Encoded Arithmetic for Reversible Logic

(preliminary version)

AKHILESH TYAGI
Department of Computer Science
Atanasoff Hall, Jowa State University
Ames, TA 50011-1041

Abstract

The CCD based implementations of reversible logic con-
sume constant amount of energy per switching event
which depends only on the charge packet size and not
on the interconnect length. Within this model of com-
putation, it seems possible to leverage data encoding to
reduce number of switching events for the computation
resulting in lower overall computation energy. We ex-
plore the applicability of encoding for different datapath
functions in this paper. We also develop a lower bound
on switching count in a model similar to the traditional
VLSI model of computation. A notion of reversible com-
munication complexity is also developed.

1 Introduction

Many recent reversible logic implementation proposals,
most notably Merkle’s [Mer93], use charge packets to
represent the logic state. The switches operate in a
gradual manner (also known as electroid model {Hal92]
or adiabatic switching [KA92]) once the two ends have
been established at the same logic state. The switch-
ing energy of the switching transition in these models
can be traded for the speed of switching almost arbi-
trarily. Another interesting aspect of these switching
systems based on charge packets is that the switching
energy is not proportional to the length of the intercon-
nect any more. The amount of charge needed to estab-
lish a charge packet is not a function of the capacitance
of the output node. This is a significant variant over
the VLSI complexity theory model where the amount of
charge transferred for a switching event is taken to be
proportional to the length of the wire being driven. In
this traditional VLSI model of computation, encoding of
information is used as an adversary in the lower bound
arguments. When n information bits need to be trans-
mitted between two parts of a computing system, the
amount of switching can be reduced by expanding the
n bits of information into m > n physical bits. Tyagi

0-8186-6715-X/94 $4.00 © 1994 IEEE

135

[Tya88] shows that the average switching in this case is
given by £2 EET:'—FIT) Hence an exponential encoding

(accomplished by a decoder) results in O(1) switching.
It has been shown Tyagi [Tya88], [Tya89], Aggarwal et
al. [ACRS8] that encoding of information, although re-
duces the total switching, still results in higher switch-
ing energy for majority of interesting functions. This is
because by expanding information (encoding by intro-
ducing redundancy) the area of the implementation also
increases which results in longer wire lengths. The effect
of reduced switching due to encoding is overwhelmed
by the increased wire lengths resulting in higher over-
all energy consumption. The independence of switch-
ing energy per switching event and wire lengths in the
charge packet based implementations suggests the use
of encoded arithmetic so that the number of switching
events can be reduced. This results in a further re-
duction in switching energy. This paper addresses the
benefits derivable from encoded arithmetic. In particu-
lar, all the functions with the communication complex-
ity [Yao79, Yao81] of O(1) do not benefit at all from
encoding. The encoding results in higher area at no
reduction in total switching. An adder, an ALU or a
counter are examples of this type of function. However,
transitive functions [Vui83} which include shifting, inte-
ger multiplication and matrix multiplication, can benefit
significantly from encoding. For instance, an n-bit bar-
rel shifter takes area O(n?), time O(logn) and results
in O(nlogn) switching events. When these n bits are
encoded into m > n bits s.t. m < 2" the area goes up to
O(m?), time stays at O(logn) (assuming unit time per
switching event) and the switching count comes down
to fg%n%%;. Int.eger multiplication exhibits simi.lar S‘et
of savings in switching count. Note that the savings in
switching count come at a significantly increased cost in
area. There is also the cost of encoding and decoding
both in terms of additional switching count and area.
However, such an encoding and decoding need be per-
formed only once if every datapath component is de-
signed to work with encoded data.

