Thermal Logic Circuits

J1.G. Koller, W.C. Athas, and L.“].” Svensson
{koller,athas,svensson } @isi.edu

USC Information Sciences Institute
4676 Admiralty Way, Marina Del Rey, CA 90292

Abstract

Thermal Logic is a hypothetical device technology that
allows one to analyze the energetics of computing ma-
chines in a simpler setting than real device technologies.
The paper describes the rudiments of thermal logic, and
uses it to analyze reversible logic pipelines. The similarity
berween thermal logic and electronic logic is explained,
and thermal analogs of electronic devices and circuits are
proposed. We show that adiabatically-reversible logic
pipelines have a rich mathematical structure, including a
local gauge symmetry, and suggest some directions Jor fu-
ture research. Adiabatic power supplies are also ad-
dressed.

1: Introduction

The field of reversible and adiabatic computing now
ranges from the seminal theoretical work[4,7] to small
working devices and circuits[2]. However, the theoretical
work is typically couched in terms of idealized apparatus
such as Turing machines, which bear little resemblance to
modern digital computers. Conversely, the device and cir-
cuit studies are forced to work within the limitations of ex-
isting electronics technology such as bulk CMOS, and it is
not always clear whether difficulties are fundamental or
simply artifacts of the particular device technology. There
is thus a need for a simple model with the following char-
acteristics:

1) It must lead to computer systems structurally similar
to existing computers.

2) The physics of the system must be simple, unambig-
uous and analyzable.

3) It must allow construction of complete self-contained
computing systems, including power supplies and Input/
Output (I/0) devices.

In this paper we present Thermal Logic, a hypothetical
device technology that uses temperature differences and
heat instead of voltages and charge to perform computa-
tion. The resulting circuits are directly analogous to electri-

0-8186-6715-X/94 $4.00 © 1994 IEEE

119

cal circuits, and the associated digital structures will
certainly look familiar to logic designers. Conversely, the
physics is straightforward, and involves only the familiar
concepts of traditional elementary thermodynamics: heat,
temperature, pressure, volume, energy and entropy.

The model should prove extremely useful in analyzing
the energetics of computing machinery. Indeed, we devel-
oped it to allow us to study clocking schemes in adiabatic
switching, without the complications of real CMOS. We
present it here in the hope that others will be able to apply
it to other issues.

This paper describes the rudiments of the Thermal Log-
ic idea, and uses it to analyze reversible logic pipelines in a
simpler setting than heretofore available in CMOS. In Sec-
tion 2 we describe the relationship between electronics and
thermodynamics that enables the thermal logic model.
Seections 3 and 4 describe thermal logic components, and
logic gates built from these components. Section 5 discuss-
es reversible circuits, and Section 6 discusses the interest-
ing properties of sequencing required when reversible
circuits are concatenated. An Appendix presents some ob-
servations on the connection between adiabatic power sup-
plies and phase transitions.

Two things should be emphasized: First, the computers
built from thermal logic may or may not be thermodynam-
ically reversible, depending on the circuits themselves and
the way they are operated. Second, many of the results are
not specific to the thermal logic model, and apply to other
computational systems as well.

Our overall goal is to study the universal thermodynam-
ics of self-contained computing systems, and the best un-
derstood such systems are modern electronic computers,
powered by, for examnple, a battery. In studying the ener-
getics of electronic logic, one typically computes an energy
dissipation by following the flow of charge through voltage
differences across switches. However, this approach is un-
satisfactory for deducing universal thermodynamic theo-
rems for several reasons. For instance, the “lost” energy is
not truly dissipated in a thermodynamic sense: it has mere-

ly been converted to heat, which could conceivably be used
as the source of a regeneration process to power another
smaller computer. How do we take this into account? Sim-
ilarly, to derive quantitative results, one needs to idealize
the electronic devices in many ways simultaneously, and it
is not immediately obvious that our idealizations are mutu-
ally consistent: we may have simply thrown away some
fundamental relationship.

