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Abstract

This paper presents a chain of reasoning that makes
an information mechanics a plausible goal. A radi-
cally new model of distributed computation that ez-
ceeds Turing’s sequential model refutes the perception
that quantum mechanics cannot be captured compu-
tationally (§2,8). Our new model, called the phase
web paradigm, is itself captured naturally by a physi-
cally relevant mathematics, that of a Clifford algebra
(84). The basic features of the computational model
are shown to have natural counterparts in current
physical theory (§5), and we close with a discussion
of the implications of the framework presented for the
fabrication of nano-scale hardware (§6).

1 Introduction

Although the generality of the word ‘information’
makes it difficult to define, it is at least clear that to
produce a theory of its form and transformation is to
produce a theory of everything. The present paper
does not present such a theory! Rather, it presents
a chain of reasoning that makes such an information-
based theory appear possible.

The origins of the ideas presented here lie, perhaps
surprisingly, in the author’s search for a simultane-
ous solution to the classical and otherwise unsolved
Al problems of Learning and Planning. The latter is
roughly the problem of making a computer react ‘intel-
ligently’ to impulses from its environment; the former
is, equally roughly, inferring knowledge from experi-
ence. In the present context, these problems equate
to the scientific investigation of Nature (Learning) and
the production of a theory of possible actions and their
effects (Planning). Given that we seek a computational
model of Nature, it follows that this model will be a
mechanistic one, but where the mechanism in question
is based on the the acquistion and manipulation of in-
formation, not materia, and hence ought to be called
neo-mechanistic.

The first step in producing such an information me-
chanics is to refute the currently widespread view that
computation in principle cannot capture quantum me-
chanical phenomena. This is the topic of the next two
sections. The second of these also shows how to build
a (radically) new model of distributed computation by
focusing on the act of observation.

0-8186-6715-X/94 $4.00 © 1994 IEEE

95

2 Turing’s Box

In the 1930’s, Turing presented a model of a device
- the Turing Machine (TM) - which could in principle
carry out any ‘effective procedure’. The latter term is
formally undefined, having the same status as ‘point’
and ‘straight line’ in classical geometry. It can rea-
sonably be undefined because it seems intuitively clear
what one means: given starting and ending states, and
operations for transforming one state to another, an
‘effective procedure’ will specify how to get from the
start to the end.

All contemporary sequential computers can be
viewed as merely (rather more) efficient versions of the
TM’s unbounded tape and associated read/write op-
erations [=memory], state-encoding symbols [=bits],
and finite control unit [=cpu}: the TM is simply a
mathematically tractable abstraction from ‘practical
details’. A TM is a sequential computational engine
and deterministic in its operation: the final state and
the path of transformations followed thereto are a pri-
ori predictable. Example results of the TM’s for-
mal tractability are that it can be proven that no
additional computational power accrues from attach-
ing multiple tapes, and perhaps more surprising, that
a non-deterministic TM is no more powerful than a
deterministic one. Thus it already seems that com-
putation’s ability to model QM’s well-known non-
determinism has received a mortal blow.

To make matters worse, the material and macro-
scopic foundation of all contemporary computers
would as well seem to eliminate the possibility of cap-
turing more exotic QM phenomena like wave-particle
duality and non-locality. And finally, parallel com-
putation as generally understood provides no escape
from Turing’s box, as argued clearly and closely by
Penrose [Peng9).

Clearly, if there is a way for computation to escape
from Turing’s box, it is well hidden. Space does not
permit a fully detailed exposition of how nevertheless
to do this, so only the most critical aspects appear
below, and the reader’s willingness to be convinced is
herewith invoked.

As might be expected, the place to look is in the
unstated assumptions, of which we find three (which
appear to be distinct, but will ultimately turn out to
be aspects of the same thing). The first of these as-
sumptions is that



the initial abstraction away from ‘practical de-
tails’ has left nothing crucial behind, te. the mech-
anism of the TM is well-specified.

The second unstated assumption is that

computation consists only of state transforma-
tions,

which turns out to entail a third assumption about

which concept of hierarchy is (implicitly) de-
ployed.

The latter two will be treated in the following sec-
tion. As an aside, it is worth noting that any compu-
tation which does not halt, ie. reach some pre-defined
final state, is termed ‘not computable’. Hence any
system which is designed a priori not to halt (for ex-
ample all operating systems, computer networks, real-
time systems, and living systems) is consigned to a
computation-theoretic limbo. One’s suspicions should
thus be aroused that something is amiss.

Regarding the specification of the TM’s mechanism,
it is tacitly assumed that the relationship between the
control unit and the tape memory is unproblematic.
However, this ignores the physical reality of the sepa-
rateness of the control unit vis a vis the memory mech-
anism, and hence the coordination of their respective
activities. In short, what ezactly is the control unit
doing while the tape is being read, written, or ad-
vanced, and vice versa, what is the tape mechanism
doing while the control unit is active?

The problem is that each of the two units must wait
for the other to signal it to begin!. The tacit assump-
tion has been that this coordination is implicit in the
‘sequencing’ from a control unit half-transition (“it’s
time to read from the tape”) to a tape state-transition
(“it’s time to read my tape”) to the final control unit
half-transition (“the tape is done reading, so update
my control state and start a new operation”).

It is important to realize that the argument be-
ing advanced is not dependent on the actual memory
mechanism, but rather on the implicit physical sepa-
ration between the control and memory units. Such a
separation of functionality will always entail the above
coordination. 2

Suppose then that we try to avoid this problem by
positing that the memory is somehow integral with
the control unit via some heretofore undiscovered, dy-
namically extendable, memory technology. The ‘locus
of control’” will then sequence unproblematically be-
tween control and memory operations. But what is
this mysterious ‘locus of control’ that knows when one
operation is complete and thence that it is to begin the

'We discuss coordination in terms of wait / signal, rather
than polling on shared memory; this is of no greater conse-
quence, since coordinating over shared memory implies the need
for wait / signal, Dekker’s algorithm notwithstanding.

2The idea of a ‘tape’ memory was introduced to achieve a
plausibly ‘unbounded’ memory (simply splice additional tape
on when one starts to run out). Lacking unbounded memory, a
TM becomes a finite state machine, which has considerably less
abstract computational power.

next? One is forced, it would seem, to posit some un-
derlying ‘interpreter’ or ‘micro-program’ which defines
this. But such a micro-program invokes the original
structure, so clearly we have begun an infinite logical
regression®. Notice, cf. the third of the aforemen-
tioned assumptions, that this regression is of a hierar-
chical nature.

The above reasoning, brief though it is, will hope-
fully have at least sown some seed of doubt. Those
familiar with operating system kernels or communi-
cation protocols will recognize the basic issue: the
specification of a TM leaves unmentioned all issues
of synchronization. Indeed, there is no place at all in
the Turing model for the basic synchronization prim-
itives wait and signal: they have no ‘value’ in the
usual input-output, functional sense of ‘state trans-
formation’, and are in principle invisible to the com-
putation. The thrust of the above argument is that
while synchronization may be invisible, its necessity
for a complete definition of the TM’s mechanism is
incontrovertible. To wave it airily aside as ‘the price
of abstraction’ serves only to vitiate further the claim
of the TM’s universality.

We therefore close this section with a brief explana-
tion of the computational mechanism called synchro-
nization. The two operations wait and signal operate
on an entity called a ‘binary semaphore’, denoted S. S
contains a single bit of local state (denoted s) which
can take on two mutually exclusive values, denoted 1
and 1. Define now wait and signal as follows:

Ss=1 | S.s=1
wait:  S.s « 1; continue
return waiting
signal:  return Ss+« 1;
return

The effect of these definitions is to ensure that a
given sequential computation will stall (namely when
s=I) until some other computation signals it (which
sets s to 1). Furthermore, a successful wait sets s to
1, thus ensuring that no other computation can follow
‘on its heels’. Notice that

¢ no ‘value’ is returned by either operation. Rather,
each computation simply proceeds on its way as
if nothing had happened;

¢ no information is exchanged between waiting and
signalling computations;

o the effect of the synchronization cannot be ‘ob-
served’ locally (cf. preceding item) but will be
globally visible as a correlation between events in
the system as a whole [Man92];

e the overall effect is to order events - namely the
respective wait and signal events - belonging to

3To invoke some notion of continuum ‘limit’ would seem to
violate the basic discreteness we associate with computation.



two different computations, such that (presuming
S.s=1 initially) the wait in the one computation
will always be after the signal in the other. No
more and no less.