Another issue explored in this paper is to develop a

rudimentary complexity theory for the VLSI model with
unit switching energy cost which reflects the realities of
charge packet based computing systems. In particular,
the attributes with significant change in lower bounds
in this model are energy F and switching count. Note
that the lower bound arguments for area and AT? are
still valid. We demonstrate a lower bound of £2(IlogI)
on the switching count of a non-encoded computation
of a function with communication (information) com-
plexity of I. This establishes a tight lower bound of
£2(nlogn) on the switching count of shifting and integer
multiplication (in fact on all transitive function compu-
tations). This proof can then be extended to show an

7] (m';l?"f]"n—)) lower bound on the switching count of en-

coded arithmetic. The switching energy lower bound is
also given by £2(1logI).

The third part of this work introduces the notion of
reversible communication complezity. Yao [Yao79] in-
troduced the notion of communication complexity for a
function f of n input bits as follows. Given a partition
of n input bits into two equal-sized sets I; and Igr, and
assuming that both the sides know the truth table for
the function f, what is a lower bound on number of bits
that need to be exchanged between two sides before one
of them can decide on the function value? The commu-
nication complexity (or information complexity I(f, n))
of a function f characterizes the complexity of its imple-
mentation. This definition of communication complex-
ity can be modified so that it models the number of bits
exchanged between the two sets assuming that the com-
putation is to be reversible. In general, the reversible
communication complexity of any function with n input
bits can be shown to be at most 2n. If all the input
bit combinations were equally likely and we dealt with a
model consisting of Fredkin gates then a lower bound of
n on the reversible communication complexity can also
be derived. We have not been able to formulate or derive
any non-trivial lower bounds on reversible communica-
tion complexity so far.

2 Preliminaries

This section provides some previously established results
and a brief description of the model. The VLSI model
of computation is adopted more or less from Thomp-
son [Tho79]. Most features of this model are likely to be
true for a charge packet based CCD like technology. The
essential features of the model are: computation graph
is embedded in a Cartesian grid; there are a constant
number of communication layers in this grid; processing
gates are embedded at the grid crossings with zero or
unit area; the initial data values are localized to some
constant area. Note that the Cartesian grid alongwith

136

the finite number of routing layers assumption also stip-
ulates that the fanin to each gate is limited to some
constant.

Let us formalize the notion of switching count. We
say that in a bit sequence a1, as,...,a;, there is an al-
ternation at position j if a; # aj4; for 1 < j <I1-1
Let 6; be 1 if a; # a;41 and 0 otherwise. Then the total
alternation for a I-bit sequence is given by Zi;ll 8;. The
following lemma from Tyagi [Tya89] provides a combi-
natorial result about average switching count in trans-
mitting k information bits with the code space of ' > &
physical bits.

Lemma 1 Let k' and k be two positive integers such
that k' > k. The average number of alternations in
transmitting a k' bit encoding of k information bits,
Ak k) > k/4log(4k'[k).

Proor SKETCH: The proof is based on a greedy con-
structive method. Let Si/; denote the set of all the
k’'—bit strings with exactly ¢ 1’s. Thus S3¢ contains

/
only 00 and S3,; contains 01 and 10. There are (I‘;)

strings in Sgs ;. We prove in [Tya89] that a set of the form
St = Ul_oSkr i, for I < k'/2, has the smallest average
Hamming distance for its size. For | = k/4log(4k’/k)
this set also contains 2* distinct codes and hence the
result.]

3 Encoded Arithmetic

Encoding can be used to save on switching as proven in
Lemma 1. The intuition behind this is that if only 2"
distinct events need to be transmitted, by choosing a se-
lected subset of 2", m-bit vectors for m > n (a subset
with small average pair-wise Hamming distance) to rep-
resent these 2" events the average switching count can
be reduced. However, we still need at least one switching
event since we cannot physically create fractional switch-
ing events. This is the reason why there is no apparent
benefit from encoding in a function such as adder. An
adder needs to transmit only one bit (a carry bit) be-
tween its bit slices. By encoding the n input bits of an
adder into a larger number of bits m, the one bit com-
munication requirement between bit slices still remains.
We only add extra area of encoding without any switch-
ing count benefit in this case. This observation holds
for all the functions with O(1) communication complex-
ity. There might be marginal improvement in switching
count for a function which transmits say 3 bits between
its bit slices. But, in most cases, this saving might not
be worth the increase in area.