Thermal Logic (TL) solves both these problems, by ex-
ploiting an analogy between charge and heat, which is pos-
sible because the first law of thermodynamics relates
energy (E), temperature (T) and entropy (S) in almost the
same way it relates energy, voltage (V) and charge (Q): dE
= TdS + VdQ. Table 1 shows how electronics quantities

Description Electronic analog TL analog
Potential Voltage (V) Temperature (T)
Charge Electric Charge (Q) | Heat (Q)
Current | = dQ/dkt J = dQ/dt
Capacitance | C=dQ/dV C =dQ/dT
Conductance | G = 1/R=VAV K= JAT
Monotonic Energy: Entropy:
parameter dE = VdQ dS =da/T

Table 1: TL and Electronic Analogs

map into thermal quantities. Each system involves a poten-
tial, and a charge moved through this potential. Other anal-
ogies are electrical and thermal capacitance, and electrical
and thermal conductance. There is also an empirical
“Ohm’s Law” relationship saying that in many circum-
stances, the rate of charge (heat) flow is roughly propor-
tional to the voltage (temperature) difference.

The subtle difference between the two systems shows
up in the last line of the table, the definition of “dissipa-
tion.” In an electrical system, the total capacitive energy is
non-increasing, whereas in a thermodynamic system the to-
tal entropy is non-decreasing.

The plan for mapping an entire computer over from the
electrical domain to the thermal domain is therefore clear:
find analogs of the basic electronic components, using
well-understood idealizations like pistons and heat baths,
and build switching circuits just like those found in a mod-
ern computer chip.

A rudimentary form of TL can be recognized as far back
as Szilard’s seminal 1929 thought experiment that tied in-
formation theory to thermodynamics{3]. However, since he
was concerned with information storage rather than com-
puting, his devices were limited to memory cells.

120

S

B Thermalinsulator
Thermally expandable conductor
Thermal conductor

Figure 1: Normally-off (left) and normally-on
(right) thermal switches and their symbols.

It is worth noting that the analogy between electronic
and thermal systems can be extended to other types of sys-
tems as well. For instance, chemical systems, described in
terms of particle number and chemical potential, could also
be used to build reversible and non-reversible computers,
provided a suitable switch is found. In fact, one might in-
terpret the genes and proteins in a living cell as the switches
and nodes of a chemical computational network.

2: Thermal logic components

The minimal component set for building a self-con-
tained sequential computer consists of wires, insulators, a
power source, switches, and an oscillator or delay element.
In TL, these are as follows.

Wires are good thermal conductors, e.g. metal strips,
characterized by a thermal capacitance C and a thermal
conductance K. A temperature difference across the con-
ductor causes heat to flow:J = KAT . The rate of entropy
generation is analogous to the power dissipation in a resis-
tor, apart from some extra temperature factors.

s _ d_Q(__‘__L) = JAI(1)
dt dt Toul Tin ToutTin

Insulators are zero-conductance materials, usually left
implicit in circuit diagrams.

A DC power supply is a component providing unlimit-
ed Q at fixed potential Tpp, i.e., a heat bath. Similarly,
ground is a heat bath at a lower temperature Tc.

Switches are three-terminal devices. The simplest ther-
mal switches are analogous to enhancement-mode Field
Effect Transistors (FETs). By changing the temperature on
a “gate” terminal, one can create or remove a conducting
channel between the “source” and “drain” terminals. Fig-
ure 1 shows how to build such switches. The source and
drain are two good conductors with a gap between them,
and the gate is a conductor with a high thermal expansion
coefficient. At the end of the gate is a layer of insulator, and
a layer of conductor, the “channel.”

insulator conductor

massive piston

spring

Figure 2: Thermal oscillator

Consider the “normally-off” switch on the left in
Figure 1. When the gate G is at low temperature, there is a
gap between the channel, source and drain. When the gate
temperature is raised, the gate expands, and at some thresh-
old temperature Tcc+Ty, < Tpp the channel is pushed
against the source and drain, thus allowing heat to flow be-
tween S and D if they are at different temperatures. The
switch is analogous to a MOSFET in that there is no heat
transfer between G and S or G and D. A “normally-on”
switch can be constructed as on the right of Figure 1. Also,
the geometries of the devices can be chosen so that they
switch at temperatures Tcc+Ty, and Ty -Tyy, respectively.
Readers suspicious of expanding conductors can replace
them with gas pistons and springs.

