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Abstract

We show that all highly symmetrical interconnec-
tion topologies for multiprocessors with low diameter
require very long interconnect lengths. Therefore, such
multicomputers do not scale well in the physical world
with 8 dimensions. On the other kand, highly irregular
(random) interconnection topologies have a very large
subgraph of diameter two and therefore also require
very long interconnect lengths. Hence the only scaling
topologies for future massively parallel computers are
high diameter regular ones, like mesh networks. The
techniques used are symmetry properties in terms of
orbits of automorphism groups of graphs, and a mod-
ern notion of randomness of individual objects, Kol-
mogorov complexity.

1 Introduction

In many areas of the theory of parallel computation we
meet graph structured computational models which
encourage the design of parallel algorithms where the
cost of communication is largely ignored. Yet it is well
known that the cost of computation - in both time and
space - vanishes with respect to the cost of communi-
cation latency in parallel or distributed computing,.
We show that symmetric low diameter networks do
not scale well; and present new results that random
networks (and hence almost all networks) do not scale
at all. This confirms that meshes are the way to go.
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1.1 Multiprocessor Interconnect Archi-
tectures

Models of parallel computation that allow processors
to randomly access a large shared memory, such as
P-RAMs, or rapidly access a member of a large num-
ber of other processors, will necessarily have large la-
tency. If we use 2" processing elements of, say, unit
size each, then the tightest they can be packed is in
a 3-dimensional sphere of volume 2". Assuming that
the units have no “funny” shapes, e.g., are spherical
themselves, no unit in the enveloping sphere can be
closer to all other units than a distance of radius R,
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Because of the bounded speed of light, it is impossi-
ble to transport signals over 2°" (o > 0) distance in
polynomial p(n) time. In fact, the assumption of the
bounded speed of light says that the lower time bound
on any computation using 2™ processing elements is
Q(2"/3) outright. Or, for the case of computations on
networks which use n* processors, & > 0, the lower
bound on the computation time is Q(n®/3),
Formerly, a wire had magical properties of trans-
mitting data ‘instantly’ from one place to another (or
better, to many other places). A wire did not take
room, did not dissipate heat, and did not cost any-
thing - at least, not enough to worry about. This
was the situation when the number of wires was low,
somewhere in the hundreds. Current designs use many
millions of wires (on chip), or possibly billions of wires
(on wafers). In a computation of parallel nature, most
of the time seems to be spent on communication -
transporting signals over wires. The present analysis
allows us to see that any reasonable model for mul-
ticomputer computation must charge for communica-
tion. The communication cost will impact on both
physical time and physical space costs.

1)



2 The Problem with Symmetric Net-
works

At present, many popular multicomputer architec-
tures are based on highly symmetric communication
networks with small diameter. Like all networks
with small diameter, such networks will suffer from
the communication bottleneck above, i.e., necessar-
ily contain some long interconnects (embedded edges).
However, we can demonstrate that the desirable fast
permutation properties of symmetric networks don’t
come free, since they require that the average of all
interconnects is long. (Note that ‘embedded edge,’
‘wire,’ and ‘interconnect’ are used synonymously.) To
preclude objections that results like below hold only
asymptotically (and therefore can be safely ignored
for practical numbers of processors), or that proces-
sors are huge and wires thin (idem), we calculate pre-
cisely without hidden constants and assume that wires
have length but no volume and can pass through ev-
erything. It is consistent with the results that wires
have zero volume, and that infinitely many wires pass
through a unit area. (£ is used sometimes to sim-
plify notation. The constant of proportionality can
be reconstructed easily in all cases, and is never very
small. The ideas presented in this section are more ex-
tensively elaborated in [5, 6].) Theorem 1 expresses a
lower bound on the average edge length for any graph,
in terms of certain symmetries and diameter. The ar-
gument is based on graph automorphism, graph topol-
ogy, and Euclidean metric. For each graph topology
we have examined, the resulting lower bound turned
out to be sharp. Concretely, the problem is posed
as follows. Let G = (V,E) be a finite undirected
graph, without loops or multiple edges, embedded in
3-dimensional Euclidean space. Let each embedded
node have unit volume. For convenience of the argu-
ment, each node is embedded as a sphere, and is repre-
sented by the single point in the center. The distance
between a pair of nodes is the Euclidean distance be-
tween the points representing them. The length of the
embedding of an edge between two nodes is the dis-
tance between the nodes. How large does the average
edge length need to be?

