Quantum Oblivious Transfer is Secure Against all Individual
Measurements

D. Mayers*
DIRO
Université de Montréal

Montréal, H3C-3J7

Abstract

In this paper we show that the BBCS-protocol im-
plementing one of the most important cryptographic
primitives oblivious transfer, is secure against any in-
dwidual measurement allowed by quantum mechanics.
We analyze the common situation where successive
measurements on the same photon could be used to
cheat in the protocol. We model this situation by us-
ing a single inner-product-preserving operator (IPP)
Jollowed by a complete composite outcome Von Neu-
mann measurement. A lower bound on the residual
collision entropy is then obtained under the assump-
tion that only individual measurements can be per-
formed. This bound is used to apply privacy ampli-
fication techniques in order to conclude the security of
the BBCS-protocol.

1 Introduction

With the advent of quantum cryptography, a prac-
tical application of quantum information theory has
now appeared. Quantum cryptography, like compu-
tational complexity based cryptography, seeks to im-
plement the few main primitives sufficient to build
almost all complex cryptographic tasks. Working
prototypes for some of these primitives have been
built and practical applications are being considered
[BBBSS, TRT1, TRT2}. However, the full proof of the
security of some of these primitives against any attack
allowed by quantum mechanics is still missing and this
consitutes an interesting and practical challenge for
quantum information theorists and cryptographers.

It is a well-known fact that Oblivious Transfer is
a primitive sufficient for the realization of any cryp-
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tographic protocol involving two parties [Ki]. Oblivi-
ous Tranfer allows one party Alice to send a string
B € {0,1} in such a way that Bob will receive it with
probability % and will know whether he received it or
not. Alice knows nothing about what happened to her
string.

The BBCS-protocol [BBCS] implements this prim-
itive in the quantum model. In the first part of this
protocol, Alice sends to Bob photons polarized using
either the rectilinear or the diagonal basis to encode
some bits. A secure realisation of oblivious transfer
in the continuation of the protocol relies on the fact
that if Bob measures these photons at this point he
cannot obtain too much information about the bits
because he does not know which of the two basis has
been used. However, for the continuation Alice must
announce all the bases used to send the photons. The
obvious problem with the security of this protocol is
that, if Bob does not measure the photons and stores
them until he learns the bases, then he can obtain
all the information about the bits. In that case the
overall protocol becomes totally insecure. We refer to
the case where Bob does not measure the photons and
store them as the photon-storing attack.

To protect Alice against the photon-storing attack
the original BBCS-protocol can be modified slightly
([Cr]). The modification is very simple. Before she
announces the bases, Alice simply ask Bob to commit
the outcome of his measurement as well as the basis
that he used. Next, Alice with probability one half
requests Bob to open this commitment. If Bob does
not read the photon, he will fail Alice’s test with prob-
ability one quarter, that is, éach time he commits the
correct basis, but the wrong bit.

To prove the security of this protocol, one needs
to consider how much information can be obtained by
Bob about the bits. Usually, quantum information
theorists use Shannon entropy to measure the amount
of ignorance that remains about a quantum system af-



ter a measurement. However, to prove the security of
the BBCS-protocol and of other similar protocols, the
work of [BBCM] have established that another mea-
sure of entropy, the collision entropy, turns out to be
more adequate. The collision entropy of a distribution
of probability f on a set X is simply given by the for-
mula Ho(f) = —log ¥ cx F(z)?. Their work implies
that a necessary condition to obtain the security of the
BBCS-protocol is that Bob must have some amount
of collision entropy about the bits that he received.
Thus far this condition has been obtained given the
following assumption

Assumption 1 Every measurement is complete.

Obviously quantum mechanics allows measurements
that do not respect this assumption. Assumption 1
means that Bob either executes a complete measure-
ment on the photon before he learns the basis or else
executes the photon-storing attack.

If we remove assumption 1, Bob may execute an
incomplete measurement, obtain just enough infor-
mation to pass Alice’s test and then store the resid-
ual state until he learns the basis. One can see that
whereas it is clear that the new protection is sufficient
to ensure the security of the protocol against the or-
dinary photon-storing attack, this is less obvious if we
consider the storage of incompletely measured pho-
tons.