An oscillator or clock device, Figure 2, generates an 0s-
cillating temperature on the conductor by compressing and
expanding a gas using a spring-mounted piston. The mas-
sive piston stores kinetic energy during part of the cycle in
analogy to an inductor storing magnetic energy in an L.C
oscillator and a piezoelectric material storing elastic energy
in a crystal oscillator. If the oscillations are sufficiently
slow, the oscillator dissipates arbitrarily little energy.

3: Thermal logic circuits

Given the above components, we can immediately use
the techniques of switching theory to build logic circuits,
and arrive at a logic family analogous to CMOS (the class
of circuits based on enhancement-mode FETs). Figure 3
shows the simplest combinational logic circuit, an inverter
similar to a CMOS inverter. It consists of an input X, an
output X, and two switches, connected between two heat
baths: a hot bath at temperature Tpp and a cold bath at T~
A hot conductor represents logic value 1, and a cold one
represents logic value 0. When input X is high, the lower
switch is closed, so there is a direct thermal path from the

121

Top T T
X‘L—F—i X‘F’_‘Y
N T — T

Figure 4:
Adiabatic implemen-
tation of inverter.

Figure 3:
Thermal inverter

output to the cold bath. The output is therefore also at Tce-
On the other hand, when the input is low, the upper switch
is closed, and the output is connected to the hot bath at Tpp.
Note this inverter is clearly dissipative: when it changes
state from X low to X high, the output, initially at Tpp, is
connected directly to the cold bath at T¢. Bringing togeth-
er two objects at different temperatures leads to irreversible
heat flow and entropy creation.

However, by replacing the hot rail Tpp with a slowly
time varying temperature source 7, the circuit can be oper-
ated adiabatically (Figure 4). Initially, T=T¢¢ and the input
X is free to change without causing heat to flow. Once X is
stable, T slowly ramps up to Tpp, and the output either
stays at T¢c or follows T, depending on which switch is
closed. Tnow holds steady at 7pp, while any circuits to the
left of this stage use the output value. T can then be ramped
down again to T¢c, after which the inputs are free to
change. The whole process must occur “slowly,” so that
non-negligible temperature differences are not created. Our
original introduction of the term “adiabatic” into comput-
ing was in fact motivated by this heat analogy.

In this paper, we will mainly deal with the “zeroth-or-
der” approximation, that the energy dissipated in an adia-
batic change is negligible. This approximation is only exact
in the case of infinitely slow processes, and in practice the
dissipation experienced is proportional to the relaxation
time of the underlying thermodynamic system divided by
the time scale of the adiabatic process. For most computa-
tions, it is likely that one can choose this time scale large
enough that the dissipation is arbitrarily small. However,
for computations with asymptotically infinite time or space
complexity, one would need to be more careful about how
the various limits are taken.

The rate of entropy generation in a thermal conductor
referred to in section 2 is an example of a first order calcu-
Jation of the adiabatic dissipation.

More complicated combinational logic is constructed
similarly. Given any Boolean function f{A ,A;,...,Ay) of N
Boolean variables, one can always construct a switch with

gl

Switch for f

._n!m

Switch for f AND g Switch for fOR g
8 _ Aq . > . o
A - 11 |
C Ay f,] - [5',,]
C Cm

Muttiple-input multiple-output switch

Figure 5: Switching-logic notation and basics

Figure 6:
Static logic gate for
function f.

a “source” terminal, a “drain” terminal, N “gate” inputs la-
beled Ay,A, ...,Ay, and the property that the source and
drain are connected when f{A,A,, ...,Ay) = I and discon-
nected when flAL,A», ...,Ay) = 0. We represent the switch
as in Figure 5. The generality of the construction follows
from the well known fact that connecting two switches f
and g in series or parallel produces switches representing (f
AND g) and (fOR g) respectively, and that A; (the comple-
ment of A)) is effected by replacing normally-on switches
with normally-off switches.

Some simple extensions of notation: First, any set of M
Boolean functions (f;,f3,...,fy) can be represented succinct-
ly as a block with M source-drain pairs. Second, any set of
signals A}...Ay can be represented unambiguously as a sin-
gle line with a single label A. Finally, frepresents the Bool-
ean complement of f;] represents the identity function with
N inputs and N source-drain pairs (for any N); T represents
its negation; and an empty switch represents an “enable
switch” with one input signal and N source-drain pairs,
such that the pairs are (dis)connected when the input is
O)1.

