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Abstract

Recently, Shor has shown that quantum comput-
ers, computers which can operate simultaneously on a
quantum superposition of inputs, permit efficient (i.e.
polynomial-time) solutions of problems for which no
efficient classical-mechanical solution is known. This
has led to renewed interest in the question of whether
or not quantum computers can be physically realized.
One kind of quantum computer, quantum cellular au-
tomata, can be described by relatively simple Hamilto-
nians that resemble the Hamiltonians of spin systems.
In this paper, we report a quantum cellular automaton
which, though not itself computation-universal, forms
an essential part of any quantum cellular automa-
ton which is synchronized using Feynman’s technique.
This quantum cellular automaton has as its Hamilto-
nian the one-dimensional XY Hamiltonian, which is
ezactly solvable. Furthermore, there is ezperimental
evidence from low-temperature measurements of the
heat capacity and electric susceptibility that the Hamnil-
tonian of the quantum cellular automaton is realized
in nature by the rare-earth compound praseodymium
ethyl sulfate near 1K.

1 Introduction

This article describes what we believe is the first
quantum cellular automaton whose Hamiltonian is
simple enough to be identified with a real physical
system!. This particular cellular automaton is not
computation-universal, and therefore not as powerful
as a general-purpose computer. But it can be used
to implement an essential and seemingly difficult to
realize part of certain kinds of quantum computers.
Since the quantum mechanisms needed to realize the
remaining components of the quantum computer have

! Adapted from Ch. 5, A computational role for the one-
dimensional XY model, Ph.d. thesis, MIT Physics (1993)
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a similar character, the existence of quantum cellular
automata in nature suggests that quantum comput-
ers may be easier to discover—or engineer—than one
might intuitively expect.

Quantum computers have recently attracted re-
newed interest in large part because Shor{15] has suc-
ceeded in showing that quantum computers admit ef-
ficient (i.e. polynomial-time) algorithms for certain
problems, notably the Factoring Problem that forms
the basis of the RSA cryptographic method, for which
no efficient algorithm is known to exist on ordinary
computers.

Benioff[1, 2] and Deutsch[6] were the first to initiate
a line of investigation that begins with a particular
model of computation, the Turing machine, and seeks
to construct a quantum Hamiltonian such that the
operation of the Turing machine corresponds to the
evolution of a quantum spin system.

The search for quantum cellular automata in nature
can be viewed as a continuation of this approach to
quantum computation.

The factoring algorithm described by Shor[15] is de-
signed to run on a quantum Turing machine[6]. A Tur-
ing machine consists of a one-dimensional tape com-
posed of cells and a moving “head”. Each cell has a
few internal states which represents a symbol drawn
from a finite alphabet. Most often, the alphabet is the
set of binary values {0,1}. The head possesses internal
states of its own, which it changes in response to the
state of the cell it is currently scanning. In addition,
the head is free to move one cell to the left or right at
each time step. This classical-mechanical mechanism
was generalized by Benioff and Deutsch to obtain a
quantum Turing machine.

Quantum Turing machines. In a quantum Tur-
ing machine, the binary state of each cell is replaced
by a quantum-mechanical spin-% variable in which the
state | T) represents binary value 1, and the state | |)




represents binary value 0. Consequently, the quantum
Turing machine may be in a superposition of many
states of the corresponding classical Turing machine.
The operation of the Turing machine—the movement
of the head and the evolution of the states of the cells
and head—is described by a time-dependent Hamilto-
nian H(t) via the corresponding unitary Schrédinger
evolution operator. It is assumed both that the cells
can be initialized prior to the computation and that
their values can be determined when the computation
is finished by applying whatever physical operations
are used, respectively, to prepare the quantum states
{| 1),] 1)} in a definite eigenstate and to measure the
corresponding quantum-mechanical observable.

