A Reversible Instruction Set Architecture and Algorithms

J. Storrs Hall
Laboratory for Computer Science Research
Rutgers University
New Brunswick, NJ 08903

Abstract

We describe a reversible Insiruction Set Architec-
ture using recently developed reversible logic design
techniques. Such an architecture has the dual advan-
tage of being able to run backwards and of being, in
theory, implementable so as to dissipate less than log
2 kT joules per bit operation. We analyze several basic
control siructures and algorithms on the architecture,
showing that, for ezample, a sorting algorithm need
only dissipate O(n log n) bits even though it makes
O(n?) comparisons.

Keywords

reversible computation, entropy, heat dissipation,
reversible algorithms, finite automata, computer ar-
chitecture, retractile cascade, sorting

1 Introduction

In [8] we introduced an “electroid” logic for the de-
sign of reversible computer architectures. It was at
that time a conjecture, based on an observation of
Merkle [10], that such a logic could be used to design
a computer architecture that was not radically differ-
ent from conventional ones at the instruction set level,
and yet kept irreversible operations to a minimum.

The purpose of this paper is two-fold. First, to
demonstrate an instruction set architecture for a pro-
cessor in the electroid logic that executes a near-
conventional instruction set in a reversible manner,
requiring physical bit erasure only where implied by
the logical operations; and secondly, to demonstrate
reversible programs on such an architecture, logically
erasing bits only in the amount implied by the input-
output function of the program.

0-8186-6715-X/94 $4.00 © 1994 IEEE

128

2 Retractile Cascades

Any combinational circuit can be implemented re-
versibly by the use of a very simple technique: simply
remember the inputs.! Implementation of such func-
tions in the electroid logic is obviously straightforward.

The only problem with such a technique is that
the inputs must remain asserted until after the output
clocks have been retracted. A circuit that performs a
logic function several layers deep must have a sequence
of rising clocks, and then the reverse sequence of falling
ones. Such a circuit is called a retractile cascade.

A retractile cascade adder is seen in Fig. 1. First
the two input numbers A[0-n] and B[0-n] are asserted.
Then clock LL1 is asserted; this energizes the first
stage of each full adder, consisting of an XOR and
an AND. Then clock CC is asserted, energizing the
carry chain; finally clock LL2 is asserted, producing
the sum.

If the sum is needed more than momentarily, and
the adder or its inputs need to be vacated, it will
be necessary to save the sum using the clock labelled
LATCH. The sum would then presumably be moved
using conservative techniques or erased dissipatively.
However, it is interesting and important to note that
as long as the inputs A and B are available, the sum
can be erased non-dissipatively. Fig. 2 shows the clock
sequence which accomplishes this. This technique can
be used with any retractile cascade to erase as well as
to produce the value given the inputs.

Retractile cascades can be used for virtually all the
medium-scale components of a standard computer ar-
chitecture. Hall [8] shows a PLA, a barrel shifter,
register set, and so forth, implemented as retractile
cascades. The register set (with a correction from the
original,) appears in Fig. 3.

YThis technique appears first to have been used systemati~
cally by Drexler [6].

outputs,

LATCH

bt

(carry out) C
cC rl:] {]_'

[

A L

A3 A2 82 A1B1 A0 BO
Figure 1. Retractile cascade adder.
LATCH SN /N
LL2 /N Vo
CC T\ Y e U
LL1 - N — T N
clocks to produce the sum to erase the sum

Figure 2. Retractile add and erase clock sequences.

clock0 —
address H H H H |'l |J !“I l’j
S A
R L
clocki
dook HHHHHHHE

Ellefhcd et
S IO fc el
Ellef el

=l (==l o=

H

Figure 3: Conservative registers with retractile addressing.

an 2 M

129

3 Architecture-level Reversibility

In a complete reversible computer architecture,
memory could be implemented along the same lines
as the register set above. The appropriate method
to access memory would be “exchange with register”
rather than load and/or store, which of course are irre-
versible in general. Merkle [10] notes that many regis-
ter to register operations such as A=A+B are reversible.
Such instructions can be implemented by making the
memory cycle that produces B entirely retractile rather
than hybrid.