The generalized switches can now be used to construct
general logic gates. Figure 6 shows how to configure an f
switch and an f switch to form a logic gate that computes f.

122

When f; is true, the corresponding output Y; is connected di-
rectly to the power supply, which acts as a perpetual supply
of 1’s. Similarly, if f; is false, Y; is connected to ground, the
perpetual supply of 0’s.

This produces a complementary static logic family,
which has the advantage that any valid signal is always di-
rectly connected to either power or ground. There are sim-
pler “dynamic” circuits such as precharged logic, which
replace f or f with an enable switch, and rely on energy
stored on internal wires to correctly represent signals.
However, from our point of view, the greatest advantage of
static logic is that it can equally well be operated adiabati-
cally. Just as in the thermal inverter, if the inputs are valid,
the power supply potential can be varied slowly between
Tpp and T, moving heat adiabatically into and out of the
output lines.

The heart of the adiabatic switching idea is thus the fol-
lowing: By slowly bringing together the potentials of the
infinite supply of 1’s and the infinite supply of 0’s, we can
remove the energy from signal lines without generating en-
tropy. The complication is that this must be done locally,
since the inputs signals must still have distinct 0 and 1
states while the output values are coalescing. Note that it is
not critical whether we move the 1 to the 0 value, or the 0
to the 1 value, or both to some third value.

The local potential sources in an adiabatic circuit will be
called “clocks,” and their careful timing and interplay will
be called “clocking”. Design of a consistent adiabatic
clocking scheme is one of the challenges addressed further
on. Also, when a logic block has its 0 and 1 potentials coa-
lesced, we will say the block is “de-energized,” and when
the 0 and 1 potentials have their normal values, we will say
itis “energized.”

4: Cascaded logic

In theory it is possible to perform any finite computation
with one very complicated combinational logic gate, but in
practice a computation is spread out over multiple simpler
logic “stages” which compute consecutively. If the inputs
are A, and the individual stages compute fg,...,k, then the
whole circuit computes A(...g(ffA))...).

In the case of normal dissipative logic, this is easy to im-
plement by simply connecting the outputs of one stage to
the inputs of the next. Then, whenever the inputs change,
the computation ripples through consecutive stages to cal-
culate the new answer.

The adiabatic version of this circuit[1,8,9] is slightly
more subtle, since each stage must be de-energized before
its inputs change, to prevent its outputs connecting a hot
drain to a cold source, or vice versa. This can be achieved
by providing a local source of 0’s and 1’s for each stage.
Initially, all stages are de-energized, and the inputs to the
computer are free to change. Once they stabilize, the stages

are successively energized, until the final stage is energized
and outputs the answer. The stages are then de-energized in
reverse order, so that no energized stage ever has its inputs
change.

This “cascaded logic” is impractical as a general pur-
pose computing scheme for several reasons. First, it re-
quires a large and possibly indeterminate number of clocks.
Second, these clocks all have different shapes, since differ-
ent stages have their potentials coalesced for different
lengths of time. And third, an N stage cascade requires time
proportional to N to produce each result; more precisely,
the latency (time to deliver) is proportional to N and the
throughput (number of results per unit time) is proportional
to I/N.

The third issue applies equally to adiabatic and non-adi-
abatic logic, and has been addressed in the conventional
case by using logic pipelines instead of logic cascades. In
an N-stage pipeline, each stage computes a result, forwards
it to the input of next stage, and begins computing the next
result. In this way, the throughput is made independent of
the number of stages.

In the non-adiabatic case, this is usually implemented by
placing latches between the pipeline stages, to store the in-
termediate results while the new ones are computed. One
usually introduces one or more clock signals to signal the
latches to load the new result. However, latches are inher-
ently dissipative, since they generate entropy when they are
reloaded and their previous contents are erased[7]. The adi-
abatic case must therefore necessarily be different. On the
plus side, in the adiabatic case the potential sources them-
selves can be periodic, so a pipeline clocking scheme can
use the power supplies for timing.