The difficulty in analysing this situation lies more
at the formal level than at the intuitive level. Intu-
itively, for a given basis used by Alice, if an outcome
of the pre-basis measurement provides a lot of infor-
mation about the initial state, then in the other basis
it significantly “disturbs” this state and does not pro-
vide much information. Now, each time Bob commits
the same basis than Alice uses, Bob must obtain a lot
of information about the bit from the pre-basis mea-
surement. However, Bob does not know which basis is
chosen by Alice, therefore, half of the time Bob must
disturb the initial state and, in these cases, both the
pre-basis and the post-basis measurement do not pro-
vide much information. This allows us to obtain the
desired lower bound for Bob’s total collision entropy.
The most straightforward approach to formalize the
above discussion, in particular the concept of distur-
bance, in the context of the most general attack al-
lowed by quantum mechanics, is to use the model for
generalised measurements that is described in [Ma].
Using this model and building on the work of [Cr],
[BBCM] and [MC], our contribution is to show that
with the protection against photon-storing the proto-
col is secure under the following assumption:
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Assumption 2 Every measurement is performed on
individual photons.

The case of coherent measurements (i.e., removing as-
sumption 2), in a context where assumption 1 is re-
moved, remains unsolved and is the missing piece in
the full proof of the security of the scheme.

2 The BBCS Oblivious Transfer Pro-
tocol

2.1 Preliminaries

In the following, £ €r X denotes a uniformly dis-
tributed random element of X. For a,b € {0,1}"*, a®b
for is the bit by bit exclusive-or of the strings a and b.

We denote by + = (|©),[})) respectively and
x = (|), |")) the bases for the rectilinear (“+”) and
diagonal (“x”) polarizations in the quantum space of
a photon. The [BB84] coding scheme works as follows:

(e =+
‘0>9‘{ A i 0= x
and similarily
[t o=+
|1>9‘{ ~ if6=x.

For our purpose, an n-bit commitment is a black
box primitive defined by

Definition 1 An n-bit commitment allows the com-
mitter Bob to commit to the value of a n-bit string in
a way that prevents the receiver Alice from learning it
without his help. In addition, Bob cannot change the
values of these bits without being detected by Alice.

This primitive can be implemented securely in the
quantum model against any measurements allowed by
quantum mechanics [BCJL]. Thus we can use n-bit
commitment as a “black box” exactly matching the
properties given in definition 1. We use the partic-
ular case of 2-bit commitment and we denote such a
commitment by ¢ = (z,y) for z,y € {0, 1}.

2.2 The BBCS-protocol

In this section, we sketch the version of the BBCS-
protocol which includes the protection against incom-
plete measurements. The first part uses the quantum
channel. The second part is the additionnal protection
(it may also require the quantum channel if quantum



commitments are used). The third part consists of a
classical exchange of information using a public chan-
nel. The three are executed sequentially one after the
other.

The Quantum Part. First, Alice sends 4n photons
encoding 4n bits using the [BB84] encoding rules. For
all i € {1,...,4n}, let |bi)s, be the quantum state
that is sent to represent the bit b; in the basis §;. Bob
then chooses a random basis 6;, measures the quantum
state |b;)g, for all i € {1,...,4n} and obtains |b;); .

The protection. The idea is very simple and con-
sists of requiring for Bob to produce, for each photon
m; sent by Alice, a commitment ¢; = (6;, b;) contain-
ing the basis 8; and the corresponding bit b; resulting
from that measurement. Independantly for each of
these positions i, Alice flips a coins, if a head is ob-
tained then she asks Bob to open ¢;. In that case she
verifies that

b =0, = b =b;. (1)
Finally, Alice verifies that relation 1 has not been vi-
olated more than a fraction é of the time. The value
§ is a security parameter slightly above the maximum
error rate a particular implementation of the proto-
col can support. If the verification is succesful, then
Alice announces all the 6;’s and the classical part of
the BBCS-protocol is executed with the N bits b; for
which c; has not been opened. Since the commitments
are perfectly secure, Alice has no clue whether of I,
or I1_, 1s I.

