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Abstract

In this paper, we examine the fundamental origins of
logic and show how these fundamentals are related to
basic concepts of space, time, objects, and events used in
both physics and computing. We attempt to show how a
universe can be constructed beginning not from first
principles, but from no principles. Several possible
implications for physics and mathematics are also
discussed.

1. Introduction

In the previous companion paper [1], we introduced a
logic of simple digital circuits, then extended it to show
some interesting behavior which might be relevant to
quantum mechanics and other physical theory. In this
paper, we concentrate instead on the fundamental origins
of this logic and show how these fundamentals are related
to some of our most cherished concepts. The logic is
developed by the simplest steps, as if a universe were
being constructed with the fewest assumptions possible.
We then discuss some (highly speculative) interpretations
and implications for both physics and mathematics.

In order to progress beyond current physical theory to
the holy grail of a Theory of Everything, it appears that we
need to find a deeper basis for some of our commonly-
held notions such as space, time, objects, and events.
Physicists and philosophers have for centuries pondered
the origins of the universe as we know it, and for decades
the paradoxical and largely statistical reality described by
quantum theory [2]. Computer Science has also sought
deeper paradigms for representing computation, while
remaining perched firmly on the shoulders of Turing and
von Neumann throughout its entire history.

We explore here the idea that such a new basis exists
common to both fields which can best be understood as a

0-8186-6715-X/94 $4.00 © 1994 IEEE

36

primitive boundary mathematics along with its extension
to and interpretation as logic. Ultimately, we seek to
develop a theory consistent with both physical and
mathematical phenomena, based not on first principles, but
on no principles.

1.1 About language and primitives

A cautionary aside: It is quite difficult to speak about
such fundamental matters in ordinary language. Many
statements in this paper may strike the reader as terribly
informal and inexact (or even contradictory), when in fact
they are attempts to be quite precise in describing things
and situations for which we do not have common words.
While the boundary mathematics discussed here is itself
ultimately formal, it is not much help in getting started
since we begin beneath traditional mathematics, and there
is nothing more primitive in terms of which to speak.

We first have to speak about the mathematics before
we can use it. In contrast, mest conventional mathematics
begins with (somewhat higher-level) concepts which are
relatively easy to state and agree upon ("object",
"membership”, "equivalence”, "choice", "truth value",
"proposition") since they are related to our everyday
experience. Consider the opening sentences of Quine [3]:

Sets are classes. The notion of class is so
fundamental to thought that we cannot hope to
define it in more fundamental terms."

We respectfully disagree, and will attempt to begin
with no assumptions or agreement, literally with nothing at
all.

1.2 Computer Science and Physics
Suppose you were a god and were attempting to build a

universe. What primitives would you use, and how would
you structure your universe?



In a sense, this is what computer programmers do all
the time. Beginning with certain (built-in hardwired)
primitives such as bits and bytes, arithmetic functions,
addressable memory, etc., they construct complete
"universes” which model complex systems or phenomena
or behaviors. Inside a computer, a configuration of zeros
and ones can be made to invoke almost any behavior
desired, at the push of a few keys. Computer hardware
designers seem to have even more freedom, since they
begin with even simpler primitives of logic gates,
registers, and clocks.

If programmers and engineers build universes, this
could be thought of as complementary to physicists, who
study the particular universe we seem to inhabit -- the so-
called "real world". Perhaps these two universes will
eventually turn out to be the same -- or at least intimately
related.

It appears at first glance that the computer designer's
universe must be entirely classical, since his primitives are
based in classical logic and carefully quantized time
intervals. In fact, computers would be entirely classical if
they worked 100% reliably. But real digital computer
circuits are only analog approximations to Boolean logic,
and can (and do!) fail due to thermal and environmental
noise, quantum random effects, synchronizer
metastability, and other causes -- hopefully at infrequent
intervals.

But this may not be the entire story, as we shall see. It
may be that our existing computer hardware limits us to
classical behavior, but that computers built on quantum
mechanical principles may have more a interesting range
of behavior, perhaps even including all the phenomena of
the physical universe as a whole.