log(:’n/n) blocks

log(m/n) bits

n bits

log(m/n) bits

log(m/n) bits

m/n bits

m/n bits

m bits
m/n bits

Figure 1: The Canonical n — m Encoding Scheme

Encoding scheme: The canonical encoding we use
for the datapath functions is as follows (shown in Fig-

ure 1. To encode n bits into m > n bits, consider
g7 blocks of log(m/n) bits. Each such block is

sent through a log(m/n) — (m/n) decoder resulting
in approximately m encoded bits. The output of the
encoder consists of m,';x—;;j blocks of (1n/n) bits each.
Each of these blocks contains exactly one 1 and all the
rest of the bits are 0. The pairwise Hamming distance
of any two such output words then is at most W%ﬂ‘
This is because the Hamming distance of any two output
blocks (of (m/n) bits) is at most 2. This type of encod-
ing can be accomplished with at most E?g_(%z%j switching
count using igzrmray copies of log(m/n) — (m/n) de-
coders. However, this would require gates with fanin
of n. Hence, a realization of such an encoder as a tra-
ditional log(m/n) — (m/n) decoder along the lines
of decoder design in Mead-Conway [MC80] requires ex-
actly log(m/n) switchings with 2—'—"13"1"‘—/"—) area. Hence
the total switching count of n — m encoding is n with
an area requirement of 2m. Note this already precludes
encoding in any datapath function where the maximum
switching savings are of the order of 1 per input bit (such
as adder) if the encoding were to be done only for that
datapath function.

We can similarly estimate decoding energy for m —
n conversion. In (m/n) — log(m/n) decoding each
of the log(m/n) output bits is an V of (m/2n) input
bits. This can be designed similar to the or-plane of a
PLA requiring M&nﬁ'_‘jﬂl area. Since roughly half of the
log(m/n) bits are expected to switch each needing (m/n)
switchings to generate, the total switching is M,(—lﬂ&-)
The switching can be reduced at the cost of area, but it
cannot be lowered beyond (log(m/n))? due to constant
fanin restriction. The first case results in 2m area with

m switching for m — n decoding. The second design

137

can reduce the switching to nlog(m/n).

Datapath Functions: Now let us consider the impact
of this encoding/decoding on the design of several dat-
apath functions. Let us first consider an adder. We
can illustrate the problems and savings involved with
the example of a carry-ripple adder. Consider 8-bit ad-
dition. Say each block of 2-bits has been encoded into
4 bits. Hence the addition of A = 0010 0010 and B =
1001 0001 corresponds to adding encoded values: A’ =
0001 0100 0001 0100 and B’ = 0100 0010 0001 0010.
Note that 0001 corresponds to a zero block, or in general,
the position of 1 in a k bit block say i for 0 <7 < (k-1)
encodes the decimal value i. Addition of 2 such 4-
bit blocks results in a 8-bit unary block, for instance
0100 + 0010 = 00001000. This requires shifting all the
zeros to the left of the bit 1 in one addend to the less-
significant bit positions of the other addend. This sug-
gests a bit-serial implementation which is slow, but also
saves on area. The number of switchings in this case can
be as high as the number of bits in each encoded block,
i.e., (m/n) in the general case. On the other extreme, a
higher area design would have m/n A gates per output
position i to consider all the additive factors of the num-
ber i. In the constant fanin model, the output values of
these m/n A gates need to be ored requiring log(m/n)
switchings for exactly one output bit position per block.
But, recall that the original carry-ripple adder would
have O(log(m/n) switchings for this block in any case.
Hence there are no real switching savings despite the area
penalty in this case. This would provably be the case
for all datapath functions with information (communica-
tion) complexity of O(1). Information complexity is the
number of bits that need be exchanged between any par-
tition of input bits into two evenly sized sets for the func-
tion computation to be correct. This is described in more
detail in Section 5. For instance, for addition there exists
a partition of input bits with a1, b1, as, ba, ..y @ny2,bnye

stage logn stage 1

Figure 2: The logn Time Barrel Shifter

and a(n/2)+1,b(n/2)+1, 8(n/2)+2, b(n/2)+2, - - -1 @n, by such
that exactly one bit (the carry bit) need be exchanged
between the two sets.