The Classical Part. The 6; allow Bob to recognize
which_positions i are measured in the correct basis
(i.e. 6; = 6;) and which bits b; match b; with proba-
bility at least 1 — § where 4 is an upper bound for the
error rate of the quantum channel. Using this infor-
mation Bob can determine two sets Iy = {i|6; = 6;}
and I; = {i|6; # 5,} from which some arbitrary
elements can be added or removed in order to get
#Iy, = #1, = L%J = m. Now, Bob discloses to
Alice the sets I, and I;_, for a random bit s that he
keeps secret. Alice chooses s’ € {0, 1} at random and
publicly announces s’ together with C(b(")), where
C :{0,1}™ — {0, 1}° is an error-correcting code that
allows Bob to correct the transmission errors in I, for
an error-rate up to 4. For every z € {0,1}™, the value
C(z) consists of extra bits that are always sent sep-
arately by an error-free channel such as a telephone.
The code C is chosen such that if s # ¢, then Bob’s
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uncertainty about the value of b¢) = {b)i € I}
given C(b(*")) remains high. At this point, if ' = s
then Bob shares the string b(*") with Alice otherwise
he knows little about 5¢*"). Adopting privacy amplifi-
cation techniques [BBR, BBCM], Alice chooses at ran-
dom from a universal; class of hashing functions [CW]
a function A : {0,1}™ — {0,1}, where I < n. Then
she chooses v € {0,1} such that AN @y =B is
the string to be transmitted by oblivious transfer and
announces both k and . Privacy amplification guar-
antees that, if s # s’ then knowing h, ") and a string
+ is not sufficient to learn more than a negligeable
amount of Shannon information about h(6¢))@7 = 8.

3 Known results

To obtain the security of the BBCS-protocol we
must consider the possibility of a dishonest Alice and
a dishonest Bob separately.

Given the perfect bit commitment scheme [BCJL],
Alice has no clue on which I, or I, is the set of
reliable photons. Thus, she has no way to cheat the
protocol i.e. she does not know whether 3 is received
or not.

The security against Bob’s possible behaviour can
be obtained by privacy amplification technique. This
tool is used in the classical part and requires that af-
ter the quantum part Bob has a significant amount of
collision entropy about the N bits.

Definition 2 The collision entropy of a distribution
of probability f on a set X is

He(f) = —log Pe(f)

where P.(f) is the collision probability defined by

P(f) =Y f=).

reX

In the case, where f is a distribution of Bernoulli,
we write Hy(f) = H.(p), where p is the probability of
sucess.

Let f be the distribution of probability that corre-
sponds to Bob’s knowledge about 5(#), b(1=9) after the
measurements. The main theorem of [BBCM] stip-
ulates that if H.(f) > 2t then for h : {0,1}Y —
{0,1}""(and ¢t > r) chosen at random from a
universaly class of hashing functions [CW], Bob has
no more than 277 /In2 bits of Shannon information
except with negligible probability on one of h(b(*)) or
R(b(1=*)). Furthermore, Alice has probability exactly




3 of choosing that one and in that case Bob learns
almost nothing about 8 € {0, 1}'~" (except with neg-
ligible probability).

If the quantum channel is a noisy channel, then
the code C' gives extra knowledge about b(¢) p(1=5)
The functions h must remove this information in ad-
dition to the information that is obtained by Bob’s
measurements. Recent work ([MC]) has determined
the extra “shrinking” parameter needed to remove this
information as well. If the code C gives ¢ bits of in-
formation in order to correct an error-rate ¢ and if
Hc(f) > 2t then a universal; class of hashing func-
tions h : {0,1}¥ — {0,1}*~"~2¢ removes almost all
information about one of ) or b(1=*) except with
negligeable probability. As a consequence, Crépeau’s
proof can be extended to the case where the quantum
channel is noisy.

In section 4 we show that,under the assumption 2,
for almost all execution of the BBCS-protocol pro-
tected against photon-storing, there exists ¢ > 0
(where ¢ is function of §) such that, for every value of
n, Bob’s collision entropy on the N bits is larger than
2t'n excepted with a negligeable probability. There-
fore, in the above results, we may replace t by t'n and
r by r'n, where ' < ¢'.

4 A lower bound for Bob’s total colli-
sion entropy

In this section, we prove the following theorem.

Theorem 1 Let f be the distribution of probability
that corresponds to Bob’s knowledge, about the bits
bi, where open; = 0, after step 5 of the protocol
Game(é,n). Given that the measurements act on in-
dividual photons, if Bob has not been rejected at step
4, then excepted with a probability smaller than 2—an
where a > 0, Bob’s total collision entropy H.(f) is
bounded below by 2t'n, where 2t' = paH:(pr)(4— }%)

3

in which PR = %(1 — 5@), PH = % ande = %

Regarding notation, we use the general rule that
every random value that is represented by a lower-
case letter in the protocol, corresponds to a random
variable which we denote by the matching uppercase
letter. For example, the bits b; and the basis 8; for the

ith photon, become respectively the random variables
B,‘ and @,‘.