We illustrate the approach with a popular archi-
tecture, say the binary n-cube. Recall, that this is the
network with N = 2" nodes, each of which is identified
by an n-bit name. There is a two-way communication
link between two nodes if their identifiers differ by a
single bit. The network is represented by an undi-
rected graph C = (V, E), with V the set of nodes
and E C V x V the set of edges, each edge corre-
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sponding with a communication link. There are n2"-!
edges in C. Let C be embedded in 3-dimensional Eu-
clidean space, each node as a sphere with unit volume.
The distance between two nodes is the Euclidean dis-
tance between their centers. Let z be any node of C.
There are at most 2"/8 nodes within Euclidean dis-
tance R/2 of z, with R as in Equation 1. Then, there
are > 7-2"/8 nodes at Euclidean distance > R/2 from
z. Construct a spanning tree Ty in C of depth n with
node z as the root. Since the binary n-cube has diam-
eter n, such a shallow tree exists. There are N nodes
in T, and N —1 paths from root z to another node in
T,. Let P be such a path, and let |P| be the number of
edges in P. Then |P| < n. Let length(P) denote the
Euclidean length of the embedding of P. Since 7/8th
of all nodes are at Euclidean distance at least R/2 of
root z, the average of length(P) satisfies
1 TR
(N =171 )" length(P) > %
PeT,

The average Euclidean length of an embedded edge in
a path P is bounded below as follows:

(N-D Y (]Pl—1 Zlength(e)) > %. (2)

PeT: e€P

This does not yet give a lower bound on the average
Euclidean length of an edge, the average taken over
all edges in T,. To see this, note that if the edges
incident with z have Euclidean length 7R/16, then
the average edge length in each path from the root
to a node in T, is > TR/16n, even if all edges not
incident with z have length 0. However, the average
edge length in the tree is dominated by the many short
edges near the leaves, rather than the few long edges
near the root. In contrast, in the case of the binary n-
cube, because of its symmetry, if we squeeze a subset
of nodes together to decrease local edge length, then
other nodes are pushed farther apart increasing edge
length again. We can make this intuition precise.

LEMMA 1 The average Euclidean length of the edges
in the 3-space embedding of C is at least TR/(16n).

PROOF. Denote a node a in C by an n-bit string
a1a3...a,, and an edge (a,b) between nodes a and b
differing in the kth bit by:

(al‘..ak,laka;ﬂ.l...an, al...ak_l(ak (&) 1)ak+1...an)

where @ denotes modulo 2 addition. Since C is an
undirected graph, an edge e = (a, b) has two represen-
tations, namely (a,b) and (b,a). Consider the set A
of automorphisms e, ; of C consisting of



1. modulo 2 addition of a binary n-vector v to the
node representation, followed by

2. a cyclic rotation over distance 7.

Formally, let v = v,vs...v,,, with v; = 0,1(1<i<n),
and let § be an integer 1 <j<n Thena,;: VoV
is defined by

Qy,j (a) = 0541 vbnby ...bj

with b; = a; ® v; for all ¢, 1 <i<n.