Lemma 2 All the type-1 datapath functions, the func-
tions with O(1) information complezity, do not benefit
from encoding of input.

The proof would need to argue that any encoding still
results in one switching per bit position which is zero
gain in switching count.

Another difficulty encountered in the encoded addi-
tion outlined above is the variation in the number of
encoded bits per block. For a consistent encoding, we
wish to retain the same number of encoded bits per block
(some m/n). This is specially important if we wish to
encode and decode only once during the computation.
But the result block of addition of two (m/n)-bit blocks
has length (2m/n). Fortunately, these blocks can be
rearranged to restore the consistency of m/n encoded
bits per block. However, it requires a carry propagation
through log(m/n) adjacent blocks resulting in at least
log(m/n) switchings per re-arrangement. Once again,
this rearrangement need be performed only once per ad-
dition.

Let us consider shifting next. The barrel shifter de-
sign of Figure 2 requires nlogn switchings for an area of
O(n?). This shifter design can be extended in the way.
The n data bits are encoded into m bits as described in
our canonical encoding scheme, i.e., each block of ad-
Jacent log(m/n) data bits is encoded into (m/n) bits.
Note that the logn control bits for the shifter need not
be encoded. Now each of the logn columns has m bits

138

passing through it. Each block of log(m/n) bits from the
non-encoded design (m/n encoded bits) is connected to
the corresponding block of the next stage. This shifter
only requires l—%%’% switching at an increased area re-

quirement of m?2.

Now let us consider integer multiplication. The in-
teger multiplication has two parts to it. Consider the
traditional shift and add multiplier. First, for the row
multiply step, each encoded block of the multiplicand
is multiplied by the current block of the multiplier (in-
stead of a bit of a multiplier). This is unary multipli-
cation of two (m/n) bit blocks each with exactly one
1. This involves replicating the string of Os preceding
the 1 in multiplicand block for each 0 but one preceding
the 1 in the multiplier block. This step can be performed
with (m/n) switchings per block multiplication for a bit-
serial computation with a method reminescent of block
additions. The best achievable switching count would
be log(m/n) per block multiplication with a higher area
cost. The (m/n) switching cost block multiplication
costs even more in switchings than the unencoded mul-
tiplication. The log(m/n) block multiplication however
has a total switching cost of l—(#:/n) which.is log(m/n)
factor better than the unencoded shift-and-add multi-
plier.

The pipelined n x n array multiplier also exhibits sim-
ilar savings in switching count. Here as in the barrel
shifter case both the n-bit multiplier and n-bit multi-
plicand are encoded into m bits each. The array con-
sists of W X m:zjn_) (m/n) encoded block multipli-
ers. Each block can be designed to work with log(m/n)

n2

log(m/n)"

switching count resulting in overall switching of

The variance in the size of encoded blocks is a problem
with multiplication as well. The result of each (m/n)-
encoded bit block multiplication has length (m/n)?,
which is too long. The length of the block multiplica-
tion result for a consistent encoding should only be m/n.
In this case, the rearrangment depends only on the re-
sulting block (self-contained) and can be accomplished
within a constant number of switchings per block.

In general, for datapath functions with 2(n) in-
formation complexity, such as shifter and multiplier,
the switching count savings of a multiplicative factor
n/log(m/n) can be achieved.

Lemma 3 All the type-2 datapath functions, the func-
tions with §2(n) information complezity, can save a
m factor from swilching count by using n — m
bit encoding for m > n.