4.1 Bob’s strategies

The following protocol describes the most general
Bob’s strategy. In this protocol, Bob is entirely free
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of using any useful knowledge that he learned prior to
the current instruction.

SubProtocol 4.1 ( Game(4,n) )
1: Alice sets fail « 0, N + 0

4n
2: DO

=1
Alice picks b; €r {0,1} and 6; €r {+, x}

Alice sends to Bob a photon #; in the quantum
state [b;)e;

Bob chooses a measurement M.')\ measures m; in
order to obtain 8; € {+, x} and b; € {0,1}

Bob sends the 2-bit commitment ¢; for (E,-, 1/9\.) to
Alice

4an
3: DO

=1

Alice picks open;i €r {0, 1}, if open; = 1 then she
asks Bob to unveil the commitment c;

If open; = 0 then Alice and Bob set N « N + 1
Else if ¢i = (6,1 — b;) then Alice sets fail «
fail +1

4: If fail < dn then Alice announces her choices
61,0, ..
tinue

., 84n to Bob otherwise she refuses to con-

4n
5: DO Bob chooses M; to refine the measurement on
i=1

=

7; and obtains the result j;.

In this subsection, without loss of generality, we
discard from the analysis measurements that results
from strategies that are useless to Bob and discuss the
connection between the useful measurements (i.e., the
undiscarded measurements), their classical outcomes
and variables such as @-,E,» that are used in the proto-
col.

In the protocol Game(d, n), Bob executes two mea-
surements on each photon: the pre-basis measurement
M; and the post-basis measurement M’. However,
the effect of these two measurements on the ith pho-
ton as well as their classical outcomes can be seen
as coming from a single measurement, which we call
the ith measurement. We must keep in mind that, in
accordance with Bob’s strategy, this measurement is
a random variable that depends upon other random
variables, including the basis ©;.



It is shown in [Ma] that any possible choice of Bob
for the ith measurement can be represented by a single
IPP transformation from the initial space of states
to a larger space of states followed by an ordinary
von Neumann measurement on the latter. Let U; be
the IPP transformation that is associated with the ith
measurement. We may assume that this measurement
is complete because it is not advantageous for Bob to
leave any residual information out in the final state
of the photon. Therefore, this measurement can be
represented by an orthonormal basis in the final space
of states for the transformation U;. The vectors in
this basis are denoted |r;), where r; represents the
outcome of the ith measurement; it includes both, the
classical outcome of the pre-basis measurement and
the classical outcome of the post-basis measurement.

Using the pre-basis measurement outcome (that is
included in 7;), Bob determines a pair ¢; = ('0‘,,’1;,) =
f(ri) that he commits to Alice. Bob has no advantage
in using a randomized function f, because he wants
to obtain ¢; that minimize the possibility that fa:l in-
creases (the outcome r; is random, but not f). Also,
because Bob wants to make the most incomplete pre-
basis measurement as possible, it is best for him to
make a pre-basis measurement in which there is not
more than one outcome for each non zero probabil-
ity value of Cj, i.e., f is injective. Taking advantage
of this, we identify the outcome r; of the ith mea-
surement with the triplet (j;, 6;,b;), where j; is the
post-measurement outcome and (5,,3,) is the pair ¢;
that is committed, which pair may now be considered
as the pre-basis measurement outcome.

Now, let us consider the dependencies or indepen-
dencies that exists among the variables of the protocol.
Because it includes the post-basis measurement, the
ith measurement may depend upon the basis ©; that
is announced by Alice, however, the outcome C; of the
pre-basis measurement is independent of the basis ©;,
because the density matrices associated with the two
values of ©; are identical. After the pre-basis measure-
ment, since Bob has already commited the pair ¢;, he
has no way to reduce its chance of being caught and,
therefore, having the post-basis measurement depends
upon previous outcomes is totally useless. From this
one obtains that the distribution on the quadruplets
(©i, Bi,Open;, J;),i = 1,...,4n, given fixed values for
Ci,...,Capn is a distribution of independent quadru-
plets. In other words, once we have fixed the values of
Cy,...,Csn, the measurements are fixed and, in that
case, variables that are associated with distinct mea-
surements become completely independents.
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4.2 The main idea

This subsection analyses the mecanism that is used
in the protocol to guaranty that Bob’s total collision
entropy H. is bounded. This analysis is developped in
a context, where Bob has made all of his 4n commit-
ments and he is waiting for Alice to ask the openning
of about half of the commitments. Therefore, we fix
the sequence of pairs ¢; = (6;,b;), ¢ = 1,...,4n, that
are commited.