In one sense, we are attempting here to build a physical
universe as a computer scientist or engineer might, from
the ground up using the simplest primitives possible --
primitives considerably simpler than those used by
hardware and software designers or physicists today.

For the most part, the progress of physical science has
been from the top down. That is, experimental results
(observations) are answered by theory (models) which
encompasses ("explains") the observations. The theory
also makes additional predictions which can be tested by
further experiment, and so on. This time-honored and
effective approach continually extends what we already
know and puts new substrate beneath it.

In contrast, here we attempt to jump to the end (or
beginning) of the story, to find the most fundamental basis
possible (for both physics and computing) and to build a
universe, working back toward existing theory and
phenomena.

We are not constrained here by existing physical theory
or phenomena, but are inspired by salient characteristics of
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them. Also inspirational are some modern paradigms for
representing computations, especially object-oriented
languages [4] and logic languages [5], as well as the whole
idea of digital design of complex systems. Ultimately, of
course, the utility of this approach to physics will rest on
its ability to connect with and become consonant with
modern physical theory and to predict behavior of the real
world.

2. Things and Space

The key concepts of our mathematics were given by
Spencer-Brown in his book Laws of Form [6]. He begins
with a space and the idea of a distinction or boundary in
the space. In the previous paper [1], we passed quickly
through the first few steps of this mathematics in order to
develop a boundary logic, which was then extended to
handle self-referent, looped logic expressions and circuits.
This time, we will examine the first two distinctions more
closely.

2.1 The Void and the observer

We begin with nothing -- the Void. The Void is not a
thing, but the absence of any thing. It is not physical
space like the vacuum, nor a mathematical space of any
kind. It has no properties, and is what we indicate by not
speaking. It is nothing and everything.

We need to talk about the Void in order to say what the
first distinction divides. As we shall see, before the first
distinction the Void is the position of the observer 1.

2.2 A first boundary

A boundary draws a distinction, and is the minimum
action which makes a difference, the smallest step one can
take away from the space in which it is drawn. In fact, this
is the very definition of a boundary, not something
dependent on any properties of a boundary nor of the
space in which it is drawn, since neither of them have any
properties at all. The boundary cleaves the space and thus
creates the first object or thing.

For example, a circle in a plane draws a distinction
(Figure 1). N.B.: Drawing in the plane is a representation,
not the thing itself. Care must be taken to avoid making
inferences which depend on the particular topology of any
representation. The distinction being referred to has no
dimension, size, shape, position, etc.

lBy using the term "observer" here we do not intend to invoke
the idea of a measurement in the quantum mechanical sense.
One could substitute the word "god" or simply "you".



A

Figure 1. The observer and the first distinction.

A boundary can be seen as standing for a thing (object)
as well as an injunction to cross -- the most primitive
action. Thing and action, object and event are
undifferentiated at this extremely primitive level. By
drawing the distinction, we indicate the inside, that is, the
side we are not on. The first distinction separates the
observer from the rest of the universe ("creating” it!) and
allows him (you) to observe it. 1

It might be (and always is) asked at this point "Where
does the first distinction come from? Who creates it?"
Spencer-Brown answers eloquently [6, pg. 105]:

"It seems hard to find an acceptable answer to the
question of how or why the world conceives a
desire, and discovers an ability, to see itself, and
appears to suffer the process. That it does so is
sometimes called the original mystery.”",

There is no mystery (except to our feeble brains), no
solution to seek. What can happen, does happen. There
simply cannot be any deeper "explanation” for the origin
of the universe which we see.?

Moreover, there is only one simplest thing, and
necessarily so. The first thing cannot be described (in
principle), it just is. It is for this reason that it is difficult
to talk about and understand. The difficulty is not that it is
too complex for us, but that it is too simple. In fact there
is a very real sense in which the first thing is not
"understandable” at all, since it is composed of no parts,
has no attributes, depends on nothing, and is related to
nothing except the space from which is distinguished.

2.3 A second boundary

Continuing to build our universe, and again taking the
smallest step possible, we may draw a second boundary
identical with (indistinguishable from) the first. As shown
in Figure 2, there are only two places where the second
boundary can be drawn: in the space outside, or inside the
first boundary. (Since a boundary draws a distinction,
boundaries cannot intersect.) Of course, it is an artifact of
our exposition that the distinctions drawn here are ordered,

Lo distinguish, therefore [ am."?