The two key elements of an adiabatic pipeline design are
the design of the individual stages, and the clocking
scheme. We address these in turn.

5: Adiabatic pipeline stages

The reason the inputs were held valid during the entire
operation of the adiabatic stage described above was to
maintain the paths between the outputs and the potential
sources which drive them. This allowed the circuit to return
the energy from each output to the source from which it
came, when the computation was complete.

The new idea in forming pipelines is that one could
equally well use a different path to return the energy to the
sources, as long as it is equivalent to the path originally
used. For instance, consider any particular stage S,, in a se-
quence: during the energizing of §,,, the paths between out-
puts and sources are determined by information provided
by S,,_;, i.e., the inputs. By analogy, during the de-energize
phase, we could try using information provided by S, J,
and the simplest method is to have S, ; simply feed a re-
generated copy of S,;’s outputs back to §,,. This allows §,,_;

123

Reverse Data Out Reverse Data In

Forward Data in Forward Data Out

Sn+1

sn-1 Sn

Figure 7: Adiabatic pipeline stage symbol
and notation

to de-energize and begin working on a new computation,
without impairing our ability to de-energize S,,.

For this scheme to work, certain restrictions must be
placed on the function f, computed by S,,. To see this, note
that in order for S,,_; to begin discharging adiabatically, it
must in turn be supplied with a copy of its outputs by §,,. In
other words, in addition to stage S, being able to generate
its outputs O,=f,(L,) from its inputs I,,, stage S, must also
be able to regenerate a copy of its inputs 1,,=f,,”(0,) from
a copy of its outputs. This means that each f,, must be an in-
vertible function, at least on the set of values actually as-
sumed by the inputs.

Since stage S, now has both a forward and a reverse set
of inputs, a further complication arises: we need a way to
specify which input to use to compute the outputs. This is
necessary, because once S,,_; begins computing a new re-
sult, the forward input is no longer related to the reverse in-
put. Applying two distinct switch configurations between
the outputs and the sources simultaneously would have a
disastrous effect on the dissipation, since there will be at
least one path directly from the high potential source to the
low potential source. We thus need a way to disable each of
the inputs as appropriate. The only times when both inputs
can be enabled are when the forward and reverse inputs are
correctly related, or when the high and low potentials are
coalesced.

A circuit for S, which meets all these requirements is
shown in Figure 8. It looks slightly different from other
proposals in the literature[5,6], but in the next section we
show that these are all special cases of a more general struc-
ture. Our stage consists of four separate complementary
adiabatic drivers like the one in Figure 6. The lower left
driver does the real computation by applying £, to the input
from S,,_; and outputting it to S, ;. The upper left driver ap-
plies the identity function to the inputs, and outputs it back
to S,.;- The lower and upper right drivers apply the identity
function and f,,‘I respectively to the reverse input, and drive
the same outputs as the left-side drivers. The left and right
enable signals E and F allow either the left or right side
drivers to drive the outputs.

Cc

Reverse Data Out

Reverse Enable

—D

Reverse Data In

Forward Data In

E
Forward Enable

The stage operates as follows. Initially, the potential
sources are coalesced, the inputs are zero, the outputs are
zero, and all drivers are disabled. Then, by slowly (adiabat-
ically) changing the inputs,

1. The forward input becomes valid.

2. The left drivers are enabled.

3. The stage is energized, which makes the forward and
reverse outputs valid.

4. The reverse input becomes valid as S, regenerates
the output from S,,.

5. The right drivers are also enabléd, which is OK since
the left and right inputs are correctly related.

6. The left drivers are disabled.

7. The forward input becomes invalid as S,_; de-ener-
gizes.

8. The stage is de-energized, making the outputs invalid.

9. The right drivers are disabled.

10. The reverse input becomes invalid.

Finally, notice that steps 1 and 2 can be interchanged, as
can steps 9 and 10, since the stage is de-energized and the
enable and input signals can be changed arbitrarily without
causing dissipation. It is unusual in conventional circuits to
enable an input before it is valid, but this property simpli-
fies adiabatic clocking schemes, since it means that the en-
able pulses can have the same duration as input signals.

