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1 Introduction

A quantum computer ([5], [2] and [3]) is a device ca-
pable of performing computational tasks that depend
on characteristically quantum mechanical effects, in
particular coherent quantum superposition. Recently
it has been shown ([4], [1], [7] and [6]) that such de-
vices can efficiently perform classes of computation,
e.g. factorisation, which are believe to intractable on
any classical computer. This makes it highly desirable
to construct such devices. In this paper we address
the last remaining theoretical obstacle to such a con-
struction, namely, the problem of stability, or error
correction.

This problem is more substantial in quantum com-
putation than in classical computation because of
the delicate nature of the interference phenomena on
which quantum computation depends. In all classical
computers, stability is achieve by using great redun-
dancy. That is, one represents the computational vari-
ables redundantly, using many more physical degrees
of freedom than are logically required, and then takes
the average, or the majority vote, to be the answer.
This error-correction process is applied many times
during a computation and at each application all the
redundant copies are reset to the accepted result. The
probability of error can be shown to fall exponentially
with the degree of redundancy, efficiently stabilising
the computation.

However, all such classical methods depend in effect
on measuring the computational state before the com-
putation has finished. In quantum computation this is
impossible, because any such measurement would cre-
ate quantum correlations between the computer and
the outside physical objects, thus destroying the co-
herence.

In this paper we present a new, purely quantum
mechanical method of error correction, which has no
classical analogue, but can serve to stabilise coherent
quantum computations. Like the classical methods, it
utilises redundancy, but it does not depend on mea-
suring intermediate results of the computation.
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2 Classical Error-Correction:
Redundancy and Majority Voting

Consider a classical computer that performs each
computational step inaccurately, having a probability
1 + ¢ of producing the correct answer.

If we use R such computers the probability E that a
majority will give the wrong results at any step is less

than 2"%. This decreases exponentially with the
degree of redundancy R. Suppose a polynomial-time
computation runs for M steps and majority voting is
used after each step. The probability that the final an-
swer will be correct is then greater the (1— E)™. Thus
any desired success probability 1 —  can be achieved
using a degree of redundancy R = O(log M/4).

Unfortunately no such method can be applied in the
quantum case - quantum mechanics does not allow one
to identify the state of a given object or indeed even
to clone an unidentified state. Thus the technique of
majority voting cannot even get off the ground, as we
can neither determine what state is in the majority
nor reset the remaining copies to that state.

3 Quantum Error-Correction: The
Symmetric Subspace

Suppose that we have R copies of a quantum com-
puter. If there were no errors then at time ¢ during
the computation the joint state would have the form

(1)) = [v@)()) ... [e(t)) € HT 1)

where H is the Hilbert space of states of one computer.
In the presence of errors the states of the R computers
will evolve wrongly, and, in general differently. They
will have a joint state of the form

[U1()w2(2)) - - - [¥r(E)) (2)

or more generally a (mixture of) superpositions of such
states. The fundamental reason that majority voting




cannot be applied is the quantum mechanics forbids
the identification of the component states |9;(t)).

Consider the set of all possible error-free joint states
i.e. states of the form for arbitrary |¢(t)). The sub-
space spanned by this set is known as the symmetric
subspace, S, of #®. Tt is thus the smallest Hilbert
space containing all possible error-free states. S may
alternatively be defined as the space of all states in
##® which are invariant under interchange of any two
computers. For fixed H the dimension of S increases
only polynomially with R whereas the dimension of
HE increases exponentially. For example if H is 2-
dimensional then S is an (R+1)-dimensional subspace
of the 2%-dimensional space H%.

Thus, since all possible error-free states lie in a tiny
subspace S of the full Hilbert space Hf, we might
hope that projecting a slightly erroneous state into S
would serve to remove a large proportion of its erro-
neous component. For example, suppose that the R
computers are subject to random errors. Their joint
state may be written as the sun of an error-free com-
ponent proportional to (1) and a remainder. Because
of the randomness of the error this remainder lies in
a random direction in HF® and hence is expected to
have only an exponentially small component in S. The
error-free component, by contrast, lies wholly in S.

4 Projecting into the Symmetric

Subspace

The projection operator P into the subspace S
is (like any projection operator) an observable with
eigenvalues 0 and 1. We shall now show how this ob-
servable on H?® may be efficiently measured.

We first show how to project a product state of the
form (2) into S. The same method must, by linearity
of quantum mechanics, do the same for a general state
in #HE. We first append an ancilla, i.e. an auxiliary
system, with an R!-dimensional state space A, initially
in a standard state |0). We then apply to the ancilla
a unitary transformation U whose effect is

1 R!-1
Ulo) = e Z |4)

where the states |7) form an orthonormal basis for A.
This can be performed in a number of steps that is
polynomial in R. Next we perform a unitary opera-
tion on A ® HE, which applies the 7’th permutation
to the R computers if the ancilla is in the state |7).
Each permutation can be performed with O(Rlog R)
transposition. Next, we perform the transformation
U~1, an operation that involves only the ancilla, and
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can again be performed in a number of steps that is
polynomial in R.

If the state of the R computers was initially in
S, then each of the permutation left that state un-
changed, and the ancilla would therefore have returned
to the state |0). Since U transforms

|0) into an equal-amplitude superposition, it follows
that U~! will transform each |i) to |0) with equal am-
plitude. Thus if we measure the ancilla in the basis
{|5)}, and the outcome is zero, the relative state of
the R computers must be the projection into S of its
original form. If the outcome is not zero, then our
symmetrization has failed, and the computation must
be re-started from the beginning.

1t is therefore desirable to maximise the probability
of successful symmetrization.

The cumulative probability that a sequence of sym-
metrizations will all succeed can be made arbitrarily
close to 1 by performing them sufficiently frequently.
This is the well-known quantum watchdog effect. We
are measuring the observable P, hoping for outcome
1. If we do obtain that outcome the relative state
of the system is an eigenstate of P with eigenvalue
1. During the interval between symmetrizations, the
state will evolve away from such an eigenstate, with an
evolution of the form cos (wt)|1) + sin (wt)|0), where
w is some characteristic frequency of the system. If
symmetrization is performed N times during the pe-
riod T of the computation and if wT'/N is small then
the probability of any particular symmetrization fail-

ing will be
sin =
N

The probability that all N symmetrizations will
succeed is therefore

(1_

Thus the probability of having to restart the com-
putation is inversely proportional to N.

w?T?
N2

w2T?
N

22\ N
NZ) ~1-

5 The Stabilisation of Quantum
Computations

The above arguments suggest the following strat-
egy for stabilising quantum computers. Based on an
estimate of the length M of the computation and a
desired lower bound 1 — u on the probability that an
outcome be correct, we can choose a redundancy R
and a number N of symmetrization operations that



will achieve the desired bound. R will be polynomial
in log (M/p). N will be chosen to satisfy the condition
that wT'/N be small.
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