1
R}

ir
Ry

R,

_____ e e e
Ril Rtlr

—

]

1

[

R

bl '

Rl 1

1

]

t

'

1

1

Figure 3: The Cutting Scheme for ET Lower Bounds

4 Switching Count Lower

Bounds

In order to derive a lower bound of §2(IlogI) on the un-
encoded switching count of a function with information
complexity I, we need a variant of the cutting lemma
from Tyagi [Tya89]. The cutting lemma there asserts the
existence of two rectangles each containing a significant
fraction of n input bits, say n/61, such that the two
rectangles are separated by distance equaling at least
the smaller perimeter of the two rectangles. Figure 3
shows such a cut. This was needed to claim that the
switching wires also have certain length. In the charge
packet model, however, the wire lengths play no role in
switching energy. We need to assert a lower bound on
the distinct switching counts. The basic framework still
is to separate the input bits into two large enough sets
such that at least I information bits are to be exchanged
between the two sets. Each such cut provides I switching
count. We need roughly log I such distinct cuts so that
the information needs of these cuts are disjoint. That
should lead to an £2(Ilog I) lower bound. The following
lemma proves the existence of log I such cuts.

Lemma 4 A VLSI circuit C computing a function f
with information complexity I can be cut into log I dis-

139

tinct partitions of nfc bits each for a constant ¢ > 2.

Proor SKETCH: Use the two dimensional cutting tech-
nique of Tyagi [Tya89] repeatedly logn times. Let the
top-level cut be level-0 cut. Cut each of these rectangles
containing at least n/81 input bits again in the same
way. The union of all the cuts in all the four rectangles
from level-0 forms the level-1 cut. In general cutting
level-i rectangles and taking the union of all these cuts
results in level-(i + 1) cut. We can form log ! (or logn
for I = {2(n)) such cuts. At that point the resulting
rectangles contain at least 1 bit each. Figure 4 shows
such a collection of cuts. a

This lemma establishes the cut required for the lower
bound of §2(IlogI) on the switching count in the
un-encoded case. Along with Lemma 1, the same
lower bound translates into £2((Ilog I)/ log(m/I)) lower
bound when an I to m bit encoding is used.

Theorem 1 An unencoded computation of a function
with information complexity I requires £2(IlogI) switch-
mgs.

ProOF SKETCH: Construct the logl cuts given by
Lemma 4 as shown in Figure 4 for the circuit C to com-
pute this function. Each of the level i cuts provides a

T
. = .
[\ —]
]
'
1
i
)
1
3
t
§
............... '
o~ . '
t
. Ls
. | —
. 1
. 1
. 1
1
]
)
N)
.)
~ -]
.)
'
——t 1~
— H
t
'
'
'
i
'
1
)
1
. —
e = ————-—-- i U -
t —
—]
1
]
1
]
t
]
1
1
i
)
—
I
1
]
]
'
] —
f
' —
!
'
3
1
1
)
)
]
¥
— 1< -
i

Figure 4: The logn step Cutting Scheme

140

balanced partition of the input bits and hence has £2(7)
information flow through it. In unencoded case, O(I)
physical bits get used for this purpose, which result in
£2(I) switchings by Lemma 1. Hence the total switching
is 2(IlogI). o

Theorem 2 A computation of a function with infor-
mation complexity I that encodes all the data through

n — m encoding requires §2 (FQ(%;E/IT)) switchings.

The proof is similar to Theorem 1 except that switching
at each cut now is £2(I/(log(m/I))) and hence the result.