With this simplification, we can describe the behavior of
the inputs to the stage quite cleanly. The stage has five sets
of inputs: forward enable, forward data in, power, reverse
data in, and reverse enable. The two outputs, forward data
out and reverse data out have the same timing as the power
input. Draw the five inputs as five square cells (which we

A

nae8 Power (T)

smam Ground (Tec)

B

Forward Data Out

124

Figure 8: Reversible adiabatic pipeline stage.
Unlabeled boxes are enable switches.

call a state diagram), as in Figure 9, arranged from left to
right according to the order in which they energize in the
revised description above. Each input can be in one of four
states: de-energized, energizing, energized (valid), or de-
energizing, and we represent these by the shading patterns
in Figure 9, as though energy flows into a cell through the
left wall, and out through the right wall. Then the sequence
of states above appear as in the figure, and is nicely sum-
marized by saying that a pulse of energy five cells wide en-
tered from the left of the state diagram, passed through, and
exited to the right.

6: Adiabatic pipelines

An adiabatic pipeline is a chain of adiabatic pipeline
stages, as shown in Figure 7. Initially, assume each stage
has its own adiabatic potential source, to energize and de-
energize the outputs appropriately.

To analyze this situation, temporarily represent each
stage by a single cell, showing the state of its power input.
Then the state of the pipeline is a pattern of empty and ful-
ly- or partially-shaded cells, showing which stages are en-
ergized.

The relationship between this “pipeline diagram” (Fig-
ure 10) and the five-cell state diagram is as follows: consid-
er any cell in the pipeline diagram. The energization state
of the power input, and hence of the stage outputs, is given
by the shading of the cell. The states of the left and right
data inputs are by construction equal to the states of the
data outputs of the left and right neighboring stages. Thus
the middle three cells in the state diagram of a stage corre-

E

(B)

2
Q
g O oeeners
©] De-energized
c c (=R,
w - =0
] o O ..
T% ® o E Energizing
E (&) [a-d
(2]
SE.BE Energized
L 0=
o $s § _%, nergize
o 0 0 .=
Sugdeorx

De-energizing

Figure 9: Five-input state diagram for an adia-
batic pipeline stage (A), possible input states

(B), and adiabatic state sequence (C).

HIEEENEERNEEERE

Figure 10: Correspondence between pipeline
stages and cells in pipeline diagram (A), and
three snapshots showing motion of an energy

pulse through an operating pipeline (B).

125

spond to the three cells centered about the stage in the pipe-
line diagram. We now complete the correspondence by
defining the left and right enable inputs to correspond to the
two next-nearest neighboring cells. In fact, this tells us how
to generate the enable signals: they are just the power in-
puts from the next-nearest stages. Thus the state diagram of
a stage corresponds to the five cells centered about that
stage in the pipeline diagram.

Next, consider a pipeline in the process of computing a
result. At any moment, there is a contiguous subset of stag-
es energized and involved in the computation, so the pipe-
line diagram contains at least one band of shaded cells. To
correctly operate the pipeline, we simply need to sequence
the power inputs so that the shaded band appears to travel
to the right. We do this by simultaneously de-energizing
the leftmost cell in the band and energizing the first empty
cell to the right. If the band is five cells wide, then each
pipeline stage goes through exactly the right sequence of
states to compute and pass the result on down the pipeline.
In this way, the computation travels down the pipe on a
pulse of energy.

It is interesting to look at what happens to pulses of
length other than five as they travel down the pipeline. (We
are still assuming complete control over the power inputs,
so we can sequence them as desired.) We find the follow-
ing:

Length 5 or more: All pulses travel down the pipe suc-
cessfully, carrying the computation with them.

Length 4: Here, the left enable tumns off at the same
time as the right enable turns on, but the pulse propagates
as before. The pulse described in Figure 9 is thus not min-
imal, because some of the states can be overlapped.

Length 3: The left enable turns off just as the next stage
is starting to use the output. The pulses are therefore dy-
nanic, in the sense that the inputs to a stage must remain
valid even if they are not driven. This is possible if the gate
terminals of the switch devices can store some energy, sO
to zeroth order the pulse propagates. However, in the pres-
ence of noise, the computation can be corrupted. Random
flipping of switches can cause some outputs to charge in-
completely. Intuitively, it appears that the computation
gradually picks up errors as it proceeds down the pipeline,
but a proof of this would need more quantitative analysis
than we have done here.