The classical purpose to which semaphores are put
is to achieve mutual exclusion between two sequential
computations. Consider the following two computa-
tions P,Q which use two semaphores XY to exclude
each other from a sensitive manipulation:

P Q

repeat repeat
wait(X) wait(Y)
z:=z+1 f(z);z:=0
signal(Y) signal(X)

forever forever

Assuming z=0, X.s=1 and Y.s=1 initially, process P
will be blocked until process Q eventually prints and
zeroes z, whereafter it signals P that it may proceed.
Now the converse obtains: Q will block if it tries to
change z while P is doing so. If we imagine that P
is counting cars passing a sensor and Q is computing
some function f of the intermediate values, then a little
analysis will reveal that without the synchronization,
counts will be lost. On the other hand, with the syn-
chronization no counts will be lost regardless of the
relative speeds of P and Q. This alternating pattern
of control is incidentally that which obtains between
a TM’s control and tape units.

Notice that

e Building on the preceding item, and viewing
“time” as a 1-1 mapping of the events constitut-
ing a given computation to a local time axis, we
see that mutual exclusion contains the germ of se-
quential time. In general, each computation con-
stitutes a local relative time frame, which frame
obtains meaning only via synchronization with
other computations’ frames.

o In the example above, one can conceptualize the
alternating mutual exclusion between the two
computations in terms of a single ‘synchroniza-
tion token’ - which we call a ‘stick’ - that is passed
between them. At all times there is exactly one
stick present, either in one of the semaphores or
implicitly ‘owned’ by one of the computations.
Such a conserved stick reflects the existence of a
‘resource invariant’; [Man92] argues the interpre-
tation of this concept as the computational equiv-
alent of quantum number conservation laws, and
uses it to explain how the EPR ‘paradox’ is not a
paradox at all.

3 Observing the Universe

An implicit claim of the Turing model is that a
single sequence of computational events can capture
all essential aspects of computation, or as we put it
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earlier, computation consists only of state transfor-
mations. To refute this claim, consider the following
gedanken experiment:

The coin demonstration - Act I. A man stands
in front of you with both hands behind his back, whilst
you have one hand extended in front of you, palm up.
You see the man move one hand from behind his back
and place a coin on your palm. He then removes the
coin with his hand and moves it back behind his back.
After a brief pause, he again moves his hand from be-
hind his back, places what appears to be an identical
coin in your palm, and removes it again in the same
way. He then asks you, “How many coins do I have?”.

It is important at the outset to understand that the
coins are formally identical: indistinguishable in every
respect. If you are not happy with this, replace the
coins with electrons or geometric points (or synchro-
nization sticks!).

The indistinguishability of the coins now agreed,
the most inclusive answer to the question is “One or
more than one”, an answer which exhausts the uni-
verse of possibilities given what you have seen, namely
at least one coin. There being exactly two possibilities,
the outcome can be encoded in one bit of information.
Put slightly differently, when you learn the answer to
the question, you will per force have received one bit
of information.

The coin demonstration - Act II. The man now
eztends his hand and you see that there are two coins
in it. [The coins are of course identical.]

You now know that there are two coins, that is,
you have received one bit of information. We have
now arrived at the final act in our little drama.

The coin demonstration - Act III. The man now
asks, “Where did that bit of information come from?2”

Indeed, where did it come from?! Since the coins are
indistinguishable, seeing them one at a time will never
yield an answer to the question®. Rather, the bit orig-
inates in the simultaneous presence of the two coins.
We call such a confluence a co-occurrence. In that a
co-occurrence, by demonstration a bona fide computa-
tional entity, is ‘situational’ rather than ‘transforma-
tional’, the second of the three TM-model assumptions
is shown to be false.

At this juncture, we hasten to mention that we are
dealing here with local simultaneity, so there is no colli-
sion with relativity theory. Indeed, Feynman [Feyn65,
p.63] argues from the basic principle of relativity of
motion, and thence ‘Einstein locality’, that if anything
is conserved, it must be conserved locally. See also
[Phi91].

Returning to our discussion of Turing’s model, we
see from the coin demonstration that there is infor-
mation, computational information, available in the
universe which in principle cannot be obtained se-

4An statistical analysis conducted together with my col-
league Sgren Hgjsgaard yielded the conclusions (1) a Bayesian
analysis is not indicated; (2) the most intuitively appropriate
probability distribution for the expected number of coins given
repeated showings of coins appears to be a Poisson distribution,
which distribution unfortunately relies on an absolute time axis,
which axis is fundamentally irrelevant to the problem.




guentially. Thus we have in the coin demonstration a
compelling argument that, at the very least, the Tur-
ing model of computation fails to capture all relevant
aspects of computation: it is semantically incomplete,
and the thing it ultimately lacks is space-time - space:
co-occurrence, time: mutual exclusion. Synchroniza-
tion operators represent precisely the way computa-
tions can express space-time relationships and give
them semantic content.

This can be taken further. Suppose we replace the
coins by synchronization sticks, which are surely indis-
tinguishable (‘inscrutable’ according to [PR81]’s clas-
sification). We can then say that the information re-
ceived is indicative of the fact that two states (repre-
sented by their sticks) do not mutually exclude each
other. Furthermore, since (1) by the definition of si-
multaneity, the two states occur neither before nor af-
ter each other, and (2) sticks represent what might be
called ‘naked instants’ of time, (3) we see that in the
computational frame of the co-occurrence itself, there
is no time. Physicists call such an entity a (Wheeler-
Feynman) boson; we present additional evidence for
the correctness of the identification of co-occurrences
with bosons later. It is well known that photons
(which are bosons) are used to construct space-time.

[To very briefly dispose of the most common
counter-arguments: ’

Q: Whatever you do, it can be simulated on a TM.
A: You can’t ‘simulate’ co-occurrence sequentially, cf.
the coin demo.

Q: But you can only check for co-occurrence sequen-
tially - there’s always a At.

A: This is a technological artifact: think construc-
tive/destructive interference, which reflects the phase
relationship between two entities with just one datum.
Q: Co-occurrence is primitive in Petri nets, but these
are equivalent to finite state automata.

A: We in effect postulate growing Petri nets, both in
nodes and connections.]

We will now show how to build a “theory struc-
ture” (for lack of a better term) from the information
obtained from co-occurrences. Consider the following
‘blocks world’ scenario.

The blocks demonstration. Imagine two
‘places’, p and q, each of which can contain a single
‘block’. Each of the places is equipped with a sensor,
sp respectively sq, which can indicate the presence or
absence of a block. The sensors are the only source
of information about the state of the places. The two
states of a given sensor s are mutually exclusive, so
a place is always either ‘full’, denoted (arbitrarily) by
s, or ‘empty’, denoted by §. Suppose there is a block
on p and none on q. This will allow us to observe the
co-occurrence {Sp,Sq}. From this we learn that hav-
ing a block on p does not exclude not having a block
on q. Suppose at some other instant (either before or
after the preceding) we observe the opposite, namely
{3p, 54} We now learn that not having a block on p
does not exclude having a block on q. What can we
conclude?

First, it is important to realize that although the
story is built around the co-occurrences {s,,3,} and
{8p, 54}, everything we say below applies equally to
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the ‘dual’ pair of co-occurrences {s,, sq} and {5p, 34}
After all, the designation of one of a sensor’s two val-
ues as ‘~’ is entirely arbitrary. It is also important to
realize that the ‘places’ and ‘blocks’ are story ‘props’:
all we really have is two two-valued sensors reflect-
ing otherwise unknown goings on in the surrounding
environment. These sensors constitute the boundary
between us (or some artificial entity) and this environ-
ment.

Returning to the question posed, we know that s,
excludes 5, and similarly s, excludes §,. Further-
more, we have observed the co-occurrence of s, and 5,
and vice versa. Since the respective parts of one co-
occurrence exclude their counterparts in the other co-
occurrence (cf. first sentence), we can conclude that
the co-occurrences as wholes exclude each other.