It is tempting to draw parallels to the cosmological Big Bang
theory and to the Creation story of Genesis here, but we will
resist.
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first and second. What is really meant is configurations of
two distinctions taken together.

(b)

Figure 2. Two arrangements of two distinctions.

The first arrangement (Figure 2a) is symmetrical;
Neither boundary has precedence or uniqueness. (There is
no significance to position on the plane in our drawing.)
The second arrangement (one boundary inside the other) is
not symmetrical. One of the boundaries has precedence
over the other and each can be uniquely identified.

As a graph, the first arrangement is analogous to nodes
at the same level or a list of two items, while the second
corresponds to nodes at different levels or a subgraph.
List programming languages such as Lisp use structures of
just these forms, plus a few "leaf” node primitives, to
describe a complete range of computations and possible
"worlds" [7].

As in physical theory, some states or arrangements of
particles are distinguishable and some are not. At this
primitive level we see that this property is not only
present, but unavoidable. When our universe has only two
things in it, the forms already show differences in
distinguishability. Further, arrangement 2a has depth one
(there is only one boundary to cross before crossing back),
whereas 2b has depth two (cross twice to get to the deepest
space). These properties are somewhat suggestive of the
properties of fundamental particles, such as the differences
between bosons and fermions, for example.

Note that it is precisely the position of the observer
(outside the outermost boundary) which is responsible for
the symmetry difference between the two configurations.
If the observer were to (somehow) cross a boundary, the
distinguishability would be reversed.

2.4 More boundaries

We can extend this arithmetic of boundaries to an
algebra by allowing a letter or token to stand for any
arrangement of boundaries. Figure 3 shows a more
general boundary expression including five such tokens A
through E, and a total of eight objects including the
unnamed distinctions. Thus the innermost boundary
distinguishes A and B together from the rest and
represents a new object at the same level as C and D. (The



original observer/observed boundary is implicit and
surrounds the boundary diagram.)

A
B
c
D
E
((AvB)vCVvD)VE)

Figure 3. A boundary expression, 3 forms.

By "thing", then, we mean any object or event,
physical, mathematical, or otherwise which can be
definitely named or indicated, anything which is
distinguished. By whom? By you who draws the
distinction. The temperature is "hot" if you say it is, "not
hot" otherwise. Of course, there may be different "degrees
of hotness", but these degrees are different things
(distinctions) than the distinction hot/not-hot.

This is somewhat like the constructivist or computable-
reality view in mathematics [8], except that the observer
draws the ultimate distinctions about things which are
thought of as continuous, like temperature, or not
commonly quantified at all, such as clouds or emotions.
In this view, nothing exists which is not distinguished.

Note that we do not require here, nor do we suggest,
any global or continuous dimension of Space. Space by
this theory is entirely relative and in a sense local. Objects
are not distinguished from partitions of Space made by
boundaries we draw, so there is no notion of "matter”.
There is no smallest bit of space nor smallest distance in
an absolute sense, yet there is always a simplest thing. A
boundary can be thought of as introducing one bit of
spatial resolution and two values, "Here" and "not-Here"
or "There".

Furthermore, the implication here is that physical
reality is entirely discrete, and that it is the observer who
makes it so, and creates it in so doing. A measurement
(and the attendant "collapse"” of the wave function
description), after all, is the drawing of a distinction. The
problem seems to be that we still implicitly assume
classical concepts of particles and waves as things, even
while writing the quantum mechanical descriptions of
them. This leads to seemingly paradoxical outcomes and
correct predictions which don't "make sense". Perhaps it
is not only our idea of logic which needs updating, but
also our idea of object itself. By placing observer-related
distinctions at the origin of our model universe, we hope to
develop a much more consistent picture.
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2.5 A simple interpretation: Logic

So far, the spaces and boundaries discussed are pure
structure, form without any meaning or interpretation. But
let us consider what the meaning of the two arrangements
given above might be, based on a minimal interpretation.
(See below for other possible interpretations.) In the first
case (Figure 4a), each boundary serves to indicate a new
space. Since the two boundaries are themselves by
definition indistinguishable, they must both indicate the
same new space. Indicating the new space twice is no
different than indicating it once -- it's the same space.
Therefore we say that two boundaries taken together in
this arrangement are equivalent to one, as shown.