Sources of irreversibility in conventional instruction
sets, (as distinguished from actual architectures), are
largely of two kinds. First, setting, zeroing, copying
over data in registers or memory, implicitly erases the
previous contents of the register or memory. Secondly,
transfer of control, i.e. branch instructions, cause the
implicit erasure of the previous program counter.

In theory, a branch or jump does not cause any in-
formation loss if there is no other predecessor instruc-
tion to its target. It is only the coalescing of control
flow paths that causes logically necessary bit erasure,
and then only enough bits to distinguish between the
incoming paths. More to the point, if there is suffi-
cient information in the program state to distinguish
the paths, no bits have been logically erased at all.

The major burden of reversible instruction set de-
sign, then, is allowing the programmer to remove re-
dundant but physically represented information which
would otherwise have to be erased dissipatively. This
is accomplished by a process we call “uncopying”, an
instruction- level equivalent to the retraction stage of
a retractile logic operation.

For example, consider that register A contains the
sum of registers B and C, as if from executing

ADD A, B, C

We can reset A to 0 (the default “empty” value) by
UNADD A, B, C

The UNADD operation is performed by exactly the
same retractile adder which was used for the ADD, but
using the second, or retraction, timing on the latch

clock (Fig. 2).
4 Erasure

If the logical definition of a program requires bit
erasure, it cannot be avoided, but the instruction set

130

can separate it and make it explicit. This is accom-
plished by the ERASE instruction. This instruction can
be given a number of different interpretations.

For abstract logical reversibility, ERASE could push
the information onto a stack (or tape). With this pro-
viso, the definition of the rest of the instruction set
is such that the program could be run in reverse, in-
verting its function, reading from the tape or stack at
each point an ERASE was to be executed in reverse.

For a more practical physical interpretation, we
conjecture that computers will eventually operate at
such efficiencies that bit erasure is the primary heat-
generating mechanism (see Drexler [6]). Such a com-
puter might have a thermostatically controlled clock,
and frequency of bit erasure might be one of the more
critical bounds on operating speed.

Simply for perspicuity and keeping irrelevant mech-
anism to a minimum, we will adopt the convention
that a physical dissipation means is employed that
dissipates only when a 1 bit is being erased (e.g., if
1 is represented by postitve voltage and 0 by ground
voltage, and dissipation is by connecting the charge to
ground through a resistance.) This convention allows
us to execute ERASE on word-length data but count as
erased only those bits which might have been 1.

5 Style of Instructions

The instruction set has memory/register semantics,
similar to the classic PDP-10 instruction set, instead
of the register-to-register plus load/store style of a
modern RISC architecture. The older style, from an
age when most assembly programs were written by
programmers instead of optimizing compilers, is more
compact and easier to read. More than that, however,
the pure RISC style is considerably less amenable to
retractile implementation.

For example, in the PDP-10-style effective address
calculation, the operand of an ADD instruction might
be the contents of a memory location whose address
is the sum of the contents of a register and an im-
mediate value from the instruction. In a RISC this
would be done as several separate instructions, leav-
ing the various intermediate values in registers to be
cleaned up explicitly. An architecture with hardware
effective address calculation, however, can perform the
whole operation as a retractile cascade. This has the
practical drawback that the cycle takes twice as long
and cannot be pipelined, but it is clearly superior for
pedagogical purposes and as a proof of concept.