With regard to this analysis, the most important
aspect of the protocol is that if Bob is not rejected
then the variable fail must be smaller than én and
therefore whenever Bob has committed to the correct
basis (6; = 6;). he must have committed to the correct
bit (5, = b;). This means that, whenever Bob is not
rejected, he has a lot of information about most bits b;,
where 6; = 6;. Therefore, most contributions to Bolg\’s
total collision entropy H. must occur when 0; # 6;.
Furthermore, even if 6; # 6;, we cannot assume that,
for every outcome j;, Bob obtains only a small amount
of collision information. In particular, Bob could learn
a lot about B; for some outcome j; that is unlikely to
happen. This suggests that we define a random event
AH; that will be used to count the random number
of bits B; that significatively contribute to Bob’s total
collision entropy. The definition of AH;, must also
take care of the fact that only the N bits B;, where
Open; = 0, must contribute to this measure of Bob’s
ignorance.

Definition 8 The event AH; for the triplets of ran-
dom variables (©;, Open;, J;) is defined as the set of

triplets (’0\,°, 0, ji), where

~

(Vb) Pr(B; = b|©; = 6; A R = (8:,b:,3:) > pr, (2)

where pr = 1/4
Equation 2 means that

H(B;|©; = 6; A R; = (8;,b;, i) >—lg(p} + (1 - pr)?
=lg(8/5),

where the left side of the inequality is Bob’s collision
entropy on the bit B;. The purpose of this defini-
tion is to find a lower bound on Bob’s total collision
entropy, however we are not going to find the best
bound. In computing this bound we will ignore the
photons m; for which the event AH; has a low prob-
ability, even though some of these other photons may
also contribute to Bob’s collision entropy. Further-
more, the value py = 1/4 that is used in the definition




of AH; has been chosen without much consideration
for optimization.

Now, the main idea is to show that if the probability
of the event A H; is small then the probability that the
variable Fail increases is large. To go ahead with this
idea we define two sets 'y and I'p.

Definition 4 The set 'y is the set of photons =;, for
which
Pr(AH;|C; = (6:,5:)) > pa,

L

where pr = 3.

For every 7 € I'y, the variable H. has a probability at
least py of being incremented by lg(8/5) bits. As for
the parameter p; = 1/4 in AH;, the parameter pg =
1/36 has been chosen without much consideration for
optimization.

Definition 5 The set I'p is the set of photons n;, for
which

PrB; = b"/\e =6 AOpen;|C; =

where

1
pr(pr,pH) = 51 =2Vpr(1 = p1))(1 - 4pn)
For every i € T'r, the variable Fail has a probability
at the least pr of being incremented.

4.3 The main lemma

Now, we are ready to state a lemma that expresses
the main idea that has been introduced in the preced-
ing section. Subsequently, this lemma is used to prove
the theorem.

Lemma 1 (Main lemma) For every ezecution of
the protocol Game(d,n), if I'y and T'p are defined
as above, then I'y; C T'p, where 'Y is the complement
of Uy with respect to the 4n photons.

To introduce the proof of this lemma we begin by
considering a simpler situation where, Bob does not
use O; to choose the ith measurement. Let & (5:6:b;)
represents the transition amplitude from the initial
state |b;)p, to the final state |j;0;b; ). If Bob obtains
a lot of information from the result (],0,,1)) (when
0; = 9°) then, one can easily show, using Baye’s rule
to compute the aposteriori probablhty, that one of the
two amplitudes ®(j;6¢0) and <I>(_7,0° ) must be small
with respect to the other one. To show that in this
case the variable Fail is likely to be incremented, we
must make use of the fact that if, for this measure-
ment, Alice had used the other basis, then the two
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corresponding amplitudes would have about the same
magnitude. To see this, we simply use

(Vi) ®(j:0:bi) = (1/V2)(®@

which implies that the magmtude of these two
transition amplitudes is between \/_| ]@(],Gcb"ﬂ -

|@(5i62b:)| | and Jx| |®(jifeb5)| + [@(j;d5b:)] | This

means that the wrong bit Ef must have occurred with
some probability that cannot be very far away from
1/2. Now, in this situation, fail increases if Open; = 1
and O; = 5,', therefore it increases with a probability
that is not far from 1/8.