Since the model of quantum computation pre-
sented here is a Hamiltonian model, it is necessar-
ily hampered by a number of impediments if the ac-
tual Hamiltonian differs from the desired Hamiltonian.
Landauer has long recognized the serious handicap
that accumulation of errors poses to truly reversible
computation[10]. In addition, to obtain the unique
benefits of quantum computation, a coherent superpo-
sition of states of the computer must be maintained.
As recently shown by Unruh[16], environmentally-
induced quantum decoherence forces an almost com-
plete isolation of the quantum computer from its en-
vironment at temperature T if the computation lasts
for a time ¢t > %7—,

In the Benioff approach to quantum computation,
the time-dependence of the Hamiltonian is one of the
physically unrealistic features one strives to elimi-
nate in order to arrive at models of quantum com-
putation that more closely resemble real systems.
Feynman|7] discovered a general technique for turning
time-dependent models of quantum computers into
time-independent models. Feynman’s technique elim-
inates the time-dependence of the Hamiltonian by
building the quantum computers on top of another
quantum system that serves as a “synchronization
backbone”. This synchronization subsystem has the
difficult task of ensuring that—even in the absence
of an explicit time dependence—all the computations
going on in various parts of the quantum computer
occur at the proper point in time. Without the syn-
chronization subsystem, the quantum computer would
quickly make too many errors to be of any use. Feyn-
man applied this technique to Benioff’s quantum Tur-
ing machine[7]. As shown by Margolus[12, 13], this
technique can also be extended to quantum cellular
automata in two or more dimensions. (Feynman’s
quantum Turing machine can be regarded as a one-
dimensional quantum cellular automaton.)

Quantum cellular automata provide a natural start-
ing point for investigating quantum computation be-
cause, unlike other models of computation, they share
some fundamental characteristics with real physical
systems. In particular, they evolve according to a sin-
gle rule applied everywhere, just as a homogeneous
physical system evolves according to a single dynami-
cal law.

In this article, we show that for a certain one-
dimensional cellular automaton, a cellular automa-
ton which is identical to the one considered by
Feynman(7], and closely related to the one considered
by Margolus[13]—the Hamiltonian for the Feynman
synchronization backbone is identical to I?Im Xy, the
Hamiltonian of the one-dimensional XY model. As
I have discussed elsewhere[4], experimental data[8, 9]
strongly suggest that this Hamiltonian accurately de-
scribes at least one system—praseodymium ethyl sul-
fate near 1K—that actually occurs in nature.

In this article, I focus on a second remarkable as-
pect of the quantum cellular automaton described by
ﬁlD xy. Because the one-dimensional XY model is
exactly solvable, it is possible to predict such things as
the computation-rate of a quantum cellular automa-
ton synchronized by the Feynman technique.

2 The synchronization subsystem

The method used here is to apply the Feynman syn-
chronization technique to a one-dimensional lattice-
gas cellular automaton. In contrast to ordinary cellu-
lar automata, which require the state of each cell to
depend on its own former state and that of at least
two neighboring cells—a total of three cells, in the
lattice-gas cellular automaton considered here, neigh-
boring cells interact in pairs. Restricting ourselves to
this class of cellular automata will eventually allow
us to map them onto a quantum-mechanical system
involving two-body interactions.

Despite its simplicity, this class of “two-body” cel-
lular automata is known to be capable of computing
anything a Turing machine can compute[5].

There is, however, one rule that must be strictly
enforced. After two cells A and B have interacted,
thereby changing their internal states, as in Figure
1, both the event where cell A interacts with its left
neighbor and the event where cell B interacts with its
right neighbor must occur before cells A and B are
permitted to interact again.

It makes no difference in which order the two events
occur, so long as they both occur before cells A and



Figure 1: Either the two-body interaction between B’
and R, or the two-body interaction between L and
A' may occur first (as shown). But both must oc-
cur before the cells originally in states A and B are
permitted to interact again.

B are permitted to affect one another’s state again.
If they are not prevented from interacting until both
have interacted with their other neighbor, any com-
putation the cellular automaton was performing is ir-
remediably corrupted. Preventing these undesirable
interactions is the role of the synchronization subsys-
tem.

The key problem in constructing a quantum cellular
automaton, therefore, is to find a quantum mechanical
system that can enforce this constraint.

