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Abstract

In this work it is proved that necessary and sufficient
conditions for binary, regular, non-bounded, one
dimensional cellular automata do exist. These conditions
are derived from the definition of sufficiency for non
reversibility and using a well known property of Boolean
algebra. These conditions are dependent on the relative
neighbourhood of the considered automaton and a graph
search algorithm is derived for the establishment of these
conditions and the associated listing of solutions. It is
shown, however, that this general solution has an
exponential complexity nature, depending on the number
of cell neighbours. A simple example is also presented.

1: Introduction

One dimensional binary cellular automata are considered
in this work, that is, with regular structure of cell units, and
where each unit is a finite 2-state machine which state
function (local map) acts on its neighbour states for the
definition of the next cell state.

Regularity is assumed :

a) The local map is the same for every cell.

b) The relative neighbourhood (V(,Vy,..Vp.p) is the
same for every cell, where n represents the number of
neighbours and Vi is a signed integer representing the
relative position of neighbour i relatively to the considered
cell.

The absolute neighbourhood of a cell Ci is the set of n
cells Cj such that i=j+V) and k € [0,1,..n-1].

One considers here non-bounded cellular automata, that is,
where the number of cells in the one dimensional array is
infinite and the state of the cellular automaton is defined
by the set of the binary states of every cell in the array,
which means that the state space is also infinite. Moreover,
one considers that every cell changes its state
synchronously with every other cell in the automaton.
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The possible applications of cellular automata are
increasing and areas such as physical phenomena
modulation [3],[4], pattern recognition [1],[2] or
differential equations substitution [5] are long ago being
reported. The theoretical understanding of these structures
can be very useful in judging their computational
capabilities and also in other possible more sophisticated
architectures. One such theoretical problem is reversibility
of cellular automata state space. A cellular automaton is
considered reversible if its state space is a partition of
cycles, that is, no two different states are direct ancestors
of the same given state.

For the one dimensional case, procedures for detecting the
reversibility of the cellular automaton, given the local map
are known [7], as well as some necessary conditions for
reversibility [8] and techniques for generating some
reversible automata [9], but the solution for the necessary
and sufficient conditions were not yet known, except for
the work of the author [11], but in a completely different
audience and with no reference to some problems, such as
the computational complexity of the solution .

Using the opportunity given by this cellular automata
conference, the author presents the established necessary
and sufficient reversibility conditions for one-dimensional,
non-bounded cellular automata.

2: A Set of Necessary Conditions for
reversibility

Let Si be the state i of the cellular automaton state space,
Cj the cell j of the automaton, X;l the binary state of cell j
in state Si,F™ one of the possible local maps (n is the
enumeration parameter) and (X',Xj+1,...,Xj+n_1)i the set of
cell states XjXj+ 1 Xj+n-1 in state Si.

F™ is said to be reversible if the resulting state space of the
cellular automaton is. That is, F* is non-reversible if:

3 §,S1,S2 such that:
S1#S2and St ->SandS2 —» S )



This means that, for every possible absolute
neighbourhood (every possible j from -o to +o0) one has:
FRj X4 1o XD = FR G X)) ()
and so a sufficient condition for non-reversibility is the
ANDING of expressions (2) taken from every possible i
0 [F"(X',Xj+1,.A.,Xj+n_1)l =

= Fn(xj,xj+l----’xj+n-l)2 1=1 3)
Considering a” pair of n bit wide windows which
synchronously shift along S1 and S2 respectively,each of
the window pair static position corresponds to an
expression as (2). Thus a sufficient condition for non-
reversibility is obtained if the windows are shifted from -
to +o, and the final ANDING (3)of the terms is
performed.
Now, since:

if:
CONDITION => NON-REVERSIBILITY
then:

REVERSIBILITY = CONDITION
a necessary condition for reversibility has been obtained.
Take two states S1 and S2 on a 2 nearest neighbouring
case (n=2), where S2 is the "all at zero" state and S1 has
only two successive 1's with every other cell state 0. The
only interesting window pair positions give expressions )
as follows:

1(0,1) = £(0,0)

f(1,1) = £(0,0)

(1,0) = £(0,0)
From these two states one gets the following sufficient
condition for non-reversibility:
[f(0,1) = f(0,0) AND f(1,1) = £(0,0) AND £(1,0) = £(0,0)] =

=1

and a necessary condition for reversibility is:
[f(0,)=£(0,0) OR f(1,1)=£(0,0) OR f(1,0)=£(0,0)] = 1

3: Necessary and Sufficient Conditions for
Reversibility

Let one define:

Configuration is an n-element pattern, obtained from the
contents of a window pair position and where each element
is a bit pair - one bit from each window .

Set Configuration of a pair of states: the set of different
configurations obtained by synchronously shifting ( - to
+ o0) the windows in that state pair of the automaton state
space.

Minimal Set Configuration : A Set Configuration which
does not include any other Set Configuration obtained
from any other possible pair of states. -
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Notice that each Configuration of a pair of states is
associated to an expression as (2) and, as a consequence, to
its complement P, where k is an enumeration index.
To each Set Configuration of a pair of states i is associated
a necessary condition for reversibility Py;:

PNi=Pc1 OR Py OR ... OR Pc
Considering now two different pairs of states, i and j, a
more restrictive necessary condition is obtained:

PNi,j = PNi AND Py
If P; and PNj are as follows:

Pni=Pc] OR Py OR..OR P
. PNj =Pc1 OR Py OR...OR PCq OR Pcy, ..OR P
it follows that PNi, PN since
A+AB=Aif Boofean algebra operations are considered.
As a direct corollary:
Corollary 1
A necessary condition for reversibility of a cellular
automaton state space is obtained by ANDING the
necessary conditions Ppj; obtained from the minimal set
configurations, only!