Length 2: Pulses of width two cause the drivers to dis-
able during the middle of the charge or discharge cycle.
Thus the output potential is not fully restored to its correct
value, causing the signal to attenuate as it travels down the
pipeline, even without ambient noise. The incomplete dis-
charge also leads to non-adiabatic energy losses, so some
of the energy in the pulse is dumped into the environment.

Length 1: Pulses of width one do not propagate the
computation at all, since the drivers disable just as the stage

starts energizing, and no energy is transferred to the out-
puts.

Similarly, if we analyze what happens when we send
multiple pulses down the pipeline, we find that pulses cor-
rupt each other if there are fewer than four empty cells be-
tween them. Thus the maximum throughput of the pipeline
occurs when we use 4-cell-wide pulses separated by 4 emp-
ty cells. Any higher density pulse train introduces errors
into the computation, but any longer pulses propagate the
computation essentially error free. Since the pipeline is an
information channel, such behavior is necessary to avoid
violating Shannon’s Theorem that we necessarily introduce
errors if we exceed the channel capacity.

Clearly, the adiabatic computational pipeline has an in-
teresting mathematical structure suggesting many exten-
sions and generalizations. For instance, by symmetry,
pulses could propagate leftward to perform the reverse cal-
culation.

A major property is the following “local gauge invari-
ance.” In the circuit of Figure 8, we have used a driver con-
taining the identity function, to return a copy of the inputs
to the preceding stage. However, we could equally well re-
turn an arbitrary invertible function 0 of the inputs, as long
as we compensate in the previous stage by including an ad-
ditional transformation by 07/ at the reverse inputs. In fact,
a different O can be chosen for each stage, without chang-
ing the overall computation of the pipeline.

The advantage of our choice is that consecutive stages
are independent, so it is easy to concatenate stages. Anoth-
er interesting choice of the “gauge” 8, for stage n is 8,,=f,.
This means that the information fed backwards by any
stage is identical to the information fed forwards. The
block diagram simplifies, since we can use a single driver
to drive both the forward and reverse outputs. However, it
complicates pipeline composition, since each stage in-
volves its own function f,, as well as the function f,, 1'1
from the next stage. Note that the adiabatic pipelines sug-
gested till now for CMOS|S5,6] have been formulated in an
analog of this “minimal gauge,” rather than our “local
gauge.”

Some other comments:

1. Many of the theorems and intuitions developed for
gauge theories translate directly over to the adiabatic pipe-
line model.

2. The case of a finite pipeline provides insight into the
T/O issue. At each end of a finite pipeline, we need to de-
cide what to do with the enable and data inputs of the out-
ermost stage, and the enable signal of the next-to-
outermost stage, since the stages which would normally
provide these signals are absent. There is a variety of choic-
es for these boundary conditions, leading to different be-
haviors. We describe one choice: On the left input,
permanently enable the first two forward enable signals,

126

and provide fixed valid data to the data input. On the right
end, permanently disable the last two reverse enable sig-
nals. Under these conditions, when a pulse of energy carry-
ing a computation reaches the end of the pipeline, the final
two stages energize as normal, but have no way to de-ener-
gize, since the de-energizing paths are permanenty dis-
abled. Thus the result is trapped at the end of the pipeline,
where it is available for reading. Note, however, that no
non-adiabatic energy dissipation actually occurs until the
next pulse reaches the end and overwrites the trapped re-
sult, which is just what Landauer’s work would predict[7].

3. By building a loop of pipeline stages, one forms a fi-
nite state machine, that can be used to generate control sig-
nals for datapaths. A pulse of energy travels round and
round the loop, sequentially passing through the states of
the machine. Clearly, the smallest static state machine must
have 8 stages to be able to hold one pulse. Note also that the
machine is gauge invariant, since all gauge variations can-
cel out round a loop.

7: Acknowledgments

We thank Jay Block, Eric Chou, Nestoras Tzartzanis
and Josh Storrs-Hall for useful discussions. This work was
supported by the Advanced Research Projects Agency,
contract DABT63-92-C0052.

