It is such a robustness that enables the ap-
proach supported by the $74 model. No matter
how strange it may sound in principle, it is worth
remarking that the set-up mentioned above did
not use Turing machines. But since the functions
it dealt with only required pure number values,
the argument of robustness still holds in that case.

o Autonomy. It is the movement of the agents that
determine the outcome of the functional emer-
gence; but movement is part of the nature of
the agents, constrained by the availability of free
space. Hence, there is no need for any sort of
centralised process that would be in charge of de-
termining which components of the system would
have to be used at a certain moment. The latter
is exactly what happens in the Turing gas in re-
gard to the need of arbitrating the pairs of Lisp-
particles that will collide at a given instant. In
Enact, this “decision” is not only decentralised,
but also is just a natural consequence of the dy-
namics of the system.

5 Final remark: towards a model of
computation for natural phenomena

The computer metaphor has been widely used to
describe natural phenomena; its success, however, is
questionable. For instance, as [14] reminds us, two
very common misconceptions can be perceived: in cog-
nitive science, when considering environment as data
that is given to a program in the cognizer; and in bi-
ology, when assuming the genome of an organism as
a program that is run by the biomolecular machinery.
I believe that the main cause of these flaws is not on
the approach itself. Instead, it comes from the model
of computation that is used to ground the metaphor.
It is expected that the issues raised in the context of
the STA model of computation may shed light on the
track that leads to descriptions of natural phenomena
in harmony with the use of the computer metaphor.

Accordingly, the fact that the state transition table
of the models discussed herein were let to be shared
by agents and interaction sites is meant to provide a
notion of computation that has to be regarded as tak-
ing place only at the very interaction between agents
and environment.

In the strong S7A model the role of the environ-
ment has been lessened, if compared to the 7oA and
SoA models, and has been strengthened in relation to
the weak S7TA. It still has an active role in the compu-
tation, but became a mediator rather than an enabler

167

that it is in the latter model, or a primary agent of
the computation that it is in the former two. The
environment’s role has become the provision of active
physical support for the computation to occur.

In addition, the fact that the actual functions that
are computed at the agents critically depend on their
lifetime history of interactions, strengthens the role
of the interactions, and consequently, the role of the
agents, since they are major responsibles for their
movement. But since the agent itself provides the
place where the outcome of the computation is visu-
alized, it is tempting to say that in the strong STA
model the agent has become the subject and the object
of the computation, a notion that is based on an idea
originally developed in [7] in the context of biological
evolution.

Other aspects of the STA model of coupled com-
putation which are worth bearing in mind include
its intrinsic parallellism, and the stress on the no-
tion of computation as a dynamical process. Even
more fundamentally, the definition itself of the cou-
pling scheme, as well as its reliance on the notion
of autonomy of the processing agents could only be
achieved by explicitly resorting to a well-defined no-
tion of space that permeates all activity.

Acknowledgements

Early discussions with Phil Husbands and Inman
Harvey helped me shape up the ideas that led to the
concepts expressed herein. This work was partially
done in England, thanks for the following Brazilian
institutions: CNPQ (National Council for Scientific
and Technological Development) and INPE (National
Institute for Space Research).

References

[1] Pedro P. B. de Oliveira. “Enact: An artificial-life
world in a family of cellular automata.” CSRP-
248/92, School of Cognitive and Computing Sci-
ences, University of Sussex, Brighton, UK, Sept.
1992.

[2] Pedro P. B. de Oliveira. “Methodological issues
within a framework to support a class of artificial-
life worlds in cellular automata”. In: D. G.
Green & T. Bossomaier, editors. Complez Sys-
tems: From Biology to Computation. IOS, Ams-

terdam, 82-96, 1993.

Pedro P. B. de Oliveira. “Collapsing a Coevo-
lutionary Process into a Computable Function”.

Submitted to: D. B. Fogel & W. Atmar, edi-
tors. Evolutionary Computation: From Biological
Foundations to Intelligent Systems. Kluwer, 1994.

[4] Walter Fontana. “Algorithmic Chemistry”. In: J.
D. Farmer, C. Langton, S. Rasmussen & C. Tay-
lor, editors. Artificial Life II, Addison-Wesley,
159-209, 1992.

[5] J. E. Hopcroft & J. D. Ullman. Introduction
to automata theory, languages, and computation.
Addison-Wesley, 1979.

[6] C. G. Langton. “Computation at the edge of
chaos: Phase transitions and emergent compu-
tation”. Physica D, 42(1-3):12-37, 1990.

[7] R. C. Lewontin. “The Organism as the Subject
and Object of Evolution”. Scientia, 118:63-82,
1983.

[8] John S. McCaskill. “Polymer Chemistry on Tape:
A Computational Model for Emergent Dynam-
ics”. Preprint from the Max-Planck Institut fiir
Biophysikaliche Chemie, Gottingen, Germany,
1989.

[9] S. Rasmussen; C. Knudsen; R. Feldberg & M.
Hindsholm. “The Coreworld: Emergence and
Evolution of Cooperative Structures in a Com-
putational Chemistry”, Physice-D, 42:111-134,
1990.

(10] S. Rasmussen; C. Knudsen & R. Feldberg. “Dy-
namics of Programmable Matter”. In: J. D.
Farmer, C. Langton, S. Rasmussen & C. Taylor,
editors. Artificial Life II, Addison-Wesley, 211—
254, 1992.

[11] Thomas S. Ray. “An approach to the synthesis of
life”. In: J. D. Farmer, C. Langton, S. Rasmussen
& C. Taylor, editors. Artificial Life II, Addison-
Wesley, 371-408, 1992.

[12] Rudy Rucker. Artificial Life Lab, Waite Group,
Corte Madera, CA, USA, 1993.

[13] Walter A. Tackett. “Fitness and Adaptation of
Digital Organisms”. Talk given at Artificial Life
I1I, Santa Fe, NM, USA, 1992.

[14] F. Varela; E. Thompson, & E. Rosch. The Em-
bodied Mind: Cognitive Science and Human Ez-
perience. MIT Press: Cambridge, MA, 1991.

168