Take this now a step further. The transition s, —
§, is indicative of some action in the environment, as is
tﬁe reverse, 5, — sp. The same applies to s4. Perceive
the transitions s, ¢+ §, and s4 ¢ §, as two sequential
computations, each of whose states consists of a single
value-alternating bit of information. By assumption
these two computations are completely independent
of each other. At the same time, the logic of the pre-
ceding paragraph allows us to infer the existence of a
third computation, a third compound action, with the
state transition {sp, 83} < {5p,s,}. In effect, in com-
bining in this way two single-bit computations to yield
one two-bit computation, we have ‘lifted’ our concep-
tion of the actions performable by the environment to
a new, higher, level of abstraction. This inference we
call co-exclusion, and can be applied to co-occurrences
of any arity > 1 where at least two corresponding com-
ponents have changed.

Let us now briefly examine the hierarchical transi-
tion induced by the co-exclusion inference. The usual,
and generally tacitly assumed, hierarchy relation in
computing and much mathematics, is function compo-
sition, f o g = f(g), where the idea is that the ‘result’
of g is to be ‘composed’ with, or ‘put into’, f. Function
composition captures for example the idea of a ‘sub-
routine’ very neatly, and an entire sequential compu-
tation E can be viewed as eq(en—1(...(ea))...). No-
tice however that o implicitly imposes an order on the
computations represented by f and g: first do g, then
do f. This basic property of o means that any consid-
eration of co-occurrence is immediately impossible.

Furthermore, the values we are receiving from the
sensors qua values are entirely predictable and unsur-
prising. That which is unpredictable and surprising
is when they occur, and this relative to each other.
Hence, in essence what we are doing is interpreting
a sensor’s value as a synchronization stick indicating
when the sensor is in a particular state. If we were to
program a computer to observe co-occurrences, apply
co-exclusion to them, and model execution therewith
(which we have done), the code will consist entirely
of wait and signal operations. As pointed out earlier,
neither of these operations can be meaningfully viewed
as a ‘function’.

The conclusion we draw from the preceding two
paragraphs is that the hierarchical transition effected
by co-exclusion cannot be described in terms of a



standard function composition hierarchy. The latter
is implicitly and hopelessly sequential in its concep-
tion; the arguments to co-exclusion are co-occurrences,
which cannot be captured sequentially at all; and the
computational mechanism describing what’s going on
(synchronization) is not even functional in character.’
Rather, instead of the function - sub-function rela-
tionship, co-exclusion captures the part-whole rela-
tionship, and this in a pure process-oriented context.
We have thus established the third of our three objec-
tions to the Turing model. We will see in the following
section that co-exclusion has a topological interpreta-
tion.

This temporally-based part-whole hierarchy can -
via interpreting resource invariants as stick movement
on closed paths - be viewed as a hyper-cyclic hierar-
chy. A function composition hierarchy has difficulty
answering.questions like, “But what is (say) a quark
made out of ?”. In our view, the problem here is that
such things as quarks are being viewed in terms of
what they ‘do’, their ‘doing-ness’. In contrast, the cy-
cle hierarchy is founded on co-occurrence, whose time-
less ‘is-ness’ effectively grounds such questions by re-
ferring to a clearly defined sensory boundary. In this
way, the door is kept open to considering, as Leibniz
intuited, that everything is ultimately defined by the
presence of everything else.

Finally, with regard to practical computing, it is
worth mentioning that the cycle hierarchy and co-
exclusion-based actions together provide a concep-
tual platform for realizing distributed computations
that goes far beyond such contemporary technologies
as ‘servers’ and ‘remote procedure call’. To demon-
strate this falls however well outside the confines of
the present topic. We will however very briefly sketch
how actions built from co-exclusion form a computa-
tional mechanism.

Once the required pair of co-excluding co-
occurrences has occurred®, a multi-threaded action is
instantiated as a new entity. One of the threads keys
on the (co)-occurrence {s;, s} and a request (goal) for
either s, — 5, or s, — 34, and the other on {5,,5,}
and a goal for either 5§, — s, or §, = s4. Since these
co-occurrences exclude each other, only one of these
threads will be activated at a time. When these pre-
conditions occur, the action issues requests for (say)
sp = 5, and s, =+ §,. Thus a cascade of transfor-
mation goals propagates and activates other actions.
Actions carried out at the boundary (‘effectors’) affect
the environment, causing the sensors to reflect the new
conditions. Etc.

Finally, given that every action possesses an innate
polarity based on its orientation ({sp,sq} = {5p,5,}
vs. {8p, 8.} = {sp, 8¢} — £1), co-occurrences of such
action poliarities can themselves be subjected to the
co-exclusion inference, producing a meta-level of de-
scription. Inasmuch as co-occurrence can be viewed as
creating information, such meta-actions will, like the
simple actions we have seen heretofore, exhibit emer-

5See also [Hew85) for a different but related argument.
6The discussion also applies to the dual. Thus co-exclusion
on two sensors can generate two distinct actions.
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gent behavior. Furthermore, although it falls outside
the scope of this paper to argue the point, the number
of such meta-levels is in fact unbounded!

The next section of this paper analyzes the ab-
stract properties of co-occurrences, co-exclusion, and
actions, an analysis that leads to an appropriate math-
ematics, that of a Clifford algebra.

4 A Vector Semantics for Distributed

Computations.

By way of introduction, the word ‘semantics’ in a
computational context refers to the construction of
mathematical models serving as abstractions of the
symbol-level understanding of what a program will do.
In particular, a semantic understanding of a program
applies to all possible executions thereof. The seman-
tics of sequential programs is completely understood,
cf. the operational semantics of Plotkin, the axiomatic
semantics of Hoare, and the denotational semantics of
Scott & Strachey; the same can, unfortunately, not be
said of concurrent systems. All computational seman-
tic theory, including that of multi-process (ie. non-
sequential) systems, follows a clear line of development
from Hilbert’s 14th problem to Gédel’s anti-solution
thereof to the work of Church and Turing, and thence
to the above (1970’s) semantics, up to current work.
It is fair to say, though with various footnotes, that
this entire line of development contains a strong over-
all tone of mathematical logic.

In contrast, the overall tone of the semantics of
multi-process systems sketched in this section is that
of physical mathematics. ‘Execution’ or ‘state change’
is viewed in terms of rotations in phase space, a view
not found in traditional semantic approaches. Its use
of vectors rather than scalars is untraditional, and in
general the approach is radically different.

The other introductory comment refers to the vec-
tor spaces and algebra the semantics inhabits. First,
we always think of the former as being discrete, and
the presumption is that given the relatively mod-
est demands we make on them, this is ultimately
okay, mathematically speaking. Second, the vector
spaces do not represent ‘real’ 3- or 3+1-dimensional
space, nor embeddings therein, or anything of their
kind. Rather, they are spaces representing distinction-
coding symbols arising from co-exclusion, and for
example the distinctions representing the left/right,
up/down etc. of ordinary space-time are products
of the dynamic growth of the dimensionality of the
distinction-space.

In the following, we first examine the mathemat-
ical structure of co-occurrences, and thence of co-
exclusion-based actions. We then show how these
two fundamental entities can be viewed from a vector-
space perspective, in terms of a Clifford algebra. Fi-
nally, within this framework, we provide a mathemat-
ical basis for the basic insight of inferring actions from
complementary co-occurrences.

4.1 Co-occurrence.
The analysis of co-occurrence is tricky because, al-

though the sensor-events constituting a co-occurrence
are by definition un-ordered, there is nevertheless an




ordering present, namely that deriving from the fact
that we must name the sensors uniquely in order to
distinguish them from each other. A concrete ver-
sion of the problem is that the sensor values will be
placed in distinct storage locations, and the various
possible ways this can be done must all be equiva-
lent. Our analysis therefore proceeds by the device of
considering all possible orderings in order to express
co-occurrence’s order-independent property.