(b)
Figure 4. Two reduction rules.

In the second case (4b), the outer boundary serves to
indicate a new space. The inner one then indicates a space
different from the new space in which it resides. Without
creating yet a third space, the inner boundary can refer
only to the original outer space, the only one which is
different from the one which it divides. That is, the
simplest interpretation is that the innermost space is really
just a continuation of the outermost. Thus two boundaries
taken together in this configuration are equivalent to no
boundaries, as shown in Figure 4b.

These two reductions can be considered as axioms of a
logic, as Spencer-Brown does, but we have reached them
by starting with nothing at all and proceeding by the
simplest steps we could imagine. We prefer to think of
these forms as at most theorems -- equations depending
only on the existence of two distinctions. By suitable
applications of these two reduction equations, any
arrangement of boundaries can be reduced uniquely to
either a single boundary or to no boundary [6].

Interpreted as logic, rule 4a is just disjunction or the
inclusive OR function, and rule 4b can be thought of as
inversion or the NOT function. Any boundary expression



may be represented equivalently as a conventional logic
equation, or as a digital circuit by mapping each boundary
onto OR and NOT gates with inputs corresponding to the
interior values. Figure 3 shows the same expression in
three different forms, boundary diagram, logic equation,
and circuit. We have reformulated Boolean propositional
logic, with the important difference that one of the truth
values has been made implicit, or cast into the Void.

3. Self-reference and Time

The boundary diagrams or circuits we have generated
thus far are linear, have no loops, no re-entrance, and are
entirely mathematical and timeless. They do not represent
real (macroscopic) electrical circuits which have time
delays and other properties.

The next step in constructing our universe is to notice
the possibility of self-reference, where a circuit output
loops back to become one of its inputs and an object is
defined directly in terms of itself. Note that an excursion
out of the original space (e.g., the drawing plane) is
required. Both self reference and multiple reference are
made possible by the tokens in the expression form and by
the wires in the circuit form.

In our primitive world, there are two ways of making a
simple loop: with an even or an odd number of inversions
(crossings of a boundary) in the loop. As discussed in [1],
a circuit with even inversion (consistent feedback) is an
autology and creates a memory. One with odd inversion
(inconsistent feedback) represents a paradox and creates
an oscillator. Figure 5 shows these two simplest self-
referent circuits.

3.1 Odd self-reference - Paradox

The paradox circuit (Figure 5b) defines an object X
which is distinguished from itself, much like the Liar
sentence "This sentence is false.” We insist both on
object constancy (represented by the wire), and negation
(the inverting gate) for the same object. In the classical
real world, we would say that two physical objects can
always be distinguished by virtue of some small blemish
on one of them, or by their being at two different locations
in space, etc. However, at this level of simplicity, we
cannot say these things, as our objects have no properties
at all, only existence.

Our diagram says that X is on neither side (or both
sides) of the boundary. The situation is over-constrained.
To insist that something be "not itself”, we must introduce
an additional degree of freedom in the value space, and it
is this dimension which leads to our concept of Time.
Object X can represent one side of the boundary at one
"time" and the other side at another "time". Time is

40

precisely that degree of freedom which allows a thing to
change and yet to still be itself. It is not an
oversimplification to say Time is self-reference in Space.

I 0 _ (i
X=>X< or — X =>X <4 or
| 1 j
A
X out Xout TILILT

(a) (b)

Figure 5. Two self-referent circuits.

The simplest solution is to introduce two new logic
values, imaginary values i and j, which can be thought of
as oscillations between the two original "real" values 0 and
1.! The imaginary values explicitly represent the excluded
middle, neither 0 nor 1. In order to maintain consistency,
we introduce a phase shift or "delay”, either implicitly in
the interpretation of the circuit as shown here, or explicitly
in the gates themselves. It is important to emphasize that
this notion of time is really sequence, an entirely discrete
and local relation, not a time interval in the usual sense.
We do not require here, nor do we suggest, any global or
continuous dimension of Time. At any gate where
paradox occurs, there are two values (one bit) of Time,
which could be called "Now" and "not-Now" or "Then" on
opposite sides of the gate.

