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Abstract

Of particular relevance in the theory and applica-
tions of cellular automata is the concept of invertibil-
ity. We study the computational complexity of de-
ciding whether or not a given finite cellular automata
is invertible. This problem is known to be CoNP-
complete, we prove that the expected-time complex-
ity of its randomized version is “hard”: the problem
is CoRNP-complete. Finally, we discuss some conse-
quences of this result in the theory and applications
of cellular automata.

1 Introduction

There is a renewal of interest in studying the fun-
damental connections between physics and computa-
tion [1, 2, 11] and, in particular, in modelling comput-
ing systems which explicitly consider the fundamen-
tal physical limitations such as finiteness of the speed
of light and layout in ordinary space. Cellular au-
tomata represent one of the best mathematical model
under this point of view [2, 17]. Cellular automata are
networks of numerable, identical and uniformly inter-
connected machines (cells? evolving in a parallel, syn-
chronous way. Hence, the local interactions among the
cells determine a global function acting on the space
of all possible configurations. A cellular automaton is
invertible if its global function is bijective. The invert-
ibility of a cellular automaton is an important issue in
modelling reversible physical phenomena.

Kari [12] has recently proved that the problem
which consists of deciding whether or not a given cel-
lular automaton is invertible (in short REV) is unde-
cidable. Most of cellular automaton applications in
computer science requires to consider a finite number
of machines rather than an infinite one. In [15], the
complement problem of REV, for finite cellular au-
tomata, has been proved to be NP-complete. The
proof given in [5] holds also under very strong restric-
tions on the topology (neighborhood) of the connec-
tions among cells; more recently, a different proof of
this result has appeared in [6]. The consequences of
these results for computer science and physics are also
analysed in [3, 4].

In this paper, we investigate the average-case com-
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plexity (see [15, 10]) of a natural generalization of
EV. In this new version, the instance specifies also
the particular closed subset of global configurations
on which the invertibility property is required. When
an N P-completeness result arises, the attention nat-
urally focuses on less ambitious goals than to decide
any instance of the problem in polynomial time. Sev-
eral N P-complete decision problems have algorithms
working in polynomial average-time according to a
fixed probability function given on the input space
[7, 14] (that is they belong to the complexity class AP
- see section 2}, However, we show that polynomial
average-time algorithms for our problem are unlikely
to exist. Indeed, we prove that the generalized ver-
sion of REV cannot belong to AP unless RN P, the
randomized version of the class NP, is contained in
AP (i.e. all NP-complete problems would have an
algorithm working efficiently in average). To do this,
we show that our problem is complete for the comple-
ment class of RN P (i.e. CoRN P). Very few examples
of interesting complete problems have been found un-
til now for this class. The average-case complexity of
any computational problem depends not only on the
problem but on the probability function as well. In
particular, the probability function yielding the uni-
form distribution on the inputs of a fixed size, is often
uninteresting from the point of view of practical ap-
plications: in most cases, we could prefer to give more
“importance” to a fixed subset of inputs rather than
to another. Following this line of reasoning, it is inter-
esting to underline that our hardness result holds for
every choice of the positive probability function given
on the space of all finite cellular automata.
Finally, we shall discuss some consequences of this
result in the theory and applications of cellular au-
tomata.

2 Preliminaries

Finite cellular automata. A finite two-dimensional
cellular automata (in short ca) can be formally defined
as a fourtuple

A=(n,Q,N, f) where:

e 7 is the size of the support array; hence, there are
n? finite-state automata (called cells) located on




the two-dimensional lattice having periodic struc-
ture (i.e. Z2);

e (@ is the finite set of cell states;

e N is the set of Z2-vectors determining the
neighborhood; for any j € N, the cell at position
i+ j is a neighbor of cell at position ¢ (in which
follows we shall identify the cell with its position);
The set of neighbors of i is denoted as N(z). The
Moore neighborhood, consisting of the center cell
and the eight surrounding cells, is called N™.

e f: QNI — @ is the local function; the state of
each cell ¢ is updated according to f which has
the state of the neighbors of ¢ as input.