6 The Isentropic Instruction Set

The instruction set is similar to the PDP-10 in-
struction set, but does not have byte, halfword, or
floating point operations. It has a somewhat extended
flexibility of the basic instructions, however, including
three-address codes. For example:

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADDM
ADDM
ADDM
ADDM
ADDM

reg,
reg,
reg,
reg,
reg,
reg,

reg
reg, reg
addr(reg)

reg, addr(reg)
const

reg, const
reg, const(reg)
reg, const, addr(reg)
reg, reg

reg, reg, reg

reg, addr(reg)

reg, reg, addr(reg)
reg, const, addr(reg)

In the standard form, the destination is the first
argument; in the memory (ADDM) form, the last. ADD
is a “reversible” instruction, meaning that the two-
argument form is legal, and involves adding the second
operand destructively to the first. Other reversible
instructions are SUB, XOR, and EXCH.

Instructions that are not reversible (bitwise AND
and OR) may be used only in three-operand form.
All three-operand instructions, reversible or not, re-
quire that the destination contain 0 before they are
executed. This includes the 3-operand form of “re-
versible” instructions like ADD.

All three-operand instructions have inverses UNADD
UNOR, and so forth.

It is not allowed to use the same register in the
index position and as a destination in a given instruc-
tion.

There are separate instructions MOVE, EXCH, and
COPY. MOVE and EXCH actually do the same thing (as
does MOVEM); use of MOVE is a convention that indicates
that one of the items is known to be 0 and the other
is being “moved”. The destination of COPY must be 0
beforehand; both source and destination contain the
same value afterward. UNCOPY is abbreviated UNC. All
these instructions exist in the 2-address forms only.

There is a proliferation of jump instructions. The
general form is (mod)J(comp) reg, opnd, addr. (mod)
is A (annotate), I (increment), D (decrement), or
empty. (comp) is GT, GE, EQ, LE, LT, NE, AB, OB,NAB,
NOB, or empty. opnd is a register, an indexed address,
or a constant.

’

131

The destination address of a jump must be the ad-
dress of a Come-From instruction. The format of a
Come-From is the same as a jump with CF instead of
J. The function of the Come-From instruction is to
uncopy the program counter left over from the Jump.
To that end the “destination” of a CF must be the
address of the corresponding J.

The conditionals attached to corresponding jump
and come-froms are not necessarily, or even usually,
the same. A come-from which can be “fallen into”
from preceding code must use its condition to distin-
guish whether this has happened or it was jumped to.
This is so the old PC can be uncopied or not, as ap-
propriate.

From the point of view of logical reversibility, this
requirement is the same as saying that if the state of
the program after the jump is such as to distinguish
whether the jump was made or not, no bit has logically
been erased. In a more practically oriented interpre-
tation, the come-from has the appropriate conditions
to operate as an un-jump when executed in reverse.

If control flow confluence does logically destroy bits,
it is necessary to handle them explicitly by way of an
annotated jump. For example, each jump to a come-
from could have an entry in a table, and should indi-
cate which one it was:

j3: aj w,2,conf

conf: cf Qtab(w)

tab: j1 ;item O
j2 ;item 1
j3 sitem 2

The aj copies the 2 into register w and jumps to
conf. After the cf, of course, the value in w remains,
to be ERASEd or stored or whatever else the program-
mer wishes; but it has fewer bits than the raw PC
would have had.

In this case an explicit move of 2 to w would have
worked as well. aj becomes useful when a test occurs,
and the annotation is made only when the jump is
taken.

The effective address of cf is indirect. A recur-
sive indirection (as on the PDP-10) would require an
arbitrarily large hardware stack; only single-level in-
directions are allowed.

And finally, the ERASE instruction, taking either
a register or effective memory address as its single
operand, has in the instruction set universe of dis-
course the effect of setting the operand location to 0,

but with some meta-ISA-level interpretation as dis-
cussed above.

6.1 Basic algorithmic techniques

A loop (that terminates) is a reversible con-
struct and can be implemented by a matched
jump/comefrom pair. The jump, just as in conven-
tional programming, is conditional on the loop invari-
ant, allowing control to fall out when the invariant
ceases to be true. The initial comefrom is conditional
to distinguish the initial entry from subsequent itera-
tions. For example,

; for (i=0; i<10, i++)
top: cfgt I, 0, bot

bot: ijlt I, 10, top

(Remember that in normal forward execution,
falling into a comefrom in sequence, the comefrom is
a no-op.)