Consider as an example the set of possible 3-co-
occurrences of A, B,C, of which there will be 3! = 6
possible order permutations. These are, explicitly,

1 a b
(A,B,C) (B,A,C) (A,C,B)
(123) (213) (132)

c d e
(C,B,A) (B,C,A) (C,A,B)
(321) (231) (312)

where the middle row shows the actual permutations,
the third row this same information in place-numeral
form, and the first row convenient mnemonics. The
numeral form can be given the following permutation
operator interpretation:

1=(123) = do nothing

a = (213) = interchange the 1st and 2nd fields
b= (132) = interchange the 2nd and 3rd fields
¢ = (321) = interchange the 1st and 3rd fields
d=(231) =first doc, then do a

e=(312) =firstdoc,thendob

For example, (123) used as an operator means “choose
the first element, choose the second element, choose
the third element” of the entity to which it is ap-
plied; similarly, (213) means “choose the second el-
ement, choose the first element, choose the third el-
ement”. ‘Multiplying’ on the right, hence, ba =
(132)(213) = (312) = e. Notice that the members of
the set {1,a,b,c,d,e} are simultaneously things and
operations, just as the number “2” can represent both
a magnitude (“two aces”) and an operator (“double
your bet”).

The ‘multiplication’ table for the composition of 3-
permutations is:

lla b ¢ d e
all e d ¢ b
bld 1 e a ¢
cle d 1 b a
d|b ¢ a e 1
elc a b 1 d
Since aa = bb = cc = 1, the elements a,b,c are

their own inverses, and d, e are each other’s inverse.
It can also be verified that 1z = z1 = z and that
z(yz) = (zy)z. Hence a 3-co-occurrence is a group,
also known as the symmetric group on three elements,
Ss; in general, S, is a group, contains n! elements, and
characterizes (for example) purely spatial rotations.
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Notice that by expressing the group in operator
form, it makes no difference what it is we are per-
muting. This independence from some “basis” set of
things to be permuted means that the properties of
the group can be developed and examined indepen-
dently of their application. However, a basis set of
elements, for example a sensor tuple (4, B,C), can
always be supplied to make a concrete computation;
for example, (A4,B,C)cb = (4,B,C)(321)(132) =
(4,B,C)(312) = (C, A, B).

We now attempt to model the Block Demonstra-
tion using the above analysis. Interpreting A, B as
places, C as a ‘Hand’, and the position of the block
as being indicated by the permuted position of the
symbol ‘A’, the following calculation expresses the
movement of a block from A to B as a sequence of
purely spatial rotations: the move from A to Hand
is (A,B,C)c = (C,B, A), and (C,B,A)b = (C, A, B)
moves the block from the Hand to B. Notice however
that this formulation does not express, except very im-
plicitly, the changes which actually take place in the
sensors, namely that their values invert in a very par-
ticular temporal pattern. Inversions constitute a kind
of change which this group cannot express: it contains
only ‘1’, and in particular no ‘1.

4.2 Co-exclusion.

‘We therefore move on to co-exclusion-based actions,
which differ fundamentally from co-occurrences ex-
actly in their expression of a change in the world via
the inversion of a sensory input, i.e., A — A.

We begin with 2-ary actions. These have two com-
ponents, and the operations that can occur include
both permutation of places and inversion; hence in
general an n-action will have 2™n! elements, and a 2-
action eight. These are

1 i a a
(A,B) (4,B) (4,B) (A,B)
(12) (12) (12) (12)
b b c ¢
(B,A) (B,A) (B,A) (B,A)
(21) (21) (21) (21)

where {12) means ‘choose the first, choose the second
and invert it’, and we recycle the operator labels a, b, c.
The table for their composition is

1“i|a &lb I;lcc
if1la a|b ble ¢
allalr ifc &|b b
allall 1]é c|b b
bllole c|1 1]le a
blilb|lc &1 1|a a
c El-)?&a 1 1
clleld bla all 1




Suffice it to say that {1,1, a,&,b, b, ¢, &} under compo-
sition form a group we will call X2, an ezclusion group.
Looking at the table, we can see that aa = cc = 1 but
bb = 1, and similarly for the inverses. In addition,
ab = ~ba,bc = ~cb, and ca = ~ac, and similarly for
their inverses.

We will return to the algebraic analysis after an
example (see Figure 1).

Let us take A to mean ‘place A is full’ and A to
mean ‘place A is empty’, and similarly for B. Then the
moving of a block from B to A, presuming A is empty,
would be

(4,B) =% (4,B) < (B, 4)
- (B, A) = (A, B) = (4, B)acac.

If we rewrite the block movement in terms of Full and
Empty, we have

(E,F) > (E,E) = (E,E) % (E,F) = (F,E).

The longer one looks at this, the stranger it seems, but
what is going on is that, aside from the ‘time’ element,
the two places - given precisely the indistinguishabil-
ity of the sensory inputs - are being permutated, i.e.,
rotated. But the time element, introduced by ac = b,
is keeping track in a different dimension, namely the
complex (v/—1, and recall that b2 = b?> = —1), which
is also undergoing rotation.

Note that the transition between two opposites
(think +1 and -1) can be viewed as a rotation of an
axis containing both. Figure 2 combines three axes -
places A and B, and the Hand (which is carrying the
time dimension as viewed from the action AB+—AB).
We can combine the three axes at their zero-points be-
cause this is completely arbitrary; the axes are orthog-
onal because the coordinates they express are com-
pletely independent, e.g., the state of place A says
nothing about the state of place B.

The movement of the block from B to A rotates
each of the three axes through 180°. If we thereafter
moved the block back from A to B, they would each
rotate again through 180°. Such a complete ‘circle’
would thus record 360° for each of the three axes, but
due to the indistinguishability of A and B, we would
record 720° for the spatial rotation, but only 360° for
the action itself. Speaking physically, this corresponds
to spin-1.

Put somewhat differently, we can be tempted, since
A and B have opposite states, to place them on the
same “AB” axis. In this view, which ignores both the
fact that each of A and B has a legitimate local view
which is 2-valent, and as well the indistinguishabil-
ity introduced by sensorial equivalence, the rotation
which accomplishes the interchange of the block’s po-
sition, and then interchanges again, then takes 360°
and not 720°. Thus ignoring these distinctions ren-
ders spin-% needlessly mysterious.

This example makes clear that treating sensors as
being mutually orthogonal brings great clarity to a
detailed understanding of how an action works. We
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exploit this orthogonality later when we map the sen-
sors to a vector space.

The case of 3-actions is more complicated, due to
the odd number of elements. They too form an exclu-
sion group, X2, and we can quickly calculate that A3
contains 233! = 48 elements. Let us write down the
three sets of 3-actions where, respectively, the A, B or
C component is held constant - what we call ‘2+1’
actions:

1 1 a a
C3: (123) (123) (132) (123)
C%: (123) (I23) (321) (i23)
C¢: (123) (123) (123) (i23)

b b ¢ é
Ci: (132) (123) (132) (133)
C3: (123) (321) (321) (32i)
C%: (213) (213) (213) (213)

We see that, comparing with the table for X2 earlier,
each of the above individually is in fact an example
thereof, modulo the constant element. Taking C% as
an example, we find that ab = (123)(213) = (213) = ¢
and ba = (213)(123) = (213) = &, and hence ab =
—ba. Similarly, ac = —ca and bc = —cb, and finally,
a’> = ¢ = +1 and b* = 1. Hence C2 is indeed an
exclusion group, as are C3 and C%. However, each
has its own concept of “~1”. In this connection, we
note that 1415 = 1514 = ic,iBic =1c1p = 14,
and 14 = 41 = ip; and (e.g.) a@abgpac
(123)(123)(123) = (123) = 1.

We can furthermore observe that C3 NC% NC3 =
(123), and that C3 NC% = (123),C3 N C3 = (123),
and C3 NC% = (123), which is to say that the three
groups overﬁa,p - sharing the same identity element and
pairwise an additional element. Notice also that (e.g.)
bacpea = (132)(321)(132) = (213) = b¢, which is to
say that we can get C3 from products of elements of
C% and C%, or in general, given two of the groups,
we can generate the third. The remainder of the 48
elements can be generated via the ¢’s and —1’s.

We have therefore demonstrated that the complete
set of actions on three (given) sensors, that is, 3-
actions, can be viewed as the product of all the possi-
ble 2+1-actions on these same three sensors:

Theorem. The exclusion group A% = X2 1 A2,
where T denotes the overlapping product of the two

groups uncovered above’, and p,q are different and
chosen from {4, B,C}.
A similar analysis of 4-actions reveals

Theorem. The exclusion group X4 = X3 I 3.

7We use the symbol IL because we are as yet unwilling to
commit to (say) the direct or semi-direct product, or something
else entirely.