A configuration of A is a function X : 22 — Q

(i.e. an element of the set £ = QZ2) and since the
evolution of the system is synchronous (i.e. there is a
global, discrete clock which is unique for all the cells)
the local map consisting of the pair (ZJIV , f) uniquely
determines a global function F : ¥ — ¥.

Average-case complexity. Let us now revise the
basic definitions of Levin’s theory of the average-case
complexity [15]. All definitions and results given below
can be found, in a more detailed form, in [10]. A
randomized decision problem is a pair (L, Pr) where
L is a decision problem on the instance set S* (i.e.
a subset of 5*) and Pr is a probability function on
§*. We call (L/X, Pr;x) the restriction of (L, Pr)
to a subset X of §* with Pr(X) > 0 (Pr/x is the
probability function proportional to Pr in X and zero
outside). Given a function f : $* — R*, then f is
pl;)lynomial on Pr-average if there exists an € > 0 such
that:

Siopel>03(f(2))¢ - 2] - Pr(z) < co.
Now, we can introduce the following definitions:

o A randomized decision problem (L, Pr) is in AP
if there is a Turing machine deciding L within
time polynomial on Pr-average. Similarly, a func-
tion f : $* — S'* is computable in AP — time
with respect to the probability function Pr on S*
if there is a Turing machine which computes f
within time polynomial on Pr-average.

e Let Pr; and Pr; be two probability functions on
S*; Pry dominates Pry if there exists a polyno-
mially bounded function f : $* — R* such that,
for any £ € S*, we have: Pri(z) < f(z)Prz(z).
Then, a randomized decision problem (L, Pr) 1s
in RNP if L is in NP and Pr is dominated
by a probability function Prs whose distribution
Pr3(y) = Xy<yPr(z) is polynomial-time com-
putable.

A function f reduces a decision problem L; to an-
other L, if, for any instance z of L;, we have z € L,
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iff f(z) € L;. Moreover, a function f : S — S}
transforms Pry into Pr, if, for any y € S}, Pra(y) =
E{s:f(z)=y} Pri(z). Thus, we say that Pry is domi-
nated by Pr, with respect to a function f (in sym-
bols Pri</ Pry) iff there exists a probability function
Pr such that Pr dominates Pr; and f transforms
Pr into a restriction of Pr,. For any pair of ran-
domized problem (L1, Pr1), (L2, Pra) we say that a
polynomial-time function / Av-reduces (Ly, Pry) into
(L2, Pry) iff it reduces Ly/{z : Pri(z) > 0} to L2 and
Pr,</ Pry. This definition extends the concept of re-
duction among decision problems from NP to RN P;
indeed, it is possible to prove that the Av-reducibility
is a transitive relation in RN P. Moreover, if (L1, Pry)
Av-reduces to (L, Prg) and (L3, Pry) is in AP then
(L1, Pry) is in AP; in particular any restriction of an
AP problem is in AP. Finally, we say that a random-
ized decision problem (L, Pr) is RN P — complete if it
is in RNP and for any (L1, Pry) € RNP, (L, Pr;)
Av-reduces to (L, Pr). In which follows we present
a randomized problem that Levin [15] and, more re-
cently, Gurevich [10] proved to be complete for RN P.

Given a finite set of colors C we call set of tiles
any subset 7 C C? where each ¢ € 7 represents a
1 x 1 square with colored edges. The four edge colors
of a fixed tile t will be denoted as: top(t), right(t),
bottom(t) and left(t). Moreover, given a finite set of
tiles T, a function

r:[0,....,5j—-1]—r

is a 7 — row of length j if left(r(i + 1)) = right(r())
for any i < j.