Now let us return to the real protocol, where Bob
is allowed to change the post-basis measurement in
accordance with the value of ©;. In this situation,
the preceding discussion does not directly apply. In
particular, it is a loss of generality to conclude that a
large difference in the amplitude ®(5;650) and ®(ji0;1)
implies that the physical amplitudes @(3;6;0) and
<I>(j,v@1) have similar magnitude. One must rather
consider fictitious amplitudes defined in the following
way,

(jiB20) + ®(ji:651))

%(@(]‘i&i(}) + @(4:6:1)).

For each individual result r; = (ji@/l;,-), these fictitious
amplitudes do not have a direct physical interpretation
in the protocol. To physically interpret the squares of
their magnitudes as a probability one must consider
a fictitious Bob who does not use the basis 6; to de-
termine the post-basis measurement. However, we do
not have to physically interpret them at all. They are
simply, in a basis of our choice, the components of a
matrix that represents the measurement that is made
by Bob. However, because the pre-basis measurement
is independent of ©;, the following vectors,

)= @ (jibshi) 1jibibs),

Ji

@/ (ji05h;) =

1©(65%:) (3)

are not fictitious, they are more than columns in a
matrix, they correspond, up to an IPP transformation,
to the projected states that result from the pre-basis
measurement when the initial state is lbi>9ic and the
outcome is (5,,/5,)

Now, as in the simpler case that we have dicussed
above, one can see that if the genuine amplitudes in
the basis ©; = 0 have very different magnitudes, then
their correspgndlng fictitious amplitudes in the other
basis ©; = #; must have similar magnitudes. The
point is that, if this is true for a set of outcomes I;



with significant probability, then the corresponding
vectors defined by formula 3 will have about the same
norm. Because the square of these vectors correspond
to the probabilities of the corresponding transitions,
this means that with significant probability Bob has
chosen the wrong bit B; and this is enough to bound
the collision entropy. The proof of the lemma is a
formalization of the above discussion.

Proof of the lemma. The proof consists in using
i € T4 to obtain 7 € I'r. We first consider the set I'};.
The event AH; that is used in the deﬁx}\i'ﬁion of 'y is
the conjonction of three events: ©; = 6f, Open; = 0
and —I;, where the event I;, for the random variable
©; and J; is defined as the set of pairs (6;,j;) such
that

(3b) Pr(B;

;= b0; = 6; AR; = (ji6i, b)) < pr.  (4)

Using definition 4 and the fact that Pr(Open; = 0 A
O, = 67|C; = (6;,b;)) = 1/4, we obtain that I'}; is the
set of photons 7; such that

Pr(L;|©; = 63 AC; = (8;,5:)) > 1 — 4py = 8/9.

()

Let us expand the formula 5.

Pr(L;|0; = 8¢ A Ci = (B:,b:))

Y soer, Pridi = 5 A0 =B A Ci = (B5)
Pr(@; = 6¢ AC;i = (0:b:))
_ E(!753' Yel; Pr(R; = (jif: bi) A ©; = 0)
Pr(©; = 8 AC; = (8:5))
E(gc] yer, Pr(Bi = (jifibi))

Pr(C; = (0 b )
We obtain that, for : € T,

§:Pr = (jib5b:)) >

(8e.40)€li

(1 - 4py) Pr(Ci = (6::))

(6)
Now, we reexpress in terms of the amplitudes ¢ the
condition (65,4;) € I;. According to formula 4, this
condition means

~

(3b;) Pr(B; = b;|0; = 8¢ A R; = (jiB:, b)) < p1
Pr(B; = b; A®; = 6¢ A R; = (jiB;, bi
(3b) 2781 = Gibbi))
Pr(©; = 85 A R; = (jif;, b))
(3b;)Pr(R; = jiBib;|©; = 8¢ A B; = b;) <
2p1Pr(R; = jié\izi) (7)
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For the L.H.S we have
Pr(R; = jiBib:|©; = 8¢ A B; = b;) = |®(5ib5 ;)|
For the R.H.S we have