We conjecture that A™ = X*~1x x"~1,n > 3.

We turn now to the aforementioned correspondence
of orthogonal sensors and vector spaces.
4.3 Sensors, Co-Occurrences, and Flux

We consider a set of n sensors (s1,S2,...,5n), all
fixed symbols, and define a valuation v on sensors by

v(s;) = 0, Where o, is one of 01,0,...,0.. Here
take z = 2 and (with an eye to future use) take
01 = 1,02 = —1. As noted earlier, with a single value

(2 = 1) we would only get permutations, whereas with
two values, we get rotation combined with change and
hence orientation.

To maintain consistency with later analysis, we in-
terpret s = 0 to mean a sensor value which cannot
occur. The orientation of a sensor vector is positive
when o; > 0 and negative when o; < 0.

We next impose a vector space structure S over the
ring R of reals® on sensors, so (s1,82, ..., 5x) is a basis
of S and any element of Sis s = Y ., z,s,. Here +
is purely formal.

In this connection, we have decided that the proper
interpretation of “+” is “co-occurrence”, in that

o The actuality of +’s components is indicated by
their very presence, or rather, their absence can
be ignored;

e Order is unimportant, or rather, the absence of
order is necessary;

e Those sensor values which can co-occur corre-
spond to those which can change or be changed
in parallel;

e The additive identity “0” is interpreted to mean
“cannot not occur”, so reasoning involving equal-
ity, for example X = Y, which means X +(-Y) =
0, comes to mean that X and its inverse cannot
co-occur, ie. they exclude each other;

e The connection of “+” to the addition of numbers
is fundamentally irrelevant - the environment can
choose to view things as having been “added” or
not, as it likes. Another way to view this is that
addition of simple magnitudes occurs in the al-
gebra of the real numbers, which is beneath the
level of the present reasoning.

We now extend valuation to S by v(s) = > z,v(s;).
Since we are now interpreting + as co-occurrence,
transformations leaving + invariant (linear transfor-
mations) are important.

We assume an inner product “-” between the ele-
ments of S, such that s; - s; = 1 when 4 = j and zero
when 7 # j. The inner product expresses the pro-
jection of one vector on another, and hence the fact
that the inner product of two different sensors is zero
means, as noted earlier, that a given sensor in prin-
ciple says nothing about any other. (It is of course

8We may only need the rationals, but for now assume the
worst.
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co-exclusion’s job to detect and abstract over the cor-
relations between sensors, including those that might
directly overlap.)

Now consider changes in the values of v for the var-
ious sensors: a “Alux”. The purpose of constructing S
was to give a new computational way of talking about
fluxes. If v(s;) changes from 1 to —1, let us write
s; — §; where v(8;) = —v(s;) = v(—s;), so that when
v(s;) = —1, v(8;) = 1. Call §; the complementary
sensor. Make the convention that all sensors written
down have v = 1 so that s; + s — s1 + 82 means that
initially v(s;) = v(s;) = 1, but then v(sz) changes to
—1. In this way a flux is “taken into the algebra”.
Note that —s; is interpreted as §;. The interpreta-
tion given to ks;, k # +1 is ‘stone age binary’, eg.
2s = s + s is a co-occurrence of two distinct but oth-
erwise indistinguishable s’s.

4.4 Clifford Algebras and Vector Spaces

So far we have an algebra of co-occurrences. The
various group properties of actions that we saw ear-
lier prompt the choice of a Clifford algebra as the next
step. As we will soon see, products in this algebra,
not to mention other aspects, fit these properties ex-
tremely well.

It is useful to have a compact definition of what a
Clifford algebra is. The following follows [ChoDe82].

Definition. Let S7;),r € Zt r < n be an n-
dimensional vector space over the real numbers with
inner product “-” and basis (e;) such that

e;-e; =0 N
e,-ej=-—1 t=j3=1,...,7
e;-e; =+1 t=j=r+1,...,n

The characterization of S™ according to 7 follows from
the fact that some of the basis vectors may have square
—1; thus r is zero for our basic sensor level (thought
not necessarily for the meta-levels). Using for exam-
ple (a,c) as the basis, a®> = ¢ = 1 but b* = 1, and
the group X? is covered exactly by S(ZO). The nota-

tion {r,n — r} expresses the signature of the space,
eg. standard 3 + 1-dimensional space-time would have
n = 4,7 = 1 and hence signature {1,3}. In the fol-
lowing, we occasionally assume that r = 0 to avoid
notational clutter; this means that some of the formu-
las will otherwise need a minus-sign.

If we define a product uv on the vectors in SZ})

which is associative and distributive with respect to
addition and which satifies the condition uv + vu =
2(u - v), i.e., uv = —vu when u, v are orthogonal, then
the resulting algebra of all possible sums and products
is called the Clifford algebra C(S("r))7 which we will

abbreviate as C"T), and as C™ whenever the value of

r is clear. It follows from these definitions that the
algebra of X2 is C%.

Clifford algebras® can express a large number of
fundamental and crucial aspects of physical reality,

9Grassman or ‘exterior’ algebras are similar, except that
lee| = O instead of 1, due to the fact that the product ee is
solely ‘outer’, rather than ‘inner + outer’ as in a Clifford al-



which we will discuss later. For the present, we will
simply remark that the phrase “all possible sums and
products” of the vectors in S("r) corresponds to all pos-

sible state and action configurations in a co-exclusion
based program. The intention of the following is to
sketch how Clifford algebras can provide a good (and
hopefully in the fullness of time, complete) formal
characterization of phase web semantics.

A Clifford algebra is itself a linear space of dimen-
sion

with basis (1,ey,,€s,€4,, ...,€1€2 - - - €,), where the J;
label ordered natural numbers, J; < Jj41. The se-
mantics which we present below is that of a Clifford
algebra over all possible sums and products of the com-
binations of the the states that S™ provides, i.e., all
possible sums and products of

81, 82,

«++y8n, 8152, S183, ..., S18n,

8283, «v.y +o.y 8182°"° 8

Hestenes [HeSo] generalizes Clifford algebras into
a general calculus of space-time, called the geometric
calculus.
4.5 Expressing Action

The purpose of constructing a Clifford algebra is

two-fold. Firstly, the linear functions on S (i.e. trans-
formations preserving co-occurrence) are of the form

on
s— f(s) = Z anSba
a=1

where aq,b, are elements of the algebra i.e. expres-
sions of the form

Qg = Qa0+ E QoS+ E Qq,ijSiS;+ E Qg ijkSiSjSk+. ..
i i<J 1<j<k

Secondly, as a special case, either the a, or the b, can
be taken to be the 2™ units

1,3,‘,5,’31', ...y8182...8q

themselves'®. The latter forms allow us to entertain
the idea that products can represent actions. See also
Figure 3.

The vertical dimension in Figure 3 corresponds to
the product sy;s0 = %(sl + s2)(81 + §2). The 2-
dimensional vector space S? is in fact uniquely de-
termined by the non-zero 2-blade s;s, [HeSo, p.17].

gebra. Clifford algebras are a generalization of Grassman alge-
bras, Hamilton’s quaternion algebra, tensor algebra, and vector
manifolds.

10This theorem is due to Kilmister [1950], but the result for
quaternions was known in the 1930’s by A.W. Conway (no re-
lation to J. Conway).
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There is an implicit assumption throughout this pre-
sentation that the underlying space is Euclidean, but
this can presumably be avoided.

Summing up the development to this point, we have
an algebra which can express

o The existence of sensors and their changing values
as a vector space;

¢ The co-occurrence of sensors as one of its funda-
mental operations: + ;

e The concept of mutual exclusion as its zero;

o The anti-commutativity of actions using its fun-
damental product s1s2 = —8251;

o The effect of these actions on co-occurrences pre-
serves +, for example, it makes no difference
whether we think of an action as (s; + s2)s354
Or as S15354 + S28384.

So far so good. We lack however a means of expressing
exactly how the algebra’s product expresses the phase
web’s concept of action. What we are looking for is
a linear transformation which preserves products, i.e.
an automorphism of C(S). If S contains an even num-
ber of elements, then the required automorphism is
inner, that is, of the form
s =58 =asa™?