Randomized bounded Tiling Problem
(RTP(r,n,r))! Instance: A finite set of tiles 7, the
unary notation for an integer n > 1, an integer j such
that 0 < j < n and a 7-row r of length k. r is such
that either k¥ = j or £ < j and 7 has no tiles ¢ hav-
ing left(t) = right(r(k)). Question: Does a correct
7-tiling of the square T = [0,...,n—1} x 0,...,n—1]
exist? (for a correct r-tiling we intend a function
: T — 7 such that the common edge of every
pair of adjacent tiles has the same color and with
g(0,7) = r%) for any ¢ < k; the tiles cannot be ro-
tated). Probability: Choose = with any fixed positive
probability function; choose n with the “standard”
probability? proportional to 1/n?; choose uniformly
J < n (i.e. with probability 1/n); choose uniformly
r(0); choose r(i + 1) uniformly in the set ; = {t € 7
: left(t) = right(r(7))}, i = 1,...,k — 2. All these
choices are mutually independent, thus the resuiting
probability of an RT P-instance is the product of the
probabilities of the single events described above.

Theorem 2.1 [15,
RN P-complete.

10] RTP(r,n,r) is

1Observe the “generalization” represented by string r with
respect to the classical definition of the Tiling Problem in which
no strings are determined (see [8]).

2See section 2 of [10], for more discussions on appropriate
probability functions on the set of positive integers;



In the following corollary, we summarize a property
which is a direct consequence of the proof of theorem
2.1 (see theorem B1 and lemma B6 of appendix B in
[10]); such a property will be used for proving our
result.

Corollary 2.1 RTP remains RN P-complete even
when, fori=1,...,k — 1, top(r(i)) € {0,1} and the
size of 7, ¢ = 0,...,k — 2, is ezactly two, that is,
when the probability of any possible r-row r of length
k is proportional to (1/2)".

The problem. A ca is invertible if its global function
is bijective. Thus, the invertibility problem (REV)
consists of deciding whether or not a given ca is invert-
ible. We define now the generalization of REV’s com-
plement problem, since, for proving our result, we will
always refer to this problem. However, since the class
AP is equal to its complement, it should be clear that
any hardness result (like an RN P-completeness one)
for one of the two problems (i.e. REV and its com-
plement) implies an equivalent hardness result (i..
CoRN P-completeness) for the other as well. Since
the set X is finite, the invertibility property is equiv-
alent to the injectivity one, hence REV’s complement
(in short NIP) consist of deciding the existence of a
pair of different configurations having the same image
according to the ca global function. Let us consider
the concept of legal configurations which has been
first introduced for other decision problems dealing
with ca (see for example [9, 16]). Consider a subset®
P=(P ={0,....,k1} x P, ={0,...,k2}) C Z2, the
restriction of any configuration X € L, on the domain
P, will be denoted as X;p. Now, given any paitern z
for P (i.e. z: P — @Q), we can introduce the following
legal configuration set:
When P is equal to the empty set, we adopt the
convention: 2(3, *) = X. Moreover we say that
(P, z) is closed with respect to the ca global func-
tion F if, given any X € £, X € X(P,z) iff F(X) €
X(P,z). Finally, when the state set () consists of
more than one component, we can easily adapt the
above definitions: without loss of generality, suppose
Q = Qa4 x @y, then by using the previous notations,
given any P C Z2 and any Q,-pattern z for P, that

is any z : P — Q,, we have the following legal config-
uration set:

Y(P,Qs,z)={X€X Xp==z
with respect to the component Q,}.

We are now ready to introduce the formal definition
of our problem:

Randomized Non Invertibility Problem
(RNIP(A, P,Qq,z)) Instance: A ca A=(n,Q, N, f)

3We remark that it is not a restriction to consider subsets,
like P, having always (0,0) as the first element since the toroidal
structure of the support.
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with global function F, a support subset P = P; x
P; C 2! and a Q,-pattern? z : P — Q,. Question:
Does two different configurations X and Y belong-
ing to the legal set (P, Q,,z), such that F(X) =
F%Y), exist? Probability: choose the ca-size n with

the standard probability Pr(n) proportional to 1/n?;
choose (Q, N, f) and Q, with your favorite positive
probability function; choose the size of P; and Ps,
independently, with uniform distribution in the set
{0,...,n—1}; choose a Qq4-pattern z : P — @, with
uniform probability in the set QF of all possible Q,-
pattern of P (i.e. every possible pattern has proba-
bility 1/|QF]). All these choices are mutually inde-
pendent, thus the resulting probability of an RNIP-
instance is the product of the probabilities of the single
events described above.