5 Reversible Communication

Complexity

Yao describes the following communication model in
[Yao79). There are two computing agents A and
B cooperating to compute a Boolean valued func-
tion f(zi, 2,...,%n) whose argument is n bits long.
A knows the values of roughly half the input bits
Xa {1, Ziyy -1 Zij,yy) and B knows the
values of the other half of the input bits Xp
{2j,, Tjzr-+ -+ Tjaym}- Both A and B know the com-
plete truth table for the function f. Let M be the set
of 217/2] values of the input to A and let N be the set
of 2/*/21 yalues of B’s input bits. Then a function f
can be specified in a tabular truth-table form. The en-
try in the ith row and the jth column in this table de-
noted by f(%, j) corresponds to the value of the function
@iy Bigs s Ti gy s Tins - - o :cj[ﬂm), where i and j are
the values of the words formed with the bits in X4 and
Xp respectively. A cross product Px Q, PC M, QC
N is known as a rectangle. Note that for P x @ to be a
rectangle, the elements of P and @ need not be consec-
utive integers. If the value of the function f is constant
over a rectangle, then it is known as a monochromatic
rectangle. A partition of M x N into k disjoint monochro-
matic rectangles S; x T1, Sa X T2, ..., St X T is known
as a k—decomposition of f. Let d(f) be the minimum k
such that a k—decomposition of f exists.

The objective is to measure the amount of informa-
tion that needs to be exchanged between A and B, for
the function value to be computed. A and B can al-
ternately send a bit in {0,1} to each other based on
a certain predetermined protocol, until one of them has
enough information to determine the output value. Since
the circuits we consider are deterministic, let us deal
with the case where the algorithm to determine the
value of the communication bits is deterministic. Let
pa : {0,1}17/2 x {0,1}* — {0, 1} be the protocol func-
tion of A, where the first argument of length [n/2] is the

141

input value of the bits in X4 and the second argument
specifies the history of communication until that step.
We can similarly define the protocol function for B; pp :
{0,1}//71 x {0,1}* — {0, 1}. A protocol p = (p4,PB)
is completely specified by pa and pp, the communica-
tion algorithms of A and B. The computation starts
with A sending the bit a1 = pa(2i,, iz, -+ Tijayap €)
to B, where ¢ is the null string representing the begin-
ning of communication. B responds with the bit b
PB(Zj,, Tjs, - -+ Tjpayay» @1)- The communication contin-
ues with A sending az = pa(iy, Tisy - -1 Lipaya) a1 by).
This process stops when either A or B has enough in-
formation to decide the function value. Without loss
of generality, let A decide the value of f first, after re-
ceiving the bit & from B. It then sends a halt signal
‘H’ to B. The communication history at this point is
given by aj,b1,az,b2,...,a,b. The number of bits ex-
changed in this computation is 2I. The communication
complexity, ¢(p) for the protocol p = (pa, pp) is defined
to be the maximum number of bits exchanged over all
the input values for computing f under the protocol p.
In particular, ¢(p) is expressed as a function, g(n), of
the input size n. Thus over all the 2" input values, a
computation of a function f under the protocol p will
never need to exchange more than g(n) bits. The worst
case communication complexity, then, is given by the
minimum value of the communication complexity ¢(p)
over all the protocols p. For such a two-way protocol,
Yao defines the 2-way commaunication complezity to be
C(f, A< B) = miny{c(p) | the protocol p computes
function f}.

When one considers reversible computations, Yao’s
definition can be extended trivially by insisting on the
protocols pa and pp being reversible, which results in
¢"(p). The minimum of ¢"(p) over all reversible proto-
cols p provides the reversible communication complexity
of a function.

Note that the reversible communication complexity I”
better characterizes the complexity of a reversible im-
plementation. Hence the derivations of lower and upper
bounds on the reversible communication complexity of
interesting functions constitutes a useful and interesting
exercise. We only have a trivial theorem that shows that
in order not to lose information about the n input bits,
the information about all of them needs to be exchanged
for the computation to be reversible.

Theorem 3 The reversible information complezity of a
function with n input bits 1s £2(n).

Note that sending all the input bits also provides a
trivial upper bound of O(n). If we insist on reversing the
computation then the n bits might have to be exchanged
back leading to a total of 2n bits. Are there functions

for which some of the bits are so correlated that they
not all of them need be sent back? In that case the
communication complexity falls somewhere in between n
and 2n. We have not answered any of these interesting
questions.