It is not hard to imagine a classical mechanical
system that enforces the required synchronization of
cell updates. One synchronization subsystem that can
easily seen to prevent errors requires only two states
at each site of the synchronization backbone. When
the states of the synchronization subsystem for two
neighboring cells are in the configuration (01), the
computational states of those cells are permitted to
evolve. Concurrently—and as part of an indivisible
transaction—the state of the synchronization subsys-
tem undergoes the transformation (01) — (10). For
any other configuration of states of the synchroniza-
tion system, no evolution of either the computational
or synchronization subsystems occurs.

When this synchronization backbone is translated
into a quantum spin system, the resulting Hamiltonian
is

)

M-1
Hsync = E 0':0'—+1 +0';0':+1.
n=0

We recognize the effective Hamiltonian Hy,c as an
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extremely anisotropic Heisenberg antiferromagnet

M-1 M-1
B=7, Y (0f0z, 40808, )+ Y onongy (2)
n=0 n=0

with exchange couplings J; = 1 and J, = 0. This
model is sometimes called the one-dimensional XY
model[11].

The computation-rate operator. From the iden-
tification H = Hyync = Hipxy, we know the energy
eigenstates and eigenvalues from the results of Lieb,
Shultz and Mattis[14]; however, in this paper we are
principally interested in the spectrum of a different
operator, an operator that characterizes the computa-
tion rate of the quantum cellular automaton.

To address this issue, we must explicitly define an
operator I' that captures some reasonable notion of
the net rate at which the parallel computation of the
quantum cellular automaton is moving forward. Then
we need to show that the computation-rate operator
T has an eigenstate |y) with a positive eigenvalue. Fi-
nally, we need to show that as the system evolves the
rate of computational progress does not decrease to
zero. To do this, it suffices to show that |v) is also an
eigenvector of B , since the eigenvalue v > 0 is then a
constant of the motion. R

To help motivate the definition of I', we define an
auxiliary operator N.. On the basis states—states in
which each cell has been updated a definite number of
times—N, returns the sum over all cells of the num-
ber of forward minus the number of backward steps
that have taken place relative to some arbitrarily fixed
state. We can think of the computational-rate opera-
tor as the time-derivative of this operator

~ d=~ 1 ~ ~
So T’ characterizes the net rate at which the computa-
tion runs in the forward direction.

Evaluating the commutator, we obtain

(4)

M—1
-~ 1 _ _
I'(M) = 7 Z U:G’n+1 —ana,‘fﬂ.
n=0

where M is the number of spins in a one-dimensional
cellular automaton with periodic boundary conditions.

This computation-rate operator can be diagonal-
ized by first tranforming to Jordan-Wigner operators
and the Fourier transforming. The resulting single-
particle (i.e., single Jordan-Wigner fermion) spectra
of the Hamiltonian and computation-rate operator T




are shown in Fig. 2. Since the Feynman-Margolus
synchronization scheme described above requires each
quantum state of the cellular automaton to have equal
numbers of spin-up and spin-down sites, them number
of Jordan-Wigner fermions is required to be M/2 and
the ground state consists of Jordan-Wigner fermions
occupying the shaded states of Fig. 2.

3 Relation between energy and com-
putation rate

Figure 2:

Single-particle spectra of E(M) and
computation-rate operator I'(M) in the limit M — oo.

When the system is in its ground state, the com-
putation rate y vanishes because the energy spectrum
is symmetric and the computation-rate spectrum an-
tisymmetric about £ = 0. In fact, we can see from
Fig. 3 that the computation rate v vanishes whenever
the system is in thermal equilibrium at any finite 7.
This follows from the fact that the computation-rate

spectrum (k) is symmetric about the Fermi surface
at k = £m/2, so that the finite-temperature Fermi
distribution function (bold line) cannot change v(M)
from its T = 0 value, which is y(M) = 0.

Figure 3: Temperature dependence of the computation
rate. The Fermi distribution function f(k) (solid bold line)
at the finite temperature 8 = 10 illustrates why (y) = 0
at all finite temperatures.