[In general, Clifford algebras exhibit various quirks
when the basis contains an odd number of elements.
Regarding the above automorphism, for odd algebras
an automorphism is either inner, or it is the composi-
tion of an inner automorphism with i - —i (complex
conjugation).]

Consider as an example action the case n = 2, and
look at s; + s3. The possible changes are:

81+ 82 —> 81 + 82

81 + S2 — 81 + 82
81+ 82 = 8§ + 82
81+ 82 = 8 + 32

Since s7' = s, and we find

s1(81 4 82)51 = 81 + 52
and also s; = sg, s0

52(81 + 32)52 = 51 + 82

and finally, since (s1s2)7?
has the form

= s951, a genuine action

s152(s1 + s2)s281 = 81 + §2
Similarly, for 3- and 4-ary actions, we get

—513283(51 + s2 + 53)833281 =8 + 82+ 353




where the minus sign reflects the effect of the complex
conjugation mentioned above, and

81528384(81 + 82 + 83 +S4)S4S3S281 =8, +82+ 83+ 54

Notice that the structure of the inner morphism
contains the ‘action’ twice, reflecting what we noticed
in the example of moving the block (cf. Figure 1,
where the operation ac must be done twice). Further-
more, we have seen that a 2-action is exactly captured
by the product s;s; (taken twice), and also (earlier)
that 3-actions can be expressed as products of 2+1-
actions, etc. So now we know how to express actions
in our algebra.

Finally, this apparatus leads to two composition
rules for actions, where by ‘composition’ we mean
that one action acting on the result of another can
be viewed as a single combined action.

Suppose we have the actions s; + s ~» §; + §2 and
52483 ~» s3+33, where it is the §; in the second action
that expresses that it builds on the result of the first,
and which therefore allows it to be composed with it.
From above we know

5183(s1 + s3)s3s1 = 81 + 83
We can rewrite the righthand side as
5153(31 + 83)3351 =5 + (52 + 82) + §3

since §; + s; = 0. In terms of our interpretation, this
substitution means that, since the two valuations of
$5 cannot co-occur, they must occur in some order or
other. We choose the order

8183(s1 + 83)s3s1 = (81 + 52) + (52 + 83)

in that we substitute with the two terms’ inner auto-
morphisms, yielding

5183(31 +83)8381 = 8132(81+82)5251 +3283(§2+53)S352

which is the desired composition rule!!.
In a similar fashion, it is easy to derive

—518283(51+52+53)535251 —535455(83+ 54+ 55)555483

= 51828485(81 + 82 + 84 + 85)35848231

where the two actions s;s2s3 and s3s4s5 overlap on
s3, that is, a single sensor; and

—318283(81 +Sg+$3)838281 —825384(52 + 383 +S4)S48382

= 5154(81 + S4)8451

1 The insertion of s2 + 52 can also be viewed as an expres-
sion of the fact that ‘anything can happen’ while an action is
being carried out, inasmuch as the action does not in itself say
anything about such matters. The composition rule thus states
that one may insert any number of such intermediate steps.
Nevertheless, one wonders if there might not be something spe-
cial after 137 steps, cf. [McGNo, p.97, middle paragraph, right
column]
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where they overlap on two sensors. The pattern should
be clear by now - the overlapping, complementary sen-
sors simply drop out, leaving the rest.

The second composition rule was suggested by
C.W. Kilmister [Kil92]. Given

5182(31 + s9 + 33)5231 =8, + S5+ s3
and
5233(31 + 82 + 53)5352 =81+ 52 + 83
implies
[5283].5182(31 + 52 + 83)5281[5332] =351 +52+ 853

which is the result of s;s3.
4.6 Co-Exclusion and the Boundary Op-
erator

This section exhibits the explicit connection be-
tween the basic co-occurrence/co-exclusion inference
of the phase web paradigm and the mathematical ap-
paratus we have presented thus far.

To begin, we can express the co-exclusion principle
formally for 2-actions as:

The co-exclusion principle says that if we ob-
serve (s; + s2) and (51 + §2), then it is correct to
conclude that (s1 + s2)zyzy = (51 + 52;, where z :
(siy85) = (85,8:) and y : (si,8;) = (54,35;).

Ezample. In terms of our earlier analysis, tyzy cor-
responds to caca = bb. Suppose therefore we observe
(s1 + s2) and its inverse. Then

(s1,82)zyTy = (s1,2)(21)(21) = —(s1,82) = (31,532)

We find therefore that (s1 + s2)zyzy = (51 + §2) as
expected.

We can conclude from this formulation of co-
exclusion that if we take the primitive sensor values as
real numbers, the operator zyzy = (zy)? will have the
value -1. The significance of this conclusion is that we
can reconstruct the world, which experience has shown
requires ¢ = 4/—1, on the basis of real information.

A persistent intuition has been that, given that the
paradigm is so intimately connected with change, the
concept of differentiation must have a role to play. Our
first foray in this direction, inspired also by the geo-
metric flavor of various things we have presented, is to
look at algebraic topology, more specifically, homology
theory.

It turns out that we can get the equivalent of
(one concept of) differentiation via homology theory’s
boundary operator, 3. Define

k
6(8,‘181'2 e Sik) = Z(—l)r+lsil v Si18i 4 0

r=1

for k > 1, and for k = 1,8(s;) = 1 (rather than 0 -
arbitrarily chosen - as in the usual theory). Then

d(a+b) = da + b

- Sq



8(da) =0

and
8(ab) = (8a)b + (—1)°a(8b)

where o is the order of a (i.e. if a is a p-simplex, 0 =
p+1), just like the differentiation of exterior products.

As a simple geometric example of the boundary op-
eration, consider an ordinary triangle ABC, where we
specify it in terms of its vertices A, B, C and its edges
are thus AB, BC,CA. Then

8(ABC) = BC — AC + AB

Since specifying the triangle’s edges in terms of the
vertices means that edge AC is oriented oppositely to
edge C A, we can rewrite the above as AB+BC +CA,
which is indeed the boundary of the triangle.

Notice, by the way, that the fact that a triangle’s
components are discrete entities plays no role. Indeed,
despite the ingrained association of ‘continuity’ with
‘differentiation’, there is a surprising isomorphism the-
orem between the operations of the exterior differ-
ential calculus and the homology theory’s boundary
operator (cf. DeRham’s theorem). This also puts

PeSm], which proves continuity over partial orderings
read, discrete concurrent events), into context.

We now ask the question, “What is the boundary of
s182”, or rather, for reasons which will become quickly
apparent, “What is 8(s;s2 = —s251)?” We know that
5182 + 8351 = 0, and working out J of this we find

32~81+Sl—82=0

Re-writing this in terms of our valuation conventions,
this becomes

S3+8+s1+38:=0

and, given that + is commutative, we can rearrange
this in two different but equivalent ways:

(51 +53)+ (81 +s82)=0

and
(s1+82)+(51+32)=0

which is to say that (s; + §2) may not co-occur with
(81 + s2), nor may (s1 + s2) co-occur with (51 + 32).
Notice that these are the initial premises (both forms!)
of the co-exclusion principle.

Now it is obvious that if db = 0 then there is an
element a such that b = da. For, if not, this would
give b as a ‘cycle’, corresponding to a ‘hole’ in the
space (non-trivial homology) whereas the Clifford al-
gebra has trivial homology. So, running the deriva-
tion in the opposite direction'?, we can conclude that

12The inverse ot is
not unique, which means that additional inferences are pos-
sible: +kq 5152 + kp() other s’s, such that 8s = 0) + kc. The
ke # %1 coefficient is uninteresting, and the k; and k. terms
merely state the possibility that a larger context is necessary to
actually complete the definition of the action (eg. 2+1 actions).
As it is, we know the basic inverse, and this is enough.
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the fact that a co-occurrence and its comple-
ment cannot co-occur means that the product
of the component vectors is a Clifford product.
In other words, the co-exclusion principle i3 re-
ally a statement about ‘integrating’ change to
derive a whole, and the ‘action’ performed by
such a whole i3 to change the orientation of
its boundary! All this generalizes to co-exclusion in-
ferences of arbitrary arity, and thus gives the original
intuition a firm formal basis.