An imaginary value could also be said to represent a
superposition of the two real logic values. Like quantum
superposition, the situation here is not a simple linear
overlay of two different solutions, but an irretrievably
entangled state of paradox. This may be related to
correlated or entangled states in quantum mechanics. And
there are two solutions, i and j (like +V-1), two forms of
superposition, indistinguishable except by comparing or
combining (interfering) with a similar waveform.

Note that the extra dimension of "time" required here is
not a fully orthogonal independent dimension, just as
imaginary numbers extend the reals but do not make the
number field fully two-dimensional. Two imaginary logic
values combine (interfere) to form a real value, just as
with multiplication of imaginary numbers. See [1] for
details and a discussion of the "Square Root of NOT"
problem, where a real value is combined with an
imaginary to yield a real result.

LA similar four-valued logic system for paradoxes has been
developed independently by Nathaniel Hellerstein [14].



We use imaginary numbers routinely in classical
physics (particularly in self-referent situations which have
time-varying cyclic solutions), but they are required in
quantum mechanics to hold the superposed, fundamentally
paradoxical situations. By allowing self-reference in our
circuits, imaginary logic values are necessarily generated.
Analogously, when the experimenter pretends to separate
himself from his experiment, paradox necessarily emerges.
We have merely captured the simplest form of this in our
logic.

3.2 Even self-reference - Memory

In the case of the consistent self-reference or memory
element (Figure 5a), we could say that X is defined to be
on both sides of the boundary. The situation is under-
constrained. There is additional information needed to
determine the meaning of the circuit. Without creating
more logic values (which are unnecessary), this
information must come from outside the circuit in the form
of an initial condition specifying the state of the memory
element. This additional information upon which the
circuit depends we might call the Past, and again we have
implied sequence -- not the usual dimension of Time but
an ordering. The initial state of the memory must be
specified so that it can represent (retain) a real logic value.

Note that a memory element whose state can be
changed via external inputs (for example, a simple D flip-
flop as in Figure 6) can capture and hold the state of
another signal. In this circuit, the two gates on the right
are cross-coupled with even feeback, thus constituting a
memory element. The three gates on the left act as a
switch which can connect the input signal to the memory
element.

Out

Hold &~

Figure 6. A measurement circuit (gated flip-flop).

When the Hold signal is 0 (false), input data flow
continually to the output. The circuit is connected to or
"part of" the thing being measured. When the Hold signal
becomes 1 (true), the memory circuit is effectively
disconnected or separated from the input, and the flip-flop
remains in its most recent state.
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Note that this state change is irreversible, since the
previous state of the memory is lost whenever a new value
is acquired. This behavior is suggestive of the act of
measurement in quantum theory [9]. In the physical
analogy, a measurement begins (and memory is erased)
when a laboratory instrument is connected to (becomes
dependent on) the experimental variable, and ends when
the instrument is disabled or disconnected and a value is
registered, either by a memory the instrument itself or by
an experimenter who records it.

This model of the measurement interaction implies that
the irreversible erasure occurs at the beginning of the
measurement, and the wave function collapse occurs at the
end, when something is recorded. During the
measurement, the instrument is a part of the experiment,
their wave functions are intertwined. Before and after, the
two can be considered separate.

4. Implications for Mathematics

In a sense, we have reached the most fundamental
mathematics, beneath the axioms normally used to begin
set theory and logic. Physics is fundamentally
mathematical, but there are implications for mathematics
itself from this theory as well.

4.1 Set theory and numbers

The simplest interpretation of our boundary arithmetic
leads to a Boolean propositional logic with one truth value
made implicit. This is valuable in itself, since everything
usually required in such logic (truth values, operators,
parentheses) is subsumed in a single concept (the
distinction) and symbol (the boundary). Any other
interpretation of the boundary mathematics seems to
require additional assumptions or new objects to be
created as each distinction is drawn.