Jibib;) =

(¥6:)2Pr(R; = |®(5:6:0) 1 +|®(5:6:1)|* (8)

We obtain that ( ¢, Ji) € I; is equivalent to

(3b:) |@(iifsbi)|* <

Now, to show that m; € ', we want to use the in-
equalities 9 and 6 (given by i € I'y) to obtain

S 1@/ (i, B2, 55) 12
Ji

(6:,5:)|0; = 6; A B; = &)

pr(1®(i:B;0) P+ (36 )% (9)

| 18, 5)11?

Pr(C; =
2> PF,

where pr is given in definition 5. We make use of
the constraint 9 on the amplitudes ®(:) to obtain a
lower bound on each of the ficticious amplitude &/ (-).

The magnitude of the fictitious amplitudes ®/ (j;6;5¢)
is given by

PN 1 ~ ~
&7 (5;0;0)| = —=|®(5:050) £ ®(5;:051
|97 (5:6:65)] \/5| (4:650) £ (4:671)]

Now, if the magnitude square of the smallest ® is
smaller than pr(|®(-)|% + |®(:)|?) then the biggest is
bigger than (1—pr)(|®(-)]>+|®(-)|?). The lower bound
is obtained by taking the extreme case. We obtain

> ﬂmx@@%QP
+|®(:651)[%)

(V6;)|® (565 b:) 12
(10)

where

1
flor) = 5(1=2Vpr(1 = pr))
After summing the inequality 10, with b; = b , using
formula 8 and 6, we obtain

Pr(Ci = (8:6:)|0; = 8; A B; = b5)
> 2f(pr)(1 ~ 4pg) Pr(Ci = (B:b;))
From which we have
Pr(B; = b A©; = 6; AC; = (6;b;)) >
= H(pr)(1 = 4pu) Pr(C; = (B:,5)

2




Pr(B; = gf AO; =0; A Open; = 1|C; = (:9;3,))
1
> 2(pr)(1 ~ 4p).
Therefore, we have that i € T'p, with

3/ (o1)(1~ 4p)

= %(1 = 2v/pr(1 = pr))(1 - 4pn)

PF =

and this concludes the proof of the lemma. 0

Proof of the theorem. We want to prove that for
every sequence ci,...,Csn, Bob’s total collision en-
tropy is bounded below (by the same bound). Let ng
and nfp be the sizes of 'y and T'r respectively. For
€1,...,C4n fixed, ny and np are also fixed. Basically,
the lemma says that ngp > 4n — ng or equivalently
nyg > 4n — np. Using the aposteriori independence
of the bits B;, we have that at the end of the pro-
tocol Bob’s total collision entropy is the sum of the
collision entropy of each bit B;, where Open; = 0.
Now, let Tag be the set of photons i € I'y, where
(0;, openi, j;) € AH;. Let He(pr) = —lg(p? + (1 —
pr)?) = lg(8/5). From what we said above, we
obtain that Bob’s collision entropy is greather than
nag x He(pr), where nap is the size of Tay. Now,
using the independence between variables that are as-
sociated with distinct measurements, we have that
nag is a binomial with parameters py = 1/8 and
ng. Similarly, the distribution of Fail is a binomial
with parameter pr and np. Now, let us assume that
Bob’s strategy is such that there is a non negligeable
probability that Alice does not refuse to continue with
the protocol. This implies that np x pp < (6 4 €)n
for any € > 0 except with negligeable probability.
Therefore, we have ng > (4 — £%l)n. This gives
us that Bob’s total collision entropy is greater that
[He(pr)pu (4 — 6/pFr) — €']n for any ¢ > 0 excepted
with an exponentially small probability. m}

5 Conclusion

We have shown that the BBCS-protocol is secure
if all measurements are performed individually on the
received photons. Individual measurements are inter-
esting because they are easier to effect than coherent
measurements. The main open question is to enhance
the proof to the case of coherent measurements. It

76

would be interesting to find a better bound for the
collision entropy in order to minimize the shrinking
parameter for the hashing function used in the pri-
vacy amplification stage.
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