Let us observe that the above definition contains
the classical definiton of NIP as the particular case in
which P = 0.

3 The result

Let us now give the result of this paper:

Theorem 3.1 RNIP is RN P-complete for any pos-
itive probability function given on the space of finite
ca. Hence, the generalized version of REV on finite
ca, cannot be solved in polynomial time in the average-
case, unless RNP = AP.

Proof. (Overall Scheme). In order to prove the the-
orem, we show that RTP Av-reduces to RNIP. Let
z = (r,n,r) (where the T-row r has length k) be a
given instance of RTP and let TOP(r) C C* be the
subset of colors appearing in the Top-component of
the tiles in . Basically, the reduction consists of the
following three steps (see also [3]).

i) We first transform 2z = (7,n,r) to a new instance

2 = (r*,n+ 1,r'), where |7}| = || for any i =
1,..., k—1 (see definition of RTP), such that r ad-
mits a correct tiling for the lattice {0, ...,n — 1}

iff ' admits a correct tiling for the torus Z2,.
Furthermore, we prove that this transformation
is an Av-reduction® and thus, we can apply the
following step.

ii) We transform the instance z' to a particular ca
A= (n+1,7'xQ*, N™, f4) having the following
properties:

1. The size of set ¢ x Q4 does not depend on
n;

*In order to keep this definition as general as possible, the
set Qq can be either a subset of Q or a subset of a component
of Q. In other words, the particular choice of Q,, among these
possibilities, has no relevance for our next result.

5This first step shows also an independent result: RTP is
RNP-complete also when the lattice has periodic structure.




2. fA is the identity with respect to the com-
ponent 7!, that is, it does not change the tile
component;

3. A is not injective in
2({0,...,k — 1} x {0}, TOP(r"),z(r*) =
{top(r(0)), top(r*(1)), . .., top(r'(k — 1)));

4. In each pair of different configurations X
and Y belonging to I({0,...,k — 1} x
{0}, TOP(r*), z(r*)) such that FA(X) =
FA(Y), there is no cell having the same
value in both X and Y.

iii) Finally, we transform the ca A defined in the

previous step to a new ca B = (n + 1,7 x
Q4,N™, fB) where, for every cell i € Z2,,, we
have:

fA
Identity function

if there are no
tiling err. in N(i)
otherwise

B _

{

Let us now give the proof scheme of the correctness
of the above global reduction that will be called 7. In
particular, 7 maps each instance z* = (¥, n+1,r’) to
the RNIP-instance (B, P = ({0,...,k-1}x{0},Q. =
TOP(r'),z(r))). If the torus ZZ,, can be cor-
rectly tiled with tiles in 7¢ then B is not injective
in ({0, ...,k — 1} x {0}, TOP(r*), z(r')); indeed, if
we choose the 7!-component of two different config-
uration X and Y in order to have the same cor-
rect tiling of the torus, then f2 operate like f4 for
all the support cells. Since A is not injective in
z({0,...,k—1}x{0}, TOP(r), z(r*)) (see property 3.
of A), the Q4-component of X and Y can be chosen®
to form two different configurations of B’ having the
same image with respect to the global function of B
(in short FB). Conversely, if B is not injective in
2({0,...,k — 1} x {0}, TOP(r'), z(r")) then we have
FB(X) = FB(Y), for some X # Y belonging to this
set and, moreover, the tile components of X and Y
must be the same (because of property 2. of A); there-
fore, with regard to the state component Q4, we still
have two different configurations X and Y, belonging
to ({0, ...,k — 1} x {0}, TOP(r*), z(r")), having the
same image also according to F4. From property 4.
of A, the local function f4 must change the state of
every cell in X or in Y; same claim must hold for fZ,
thus, according with the definition of fB, there must
be no tiling errors in the neighborhood of each cell and
the torus can be correctly tiled.