6.2 If statements

A conditional branch by itself is reversible since it
simply copies a single (generally implicit) bit from the
program’s data state to the control state. As conven-
tionally implemented, the confluence of control at the
end of the if is its irreversible feature.

As long as the difference in data state which is re-
flected in the branch has not been obliterated by the
intervening statements, the confluence can be accom-
plished using the same condition, or to be precise, its
inverse.

For example, a reversible if can be implemented

; if (a) b; else c;

top: jeq a,0,mid
;code for b
t2: j bot
mid: cf top
; code for ¢
bot: cfne a,0,t2

with the restriction that neither b nor ¢ changes a.
However, a statement such as

if (a > 30) a = a-10;

cannot be implemented reversibly; if a==25 after
the statement, for example, there is no way to know
whether it was 25 or 35 before. The logic of such a

132

program produces a confluence of state, which cannot
be sidestepped by programming technique.

Such a statement would have to be implemented
with an explicit annotation of state; consider the fol-
lowing, which might be a compare/exchange operation
in the inner loop of a sort. After bot, register t (ini-
tially 0) would tell whether the exchange had been
skipped or not.

top: ajle t,1,a,x(i),bot
exch a,x(i)

bot: cfeq t,1,top
ERASE t

Clearly a sort implemented this way would destroy
one bit ber comparison/exchange operation.

7 Sorting

Sorting a list of numbers in place destroys, by defi-
nition, log(n!) bits, since there is one output for each of
the n! different permutations of each given set of num-
bers. In an efficient implementation, there are only n
log n comparisons (which approximates log(n!)), and
one bit may be destroyed at each comparison. How-
ever, we can show that only n log n bits need be
erased even if the algorithm is one of the simpler, if less
asymptotically efficient, O(n?) ones, such as insertion
sort.

See Fig. 4. The insertion sort is a nested loop.
The outer loop, bol to eol, successively picks elements
from the unsorted portion of the array, and inserts
them into the sorted part. The sorted part is initially
just the last element.

The element being inserted is held in register X, and
compared, in the inner loop, with successive elements
of the sorted part, which are moved down until the
comparison succeeds. The algorithm does O(n?) com-
parisons, actually n(n — 1)/2 if the list is in reverse
order initially. However, we can make the inner loop
reversible by counting comparisons, a number with a
maximum of log n bits. Erasing that number once
each time around the outer loop gives a total of n log
n erased bits.

A copying sort which leaves its input unaltered need
erase no bits at all; see Fig. 5. The ERASE is replaced
by a loop that counts index J back down to I. This
could not be done in the original since the value of
the inserted element must remain alive throughout the
dountdown loop (brl to erl) for use by the comefrom.
It can then be uncopied from the original array.

bol:

bil:

bx:

eil:

ex:

eol:

on entry, the numbers are in A (memory area)
the number of numbers is N (immediate value)
inf is defined as the highest word value

all other registers
copym inf ,A+N ;

copy I,N-1 ;
cflt I,N-1,e0l

copy J,I ;
move X,A(J) ;
cfgt J,I,eil ;

jle X,A+1(J),ex ;
move Y,A+1(J) ;
movem Y,A(J)

ij J,bil H
cf bx ;
movem X,A(J) ;
sub J,I ;
ERASE J H
djgt I,0,bol ;

uncm inf,A+N ;

are 0O

set sentinel value at end of list
I points to bottom of sorted part
; in the outer loop, I decreases

J moves back up thru sorted part

element being inserted

J increases in inner loop

compare insertee to list elements
not yet, move elements down

end of inner loop

only get here from bx jump

insert element

an optimization: decrease no. bits in J
< log N bits, happens N times

end of outer loop

clean up sentinel (I and J are 0)

Figure 4. Dissipation-limited insertion sort.