6 Conclusions

Reversible logic can be implemented with a technology
where energy per communication/computation event
does not depend on the length of the interconnect (or is
constant). In such cases, by expanding the numbe of bits
in the data beyond the minimum necessary, the number
of switchings can be decreased. We have explored this
technique partially in this paper. The functions with
low communication requirements between their input bit
partitions tend not to benefit from this encoding. Adder
is such a function. However, functions that need to ex-
change a large number of bits between their input bit
partitions can save energy by using encoded arithmetic.
In general transitive functions [Vui83] which include dat-
apath functions such as shifting and integer multiplica-
tion can save energy from encoding. We have sketched
some solutions for encoded arithmetic problems. We in-
tend to actually design and layout some of these encoded
and un-encoded arithmetic functions to get more realis-
tic rather than asymptotic comparisons. We also pre-
sented a lower bound on the switching count of VLSI
computations.

Another interesting direction to explore would be to
see if residual arithmetic is a better candidate for re-
versible logic. The computations are very localized in
this arithmetic as there are no carries. Perhaps each of
these modular blocks can be encoded? There are many
questions that need to be answered in the choice of a
good arithmetic system for reversible logic.

References

[ACR88] A. Aggarwal, A. K. Chandra, and P. Ragha-
van. Energy Consumption in VLSI Circuits.
In Proceedings of ACM Symposium on Theory
of Compuling, pages 205-216. ACM-SIGACT,
1988.

[Hal92] J.S. Hall. An Electroid Switching Model for
Reversible Computer Architectures. In Pro-
ceedings of the Workshop on Physics and Com-
putation, PhysComp 92, pages 237-247. IEEE
Computer Society Press, 1992.

[KA92] J. G. Koller and W. C. Athas. Adiabatic

Switching, Low Energy Computing, and the

142

[MC80]

[Mer93]

[Tho79]

[Tya88]

[Tya89)

[Vui83]

[Yao79}

[Yao81]

Physics of Storing and Erasing Information. In
Proceedings of the Workshop on Physics and
Computation, PhysComp ’92, pages 267-270.
IEEE Computer Society Press, 1992.

C. Mead and L. Conway. Introduction to VLSI

Systems. Addison-Wesley, Reading, Mass.,
1980.
R. C. Merkle. Reversible Electronic Logic

Using Switches. Nanotechnology, 4:21-40,
1993. Also appears in Proc. of the Workshop
on Physics and Computation, PhysComp ’92,
IEEE Computer Society Press.

C.D. Thompson. Area-Time Complexity for
VLSI. In Proceedings of ACM Symposium
on Theory of Computing, pages 81-88. ACM-
SIGACT, 1979.

A. Tyagi. The Role of Energy in VLSI Com-
putations. PhD thesis, Department of Com-
puter Science, University of Washington, Seat-
tle, 1988. Available as UWCS Technical Re-
port Number 88-06-05.

A. Tyagi. Energy-Time Trade-Offs in VLSI
Computations. In Proceedings of the Ninth
Conference on Foundations of Software Tech-
nology & Theoretical Compuler Science, pages
301-311. Lecture Notes in Computer Science
#405, Springer-Verlag, 1989. a revised version
to appear in IEEE Trans on Computers.

J. Vuillemin. A Combinatorial Limit to the
Computing Power of VLSI Circuits. [EEE
Transactions on Computers, pages 294-300,
March 1983.

A.C. Yao. Some Complexity Questions Re-
lated to Distributed Computing. In Proceed-
ings of ACM Symposium on Theory of Com-
puting, pages 209-213. ACM-SIGACT, 1979.

A.C. Yao. The Entropic Limitations on VLSI
Computations. In Proceedings of ACM Sympo-
sium on Theory of Computing, pages 308-311.
ACM-SIGACT, 1981.