Although it is not possible to compute faster
than diffusively when the system is in thermal
equilibrium([3], the quantum cellular automaton can
attain a substantial fraction of its maximum possible
computation rate with surprisingly little excitation en-
ergy.

To show this, we must first identify the state with
the largest computation rate among those of a given
energy. Alternatively, we can achieve the same end
by identifying the state with minimum energy among
those with a given computation rate. States of many
different total energies can have the same parallel
computation-rate. For a given o < Ymax = 2M/m,
we would like to find the minimum energy at which ¥
can be achieved. From the spectra of H and T’ (Fig.
2), we see that to obtain a given 7p at a minimum
energy cost we should shift the ground state configu-
ration of the Fermi sea to the left until v has increased
from its ground state value of zero to o. This follows
from the fact that the spectra of H and T are shifted
by m/2 along the k-axis, and therefore the left shift
adds the k states with the largest available eigenval-
ues of T and smallest positive energy (near k = 7/2),
while simultaneously vacating the states of least nega-
tive energy and most negative computation-rate (near
k=—-n/2).

For example, assume M (mod 4) # 0, so that



e*Ma = 1, and therefore k,a = 27n/M. The single-
particle eigenvalues in this case are

2sin24n  (for FL )
2cos25n. (for H).

When M is large, the full M/2-particle eigenvalues
of T and H can be approximated by integrals over
occupied single-particle states. If §(ka) = ¢ denotes
the amount by which the Fermi sea has shifted toward
the left, then

¢ M 2M
v(e) = 2‘/0 2 cos kagd(ka) = ——sine (6)

and

€ M 4M €
E(e)=2 [ 2sinka=—d(ka) = —sin®=. (7
(¢) /0 in kaz— (ka) ——sin” 5 (7
From these, we can express the maximum computa-
tion rate obtainable at energy E,

+(B) = /B2 - B) ®)

Figure 4 shows the maximum computation rate per
site that can be attained for a given energy density
(i.e., energy per site). The parallel computation rate is
normalized to the maximum attainable at any energy.
The maximum parallel computation rate y,ax(M) oc-
curs when the energy density is equal to half the max-
imum energy density the system can possess. Note
that near the ground-state, a small excitation energy
can produce a relatively large increase in the computa-
tion rate. An excitation energy AE = 0.1 X Ep,,, one
can yield a parallel computation rate v = 0.6 X Ymax-
In contrast, as the maximum computation rate is ap-
proached, relatively large increments to the energy
of the system are unable to produce much additional
computation rate. Beyond an excitation energy equal
to half the maximum energy content of the system,
additional excitation energy actually reduces the com-
putation rate.

4 Conclusion

We have shown that the Feynman synchronization
backbone for two-body cellular automata has as its
quantum Hamiltonian Hipxy. This Hamiltonian is
known to accurately describe praseodymium ethyl sul-
fate at low temperatures|8] and [9]. Furthermore, the
energy eigenstates and eigenvalues of this Hamiltonian
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Figure 4: Maximum computation rate per site as a func-
tion of excitation energy per site.




can be solved for exactly and theoretical predictions
obtained for how the computation-rate of the quantum
cellular automaton depends on the energy.

Since the synchronization backbone is the only
long-ranged part of the full Hamiltonian for a two-
body quantum cellular automaton, these results sug-
gests that quantum computation may not require un-
physical, highly-contrived Hamiltonians.

In particular, the only part of the Hamiltonian that
may turn out to require physically-unrealistic interac-
tions is restricted to the interactions of pairs of cells
of the quantum cellular automaton. For the type
of cellular automaton considered here, it is known
that in order to make a two-body cellular automa-
ton computation-universal[5], no more than six spin-}
variables per cell are required.

Consequently, the difficulties that remain to be
overcome in order to arrive at a physically-realistic,
if highly idealized, model of a quantum computer are
evidently comparable to the difficulty in finding a
physically-realistic Hamiltonian to describe how six
spin-% quantities might couple to the XY backbone
and to one another in such a way as to produce the
dynamics of a computation-universal two-body cellu-
lar automaton.
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