We can interpret this result further. Think back
to the fact that the computational foundation of co-
exclusion is mutual exclusion, and that when two pro-
cesses mutually exclude each other there exists a re-
source invariant. The resource invariant expresses the
fact that the synchronization ‘stick’ must move on a
closed orbit, which orbit corresponds to the boundary
expressed by the operator 8. The fact that the re-
source invariant is indeed invariant is captured by the
fact that 8(8(a)) = 0, or as often put, “The boundary
of the boundary is zero”.

The remainder of this paper interprets the results
above in terms of physics, and the implications for the
construction of nano-scale hardware.

5 Where’s the Physics?

The preceding mathematical formulation hopefully
demonstrates, in spite of its spottiness and relative
lack of rigor, that there is a firm connection between
basic computational concepts - synchronization, co-
occurrence, mutual exclusion, co-exclusion - and more
or less ordinary physical mathematics. Moreover, this
mathematics is in essence precisely that of modern
physics - quantum mechanics and relativity theory. In
the following, therefore, we appeal to these connec-
tions to make plausible what otherwise are relatively
loose identifications between the above computational
phenomena in the model and well-known physical phe-
nomena.

Spin, fermions, and bosons. We identify the
fact that (sys2)2 = —1 with the quantum mechan-
ical attribute called ‘spin one-half’. The way this
anti-commutativity is connected with the orientation
of s189, together with the fact that the transition
s1 + 82 = 5 + §3 both changes the orientation of s;s2
and, being an action, changes the state of the system,
yields the PT part of CPT invariance automatically.
We identify therefore co-exclusion-based actions gen-
erally as fermions, even though (eg.) 4- and 5-actions
have square +1. It should also be apparent how ‘arti-
ficial’ quantum numbers such as isospin are modelled.

Similarly, we identify the fact that %(sl + s92 +

...8,)% = 1 with spin one, that is, co-occurrences
are bosons. We conjecture that the simplest of these,
2-co-occurrences, models photons and vector-bosons,
and that 3-co-occurrences model gluons. We speculate
that a ‘graviton’ is a meta-co-occurrence over > 4-
actions.

Particles & anti-particles. [Man92] describes
how the computational concept of a resource invari-
ant can be interpreted as a criterion for ‘objecthood’.
In particular, it implicitly advances the idea that a




fermion should be viewed as a mutual exclusion struc-
ture, such as is represented by co-exclusion-based ac-
tions. It would seem to follow that the particle - anti-
particle relation is that of s;s2 to ss1, in that both
the orientation and direction of change are reversed.
In general, the present model implies that what are
called ‘particle’ and ‘anti-particle’ are two states of the
‘same’ object that are 180° out of phase. It follows
that a primitive 2-action, being the simplest action,
should be identified with a neutrino. Modelling the
neutrino - anti-neutrino interaction (perhaps naively)
as the co-occurrence sisa(s1 + $2)s281 + s2s1(81 +
52)s152 yields (s1 4 s2) + (51 + 82) = ¥*L + 7%, which
can be interpreted as the two neutral vector bosons.
See Figure 4.

We speculate that electrons are meta-2-actions, in
that their additional properties require corresponding
additional information-carrying capacity. As just in-
dicated, a general property of the model is that ‘gen-
erations’ of particle ‘families’ arise via identical ari-
ties, but composed from different co- and/or meta-
co-occurrences. Greater mass/energy is presumably
indicative of greater information-carrying capacity.

Quarks. We identify 3-actions with quarks and
mesons. The ubiquitousness three-ness of the quark
particle family is the initial motivation, along with the
the fact that 3-actions represent the next step ‘up’ in
complexity. It is a natural consequence to identify the
elements of the three 2+1-action groups of A% with
the various quarks and anti-quarks, the three families
thereof. Along the same lines, the fact that quark-
quark interactions flip two of the three ‘colors’ corre-
sponds to the fact that each of the three X2 groups
holds one of its three values constant when it changes
state. It is our understanding that the various cardi-
nals of these groups also fit this identification.

Finally, the holding of one value constant has a
thought-provoking implication, best seen through an
example. Imagine a very simple blocks world situ-
ation with one hand (H), two places (A,B) and one
block, with sensors for hand position (HA, HB), hand
content (CH), and place content (CA, CB). Assume the
existence of the following co-exclusion based actions:

GA: (CA=1,_CH=i)<—)(CA=i, CH=1) ie. block move ‘tween
A and H; 1/1=full/empty.

RB: (CB=1, CH=1)&(CB=1, CH=1) ie. block move
‘tween B and H.

HAB: (HA=1, HB=1)+»(HA=I, HB=1) ie. hand move
‘tween A and B; 1/1=0@A/@B.

Given that the block is at A, ie. CA=1, CB=1, CH=1,
the problem is to move the block to B. One imagines
immediately that the proper sequence of actions is to
grasp at A, ie. do GA, move the hand from A to B, do
HAB, and release at B, do RB.

In order for an action to actually ‘fire’, its pre-
conditions must be fulfilled, whereafter it will attempt
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to fulfill its post-conditions by issuing appropriate
goals (cf. end of §3). In the case of GA, CA=1 and
CH=1 so GA will succeed. But notice that GA will also
‘fire’ if the hand is at B, ie. HA=1, HB=1! That is,
the 2-actions GA, RB given above lack a crucial piece
of information: the hand must be at the appropriate
place if the grasp or release action is in fact to succeed.
Furthermore, this information about commonality of
place during the action cannot be expressed by a 2-
action, or even a 3-action in which all three compo-
nents change. What is needed is a ‘2+1’-action, where
two components change, and one (here, the position of
the hand) does not: (CA=1, CH=1, HA=1) +— (CA=1,
CH=1, HA=1).

That certain kinds of change require the expres-
sion of some dimensional commonality between the
‘before’ and ‘after’ states prompts us to see herein fur-
ther growth of co-occurrence’s seed of the concept of
‘space’, although this seed requires the emergence of
yet further hierarchical structure to reach full expres-
sion in the form of ordinary 3-dimensional space. At
the same time, the corresponding constancy of one
of the three components of the 2+1-action is exactly
what we find in the members of the X group we have
identified with quarks.

Quaternions. Quaternions are a group of three
operators that express rotation in three dimensions.
Their defining properties are: ab —ba, bc
—~cb,ca = —ac;ab = ¢,bc = a,ca = b; (ab)? = (bc)? =
(ca)?> = —1. They appear as the boundaries of the 3-
action abe, ie. d(abc) = be—ac+be. Hence the meta-3-
action created by co-excluding a = s182,b = s283,¢ =
s3s1 implicitly contains, as it were, the ability for the
corresponding 3-object to ‘understand’ 3-dimensional
space from its own point of view. Full-blown 341
dimensional space-time will presumably require four
tetrahedrally-related such 3-objects to appear.

It also bears mentioning that the quaternion alge-
bra is an even sub-algebra of the Pauli algebra, which
in turn is an even sub-algebra of the Dirac algebra, and
all are Clifford algebras; see [ChoDe82] for details. In
the same breath, however, we point out that the rela-
tionship established by & is not that of an algebra to
an even (or odd) sub-algebra.

Causality. Both of the action-composition rules
given in the preceding section can be viewed as provid-
ing models of causality, ie. the necessary sequence in
which actions can be performed. We prefer the first of
them, in that the ‘de-composition’ s;s3 > 5352 + 5283
models the cascade of requests (mentioned at the end
of §3) and allows for the instigation of concurrent and
non-deterministic activity. The second of the com-
position rules is in contrast very sequential and de-
terministic in its thrust. Howsoever, the arity of the
actions involved, which can be viewed as a hierarchi-
cal issue, determines whether the causal influence is
classical momentum transfer or EPR’s more ethereal
version.

Formal Structure. Although we have only hinted
at it, it appears quite certain that the basic overall
mathematical structure of the theory we have pre-
sented is that described by homology theory. The



‘twisted isomorphism’ between homology and co-
homology seems particularly worth further investiga-
tion.

Closer to what we have presented is the matter
of the commutator product: A x B = [A,B]
1(AB — BA), where A, B are arbitrary multi-vectors.
This product satisfies the following relationships (see
[HeSo, p.14] for the first four):

bi-linearity: [AA + uB,C) = A[4,C] + pu[B,C],
[A,AB + uC]| = A4, B] + ufA, C;

anti-commutativity: [4, B] = —[B, 4]

Jacobi ident: [4,[B,C]]+ [B,[C, A]]+[C,[4,B]] =0;

Leibniz I: [4, BC] = [4, B|C + B[4, C];

Leibniz II: (A, B] = [0A, B + [A, 3B] + d(AB).