From step ii) of the above proof, it should be clear
that in order to prove our result we have to define
t!le ca A having the properties 1.,..,4. This ca is cru-
cial since represents the bridge from the definition of
a particular local map to the expected macroscopic
behaviour. Let us now give an informal description

6We observe that any configuration for A can be also seen
as a configuration of B and viceversa
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of A. The set Q4 has two components: a tile com-
ponent (again!) and a finite set of boolean variables
(i.e. an array of bits). The tile component determines
one or more passages between adjacent cells (see also
[4, 12]). When a global configuration defines a correct
tiling (with respect to the tile component), we have the
following covering property: the passages yield a path
covering all cells of the toroidal support. A boolean
variable (i.e. a bit) is defined on each passage. In
case of correct tiling of the neighborhood (with re-

spect to the tile component), the local function A
operates the XOR function between the bits of con-
secutive passages in the path. A similar construction
has been first introduced by Kari in [12], however his
method (and, in particular, the set of tiles adopted
by him) works on non periodic configurations of the
infinite lattice. Under this point of view, our main
technical result consists in making the path able to
recognize the finite structure of the toroidal support
of arbitrary size by using only “local” informations.
To do this, we introduce a new set of tiles having the
covering property; moreover, the cardinality of this tile
set doesn’t depend on the size of the toroidal support.

Finally, we observe that the set £({0,...,k — 1} x
{0}, TOP(r*), z(r*)) is a closed set with respect to

both ca global functions F4 and F2 since they keep
unchanged the component 7¢; this proves that RNIP
is RN P-complete even when we consider only closed
subsets of .

Probability function property. Let us now prove
that 7 is an Av-reduction. From corollary 2.1 and step -
i) of the reduction w7, we can consider only RTP in-
stances in which the set of the top colors of all possible
rt-rows is: TOP(r*) = {0,1} and the corresponding
probability of a given 7*-row r! of length k (0 < k < n)
is proportional to (1/ Z)k. Thus, the probability of the
RTP instance z* is Pri(zt) = ¢(1/n®)(1/2)* for some
positive constant ¢ depending only on 7. Since the
subset TOP(r?) has always cardinality two, the prob-
ability of the RNIP instance w = w(z'), is Pra(w) =
B(1/n®)(1/2%) where S is a positive constant not de-
pending on n (remark also property 1. of the ca A).
For these reasons, it is easy to verify that Pry domi-
nates Pry with respect to .

4 Conclusions and future applications

In this paper, we have presented the first example
of decision problem, dealing with cellular automata,
which can be considered “hard” also in the average-
case complexity. In ({18]) a number of open prob-
lems concerning cellular automata were posed. One of
them is the question of how common “hardness” re-
sults are in problems dealing with cellular automata.
The answer may have a significant bearing on the prac-
tical ability to predict the outcome of various chaotic
phenomena based on computation. In addition, some
of the practical difficulties of efficiently programming
parallel computers might be revealed [19]. In partic-
ular, our “hardness” result for REV implies that, in
order to obtain a general-purpose computing model
based on invertible finite cellular automata, we should



define a local map together with a closed subset of le-
gal configurations which a priori yield a global invert-
1ble process, since this property cannot be, in general,
efficiently tested (i.e. in polynomial average-time).

On the other hand, the N P-completeness result
proved in [5] implies the existence of a family of in-
vertible finite ca having local and simple interactions
whose inverse maps have, on the contrary, large and
complex interactions. This theoretical result, concern-
ing the worst-case complexity, gives no informations
about the relative size of this family with respect to
the size of the class of all invertible finite ca; In other
words, it was possible that such a particular behaviour
was very “unlikely” and thus difficult to generate. On
the contrary, the discrete-probabilistic nature of our
result shows that, when the closed set of legal configu-
rations (on which the ca will run on) is also specified,
then this family of invertible ca has an “important”
relative size and its effective contruction” could define
an interesting class of one-way functions having the
well-known practical applications in pseudo-random
generators and in cryptology.
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