For example, if we allow each additional boundary in
Figure 7a to define a new and distinct space (equivalently
a new kind of boundary), thus denying the collapse of rule
4a, then we generate objects without order -- the cardinal
(counting) numbers. If we allow each interior boundary in
Figure 7b to define such a new space, thus denying the
collapse according to rule 4b, then we generate ordered
objects -- the ordinal (index) numbers. James [10] has
explored innovative representations of numbers using
arrangements of two and three distinction types.



(b)

Figure 7. Interpretation for numbers and sets.

By denying both rules 4a and 4b, we get multiset
elements [7] as in arrangement 7a, and set containment as
in arrangement 7b. If we wish to retain rule 4a collapse
only for the same type boundaries, then the result is
conventional sets (without duplicated elements).

5.2 The completeness of logic

The imaginary booleans are necessary and useful for
exactly the same reason that complex numbers are: They
can represent the solution to any Boolean equation
(arbitrarily connected circuit). The imaginary booleans
are a completion to logic in the same sense that complex
numbers are to the number domain. (There are higher-
order booleans generated by nested looping circuits, but
these can be collapsed to the imaginaries, and are beyond
the scope of this paper.) It has also been shown by Turney
[11] that a slightly extended form of Spencer-Brown's
logic is equivalent to finite state automata.

Further, this theory gives new perspectives on a variety
of paradoxes (Russell, Berry, Curry, etc.) and infinities
which arise from self-reference. (See Rucker [12] for a
lucid discussion of many of these, but without emphasis
on their self-referent aspect.) We have explicitly denied
the usual law of the excluded middle here, and shown the
utility of a superimposed state which is both true and false.

For example, it is well known that some sets (e.g., the
real numbers or the subsets of the natural numbers, etc.)
are uncountable, by contradiction from Cantor
diagonalization. Briefly, the familiar argument goes:
Assume the reals are countable, and thus we can
enumerate them in some order. But then we could
construct a new number which differs from the i'th number
on the list in the i'th digit. This number is different from
every number on the list, and thus represents a real number
which is not accounted for in our enumeration. This is a
contradiction, therefore the premise (countability) must be
false.
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Given the logic and the discussion of paradox above,
however, it seems more reasonable to say that the
countability of the reals is imaginary (paradoxical) rather
than falsel, since if a given real number is on the Cantor
list, then it cannot be on the list, etc. The diagonal
construction may be seen as requiring a number to
disagree with itself in some digit, clearly a paradox.

Many such proofs by contradiction (especially those
involving diagonalization) are in fact circular (self-
referent), and can benefit from being seen as paradoxes
with imaginary solutions. Furthermore, such constructions
are unavoidable in any symbolic system powerful enough
to refer to itself, as Godel showed. For the same reasons,
arguments about the non-decidability and non-
computability of certain problems in complexity theory
and computer science might be reinterpreted.

6. Conclusions

We have shown how to construct a universe not from
first principles, but from no principles. Beginning from
the Void, we create the first Thing (distinction) and
generate objects as distinctions in Space, and events as
distinctions in Time, the latter being brought about directly
by self-reference in Space.

The problem at this stage is to connect this theory more
fully in a formal way to modern physics. (See Kauffman
[13] for a provocative discussion of Lorenz groups in
relation to distinctions.) It remains to be seen whether this
course of exploration can be useful in describing quantum
mechanics and other physical theory of the real world.
However, we have attempted to weave into the discussion
some possible implications from the theory so far for
physics in order to stimulate discussion.

These fundamental matters are ultimately simple (not
complex), but they are decidedly not trivial (of no
importance) and certainly not arbitrary (determined by
whim or free choice). But the universe constructed here
begins with a simplest thing (and equivalently a most-
primitive action). The simplest thing is -- as it must be --
unique and inherently beyond description. It has no parts,
no attributes, and no relationship to anything else except
by composition. Since it is we who draw the first
distinction (and others following it), we must in fact be
"god", and this is the only way the universe could be.

IThis idea has also been suggested by Nathaniel Hellerstein
{unpublished manuscript].
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