One of the hallmarks of quantum-mechanical be-
havior is [A4,B] # 0, which is true of both 2- and
3-actions. More interestingly, Dyson [DyQOJ presents
a derivation, originally due to Feynman (1948), of
Maxwell’s laws from Newton’s laws plus the commuta-
tion relations between position and velocity of a single
non-relativistic particle. Tanimura [Tan92| generalizes
this derivation to encompass both special and general
relativistic contexts. According to Tanimura, besides
Newton’s laws as appropriate (and there is no need of
the a priori existence of a Hamiltonian, Lagrangian,
canonical equation, or Heisenberg’s equation%, all the
derivations appeal only to the form of the commutator
product, and are completely independent of the inter-
pretation placed on its components. In this connec-
tion, it is interesting that Kaufmann [Kauf87] shows
that the one needs only parenthesis-operations and
component-ordering to arrive at both spinors and the
Lorentz group.

It thus appears that the only things separating our
framework from a d-based expression of Maxwell’s
laws are (1) we must show that Newton’s laws apply,
and (2) Tanimura’s form of Leibniz II requires that our
8(AB) = 0. We expect that (2) will fall into place nat-
urally, whereas the fate of (1) depends on properties
which we expect will first emerge with the appearance
of (>)4-meta-actions, namely ‘ordinary’ space-time.

Space and Time. The availability of these con-
cepts rests on one of the more radical implications of
the model being presented here, namely the fact that
the usually primitive concepts of ‘ordinary time’ and
3-dimensional space are neither given nor assumed a
priori, but rather emerge as the hierarchical structure
expands. The reason why this is so, simply stated,
is that to give these concepts semantic content re-
quires a context with sufficient information-carrying
capacity to express the required distinctions. Such ca-
pacity accrues solely via ?cycle-)hieratchical aggrega-
tion. The same reasoning applies to charge and mass:
they are emergent attributes and hence will appear in
due course as the information-carrying capacity of the
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constantly growing structure evolves. Howsoever, one
can loosely identify ‘co-occurring’ with ‘space-like sep-
arated’, and ‘co-excluding’ with ‘time-like separated’.
The present approach appears to be isomorphic to that
of the Combinatorial Hierarchy [BK, McGNo]. The
Combinatorial Hierarchy is, in our view, of fundamen-
tal conceptual significance.

Summarizing this section, we believe we have made
a reasonably detailed and plausible case for the po-
sition that the computational structure sketched in
§1.2-3 captures the essential aspects of quantum me-
chanical systems. Indeed, we believe it represents the
(neo-)mechanistic model of QM that has hitherto been
lacking, and therewith that this structure in execu-
tion will be able to provide a blow-by-blow account of
Feynman'’s sum-over-paths formulation. It also seems
reasonable to believe that relativistic considerations
are accomodated.

6 Making Quantum Machines

How then might these insights be transformed into
a nano-scale computer architecture?

The initial point of departure is to recognize that
at the nano-scale, quantum mechanical effects in the
devices will be prominent, and therefore it will be fool-
hardy to fight against them. Rather, they must be ex-
ploited, made to work for us. So the question becomes,
how can quantum-mechanical effects be harnessed to
provide computation? The execution model sketched
very briefly at the end of §3 has the following proper-
ties:

e Since everything is a process, there are many pro-
cesses and no ‘data structures’;

o These processes exhibit global coherence with no
centralized locus of control;

e They synchronize (rather than communicate) via
a distributed global ‘memory’ a la Linda’s tuple
space [Gel85];

¢ They execute utterly concurrently and oppor-
tunistically;

e The execu-
tion regime is reversible, non-deterministic and
goal-oriented;

e Duplicates of a given action or synchronization
tuple are no problem;

¢ Systems with disjoint or compatibly defined bases
‘sensor sets’) can be combined (‘composed’) with
discardable) emergent effects;

e Conversely, a given system can be ‘encapsulated’
to provide modular ‘black box’ functionality to
other systems;

e An initially ‘blank’ system can be ‘trained’ to pro-
vide a given behavior;




In general, the model provides a different style of com-
putation from what we are used to: ‘behavior’ rather
than ‘transformation’; although we expect that more
traditional forms of computation can be accomodated.

Our implementation of the phase web model - in
our local C++Linda - has provided proof-of-principle
but is otherwise much too slow and cumbersome to be
of any use (and we are therefore dis-inclined to ‘re-
lease’ it). Nevertheless, we have learned much from
it, among other things that it takes something like
Linda to implement it, that is, a linguistic vehicle
which does not implicitly force its user to adopt a
pre-ordained concept of ‘parallel’ computation. The
particular property of Linda’s model that is particu-
larly helpful is its associative style of process inter-
action and the space-time decoupling this engenders.
Presumably, any model providing this property would
be suitable. In any event, we needed the following
primitives:

e Tuple space - that is, a global synchronization
medium;

out(tuple) - emit a tuple to tuple space;

rd(tuple) - detect the presence of a given tuple in
tuple space;

e in(tuple) - remove a given tuple from tuple space
under mutual exclusion;

o eval(process) - create a new process; this might be
avoidable for systems that are not to be ‘trained’;

o CO(tuple,, tuples, ...) - detect a co-occurrence of
the given tuples in tuple space, block until this is
true;

e NotCO(tuple,, tuples, ...) - block while the given
tuples co-occur in tuple space.

The trick, then, is to realize these primitives with
quantum mechanical phenomena. The following is
speculative. It would seem that quantum non-locality
is a possible means of achieving tuple space’s coordi-
nation, since we require only synchronization (which
is non-information bearing) and not communication
(which is). Tuples are naturally bosons, as of course
are co-occurrences. The production, detection, and
removal of tuples to/in/from tuple space correspond
accordingly to the emission, detection, and absorp-
tion of bosons. Processes are actions are fermionic
phenomena, eg. spin flips. Blocking behavior trans-
lates similarly into maintaining a given quantum state
until disturbed - presumably by the energy available
carried by a boson (cf. the Coin Demonstration). The
overall idea is that computation is modelled by the
changing phase relationships between the components
of the system; this is the reason we refer to our model
as the phase web paradigm.

7 Conclusion

We have argued that computation - when it in-
cludes synchronization explicitly - can model quantum
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mechanical and relativistic phenomena at a fundamen-
tal level. The basic tools of that argument - synchro-
nization and co-occurrence - also lead to a model of ex-
ecution that is described naturally by the same math-
ematical structures as describe the relevant physics.
This same model of execution appears to be realiz-
able using the physical phenomena that will dominate
nano-level hardware. The goal of nano-scale hardware
apparently requires truly distributed computation, at
the price of having to jettison our sequentially-infected
prejudices of how a computer ‘ought’ to be. But since
Nature ¢s truly distributed, this is probably the right
price to pay.

The reasoning and arguments leading to this con-
clusion are subtle, as are the issues, and given their
importance it is unfortunate that they had to be pre-
sented in such compressed form. We do not expect
everyone will be convinced immediately, and indeed to
conduct the argument fully rigorously will presumably
take the remainder of the decade. Skeptics and the in-
terested reader are therefore also referred to [Rosen]
for a parallel category-theoretical argument in an en-
tirely different context - living systems - which we be-
lieve is actually focusing on the same fundamental is-
sues.

I would greatly appreciate, if/when someone writes
a paper referencing this one or the ideas con-
tained herein, their sending me a (paper) copy.
Software implementing the Phase Web paradigm
is currently not available (August, 1994); in-
quire via http://www.iesd.auc.dk/general /DS /index.htm!
or ftp.iesd.auc.dk/pub/reports/papers/manthey:X where X
PhysComp94.ps.Z  for  this  paper, and
PhaseWeb_Software. README for software status.
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(a) View from the table: the hand moves.
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Figure 1: Block Movement from Two Points of View.
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Figure 2: Moving a Block Requires Three Axes.
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Figure 3: Two Possible Actions: (s; +s2) ¢ (51 + 32)
and (51 + s2) ¢ (81 + &2).
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