Notice that the number of minimal set configurations is
finite, as well as the number of terms Pc in each of them,
despite the fact that the number of states in the state space
is infinite.

Consider now every possible pair of states. From each one,
it has been seen that a sufficient condition for non-
reversibility, as in (3), may be derived (as well as a
necessary condition for reversibility), which is also the
necessary and sufficient condition for S1 and S2 to have
the same direct successor (by definition). Then, ORING all
of these conditions gives the necessary and sufficient
condition for at least one of the possible pair of states to
have the same successor, that is, the necessary and
sufficient condition for non-reversibility. Complementing
one obtains the necessary and sufficient condition for
reversibility - an ANDING of necessary conditions Py .
But, as seen above, all terms in that ANDING are
eliminated, except for those corresponding to minimal set
configurations. Thus the necessary condition of corollary
1 is also the necessary and sufficient condition!

4: Algorithm for minimal set configurations.

Following the necessary and sufficient condition just seen,
it is now necessary to derive the minimal set
configurations.

By definition, the number of different configurations is
22N (where N is the number of neighbours of each cell)
and, as the windows are shifted one cell at a time , there is
a relation between two consecutive configurations. If a
configuration is y0 yl ..yn-1, where yi € [00,01,10,11],




after shifting the window pair , the only possible
configurations are four: yl ..yn-1 yn with yn €
[00,01,10,11].

A graph may now be built, with a node per different
configuration, and where a branch links node Ci to node Cj
if and only if Cj corresponds to a possible configuration
after the window pair is right shifted from Ci. In figure 1 it
may be observed such a graph for the example of an
automaton with nearest neighbouring and N=2.
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Minimal set configurations correspond to paths (minimal
paths) in this graph which nodes do not contain as a sub set
the nodes of any other possible set configuration.
Moreover there is a condition to which these paths must
obey, as follows:

The possible paths are cycles, that is the BEGIN node is a
direct successor of the END node.

The proof is direct since the number of nodes in the graph
is finite. The problem is then the search for cycles which
do not contain other cycles.

An efficient algorithm [11] has been developed for the
search of these minimal cycles, which is the same as the
search for minimal set configurations.Table 1 shows the
cycles for n=2 , the necessary and sufficient condition for
reversibility extracted from those cycles and the local
maps (cell logical functions) extracted from these
conditions. Table 2 shows the number of cycles and
number of searches used in the algorithm for n=3.

4.1 Complexity
algorithm

of the search

Bounds may be established for the search as follows:
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Lower Bound: If N is the number of neighbours per cell a
lower bound is of the order of 4N.

A very simple lower bound may be established which
shows the exponential nature of the problem. For a
neighbourhood of N there are 22N configurations or
nodes. Since the set of minimal cycles (associated to
minimal set configurations) must include every one of this
states it is proved the exponential nature of the problem.

Upper Bound: Notice that minimal cycles have at the
maximum a length of 22N /4 = 4 (N-1) | The proof is
simple . First, each state has 4 direct successors, which
means that the state space is a partition of sets of four
states - I, sets, where m is an enumeration index- ( notice
that 4 states, one from a different set I have the same I
successor set). Now, a minimal cycle can not contain more
than one node of each set Im. If this was true consider A,B
elm belonging to the same cycle : X-A-K-Z-B-X , then
the cycle A-Z-K-A also exists, which means that the first
one was not minimal. This demonstrates the maximum
cycle length used above.

As the search is through a tree (each node with 4 leafs) an
uppeI{J bound on that search is of the order of 4MaxLenght
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TABLE 1

Minimal Cycles (N=2)

1-4 1-6-8 1-6-11-12 1-7-12 1-7-14-8 2-8 2-94
2-9-7-12  2-11-12 2-11-13-14 3-12

3-13-4  3-13-6-8 3-14-8 3-14-9-4 69 6-11-13
7-13  7-14-9 11-14

Necessary and Sufficient condition from above cycles:

[fco, 0)—f(1 0) OR f(0, 0)—f(0 1)] AND [f(1,0)=£(0,1)] AND
[f(1,1)=f(1,0) OR f(1,1)=f(0,1)] AND [f(1,1)=f(1,0) OR
f(1 0)—f(0 1) OR f(0,1)=f(1,1) ] AND [f(1 0)—f(0 1) OR

£(0,0)=f(1,0) OR £(0,1)= ( f0,0)] AND [f(1,1)=)1,0) OR
f(1,0)=R0.1) OR £(0,0)=R1,0) 0)] AND [f(1,0)=(1,1) OR
£(0,0=f(1,0)] AND [f(1,1)=F0,1) OR f(1,0=R(1,I) OR
£(0,0=F(1,0) OR (0,1)= f0,0)] AND [f(0,1)=(T,1) OR
£(0,0)=f(0,D] AND [f(1,0)=f(0,]) OR (0,1)=R(I,1) OR
£(0,1)=£(0,0)] = 1

The local maps satisfying are 0101 1010 0011
1100 ; where the following input sequence of
combinations is used :

[00,10,01,11] for the 2 inputs.

TABLE 2
Total of Minimal Cycles 120534
Total of Searches 1167626

Medium length of cycles 12



5: Conclusions

It has been shown that for one dimensional cellular
automata there exists necessary and sufficient conditions
for reversibility. For a given cellular automata that
condition may be expressed in the form of a Boolean
expression, which imposes restrictions on the local map
output, and from this expression the local maps can be
derived. The Boolean expression is derived from a set of
cycles in a neighbourhood dependent graph. Unfortunately
it is shown that the computational complexity involved is
of exponential nature which implies severe practical
restrictions for the determination of such conditions for
non-trivial cases. A simple example is also shown in the
text.
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