;Same, but copy-sort A into B

bol:

bil:

bx:

eil:

ex:

brl:
erl:

eol:

copym inf,B+N H

copy I,N-1 ;
copy J,I ;
cflt I,N-1,e0l ;
move X,A(J) ;
cfgt J,I,eil ;

jle X,B+1(J),ex ;
move Y,B+1(J)
movem Y,B(J)
ij J,bil ;
cf bx
copym X,B(J) ;
cfne X,B(J),erl ;
djne J,I,brl ;
unc X,A(J) ;
djgt I,0,bol ;
uncm inf,B(N) ;

set sentinel value at end of list
I points to bottom of sorted part
J moves back up thru sorted part
in the outer loop, I decreases
element being inserted

J increases in inner loop

compare insertee to list elements
not yet, move elements down

end of inner loop

only get here from bx jump
insert element

count J down from B(J)=X
to J=1

only then can we clear X
end of outer loop

clean up sentinel

Figure 5. Reversible copying insertion sort.

133

8 Conclusion

QOur previous paper showed that one could have a
logic-level design regime that could either elimimate or
precisely control irreversible bit destruction, and yet
retain much of the character, accumulated techniques,
and knowledge of conventional electronics logic design.
The present paper extends that result to instruction
set architecture, assembly language programming, and
algorithms.

The number of bits a program must destroy de-
pends on its i/o behavior, not necessarily its algo-
rithm. Though a comparison/exchange operation
taken alone destroys one bit, a sorting algorithm per-
forming n? of them need only destroy n log n bits. Any
destructive (in-place) sort must destroy (or record)
this many bits.

References

[1] Athas, W. C. et al, “A Framework for Practi-
cal Low-Power CMOS Systems Using Adiabatic
Switching Principles”, 1994 International Work-
shop on Low Power Design, Napa, CA, 1994

Bennett, Charles H., “Time/Space Tradeoffs for
Reversible Computation™, SIAM J. Comput. V. 18
No. 4, 766-776, August 1989

[3] Bennett, C.H. and Rolf Landauer, “The Funda-
mental Physical Limits of Computation”, Scien-
tific American 253 pp 48-56, July 1985

[4] Bennett, Charles H., “Logical Reversibility of
Computation”, IBM J. Res. Devel. 17, pp525-532,

1973

134

[5] Denker, J. S. et al, “Adiabatic Computing with
the 2N-2N2D Logic Family”, 1994 International
Workshop on Low Power Design, Napa, CA, 1994

[6] Drexler, K. Eric, Nanosystems: Molecular Ma-
chinery, Manufacturing, and Computation, John
Wiley and Sons, New York, 1992

[7] Fredkin, E., Toffoli, Tommaso, “Conservative
Logic”, MIT/LCS/TM-197 Cambridge, MA May
1981

[8] Hall, J. Storrs, “An Electroid Switching Model for
Reversible Computer Architectures” PhysComp
92, IEEE Press, Los Alamitos, CA, 1993

[9] Landauer, Rolf, “Dissipation and Noise Immunity
in Computation and Communication”, Nature, V.
335 pp 779-784, 27 Oct 1988

[10] Merkle, Ralph C., “Reversible Electronic Logic
Using Switches”, Nanotechnology 4 (1993) pp 21-
40.

{11] Ressler, Andrew L., “The Design of a Conserva-
tive Logic Computer and a Graphical Editor Sim-
ulator” M.S. thesis, M.I.T., Jan. 1981

[12] Seitz, Charles L. et al, “Hot-Clock nMOS”, Pro-
ceedings of the 1985 Chapel Hill Conference on
VLSI, Computer Science Press, pp.1-17

[13] Younis, S. G., and T. F. Knight, Jr., “Asymp-
totically Zero Energy Split-Level Charge Recov-
ery Logic”, 1994 International Workshop on Low
Power Design, Napa, CA, 1994