Appendix: Energy supplies

Until now, we have assumed that arbitrary power poten-
tials can be generated to order and applied to the power in-
puts of the stages in a pipeline. The general mechanism for
generating an oscillating potential in thermal logic was
sketched in Figure 2. A mechanical system (say) is coupled
to a thermal system, and thermal energy is converted adia-
batically to and from mechanical energy. However, this de-
sign in itself is insufficient, because we need a waveform
with the specific property that it is “flat on the bottom.”
Thus, in Figure 4, it is important that the upper potential T
be brought down to and kept at exactly temperature Tcc
while the inputs change, to prevent non-adiabatic heat flow
from T to T¢c. This requires some non-analyticity in the
temperature T as a function of time.

An easy way to obtain non-analytic motion in a mechan-
ical system is through a device such as a cam with non-an-
alytic shape. Thus, a large flywheel, several cams, and
several frictionless pistons suffice to generate our wave-
form. However, it is rather ad hoc to burden the mechanical
part of our system with generating this behavior, when the
requirement itself is thermodynamic in origin. Let us there-
fore restrict the mechanical system to be essentially a har-
monic oscillator, and attempt to generate the appropriate
waveform using a thermodynamic device.

Nonanalytic behavior in thermodynamics is associated

Insulator

Figure 11: Thermal clamp, using a liquid-solid
phase transition to enforce a fixed minimum
temperature. This simple design ignores ex-

pansion issues.

with phase transitions: we can build a temperature clamp
by choosing T to equal (say) the freezing point of a liquid
(Figure 11). At temperatures above the melting point, ex-
traction of heat lowers the temperature, but when the freez-
ing temperature is reached, the temperature stays constant,
and the energy is supplied by the latent heat of melting.

By putting a clamp in series with each thermal oscilla-
tor, one can now design power supplies that sequence adi-
abatic pipeline stages appropriately. For instance, a system
of 8 clocks is sufficient to provide a steady train of energy
pulses to an arbitrarily long pipeline, if stage S; is powered
by clock ¢,‘ mod 8

Another approach is to provide each stage with a sepa-
rate clamped power supply, and to couple adjacent me-
chanical systems together. Then energy pulses traveling

127

through the mechanical system are accompanied by com-

putations traveling through the computational system.
Clearly, the energy supply system also has many inter-

esting associated issues that are well worth studying.

8: References

[1] Koller, J.G., and Athas, W.C., Adiabatic switching, low en-
ergy computing, and the physics of storing and erasing in-
Jormation, in Proceedings of the Workshop on Physics and
Computation, PhysComp ’92, Dallas, Texas, Oct 2-4,
1992. IEEE Press, 1993.

Athas, W.C., Koller, J.G., and Svensson, L.“J.,” An energy-
efficient CMOS line driver using adiabatic switching, Ac-
cepted for publication at the IEEE Great lakes Symposium
on VLSI, 1994.

Szilard, L., On the decrease of entropy in a thermodynamic
system by the intervention of intelligent beings, Behavioral
Science 9, 301-10 (1964), translation by A. Rapoport and
M. Knoller of Zeitschrift fiir Physik, 1929, 53, 840-856.

Bennett, C.H., Logical reversibility of computation, IBM J.
Res. Dev. 17, 525-32 (1973).

Younis, S.G. and Knight, T.F., Practical implementation of
charge recovery asymptotically zero power CMOS, in Pro-
ceedings of the 1993 Symposium on Integrated Systems,
MIT Press, pp. 234-250 (1993).

Athas, W.C. and Svensson, L.”J.”, Reversible logic issues in
Adiabatic CMOS, 1994 Workshop on Physics and Com-
puting, PhysComp ‘94, November 1994.

Landauer, R., Irreversibility and heat generation in the com-
puting process, IBM. J. Res., 5, pp183-91 (1961).

Hall, J.S., An electroid switching model for reversible com-
puter architectures, in Proc. ICCI'92, 4th International
Conf. on Computing and Information, 1992.

Merkle, R.C., Reversible electronic logic using switches,
Nanotechnology, 4 pp. 21-40 (1993).

[21

(3]

(4]

[5]

(6]

(71
(81

91