Consider the spanning trees a(T,) isomorphic to
T, a € A. The argument used to obtain Equation 2
implies that for each a in A separately, in each path
a(P) from root a(z) to a node in a(T;), the average
of length(a(e)) over all edges afe) in a(P) is at least
7TR/16n. Averaging Equation 2 additionally over all o
in A, the same lower bound applies:

Yaea [(N-1)-1 Y per, (I1PI7! 2cep length(a(e)))]

NlogN
TR
2 16n ()
Now fix a particular edge e in T,. We average

length(a(e)) over all « in A, and show that this av-
erage equals twice the average edge length. Together
with Equation 3 this will yield the desired result. For
each edge f in C there are oy, a3 € A, a1 # a3, such
that o;(e) = az(e) = f, and forall a € A — {a1, 00},
ofe) # f. (For e = (a,b) and f (c,d) we have
ai(a) = ¢, a1(b) = d, and az(a) = d, az(b) = ¢.)
Therefore, for each e € E,

Z length(a(e)) = 2 Z length(f)

a€A feE

Then, for any path P in C,

35 tength(a(e)) = 2|P| 3" length(f)

e€EP a€A feEE

(4)

Rearranging the summation order of Equation 3, and
substituting Equation 4, yields the lemma. m]

The symmetry property yielding such huge edge
length is ‘edge-symmetry.’ To formulate the gener-
alization of Lemma 1 for arbitrary graphs, we need
some mathematical machinery. We recall the defini-
tions from [1]. Let G = (V, E) be a simple undirected
graph, and let T" be the automorphism group of G.
Two edges e; = (u;,v1) and ey = (u2,vq) of G are
similar if there is an automorphism v of G such that
Y({u1,v1}) = {uz,v2}. We consider only connected
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graphs. The relation ‘similar’ is an equivalence re-
lation, and partitions E into nonempty equivalence
classes, called orbits, B, ..., E,,. We say that I' acts
transitively on each E;, i = 1,...,m. A graph is edge-
symmetric if every pair of edges are similar (m = 1).
Additionally, we need the following notions. If x
and y are nodes, then d(z,y) denotes the number of
edges in a shortest path between them. Let D denote
the diameter of G defined by D is the maximum over
all node pairs z,y of d(z,y). For i = 1,...,m, define
di(z,y) as follows. For edges {z,y} € E, if {z,y} € E;
then d;(z,y) = 1, else d;(z,y) = 0. Let II be the set of
shortest paths between « and y along edges in E. If z
and y are not incident on the same edge ({z, vy} € E),
then di(z,y) = |II|"' T pey 3. p di(e). Clearly,

di(z,y)+---+ dm(z,y) = d(z,y) < D
Denote |V| by N. The ith orbit frequency is

_ di(z,y)
§=N"2 3y~ oY
z,y€V d(x’ y)

t = 1,...,m. Finally, define the orbit skew coefficient
of Gas M = min{|E;|/|E| : 1 < i < m}. Consider a d-
space embedding of G, with embedded nodes, distance
between nodes, and edge length as above. Let R be the
radius of a d-space sphere with volume N, Equation 1
for d = 3. We are now ready to state the main result.

THEOREM 1 Let graph G be embedded in d-space with
the parameters above, and let C = (2¢ — 1)/24+1,

() Let I; = |E|™' Y, cp l(e) be the average
length of the edges in orbit E;, i = 1,...,m. Then,
Licicmli 2 Xicicm 6ili > CRDL.

(i) Let L = |E|71 3, pl(e) be the average length
of an edge in E. Then, | > CRMD-!. 1

The proof is a generalization of the argument for
the binary n-cube, see [6]. Let us apply the theorem
to a few examples.

EXAMPLE 1 (BINARY N-CUBE) Let I' be an auto-
morphism group of the binary n-cube, e.g., A in the
proof of Lemma 1. Let N = 2™, The orbit of each edge
under I' is E. Substituting R, D, m = l,andd =3
in Theorem 2 (ii) proves Lemma 1. Denote by L the
total edge length ) seg U(f) in the 3-space embedding

of C. Then
TRN

Lz —- (5)

!This constant C can be improved. For d = 3, from 7/16 to
3/4. Similarly, in 2 dimensions we can improve C' from 3/8 to
2/3.




Recapitulating, the sum total of the lengths of the
edges is Q(N*/3), and the average length of an edge is
Q(N'/3log™ N). (In 2 dimensions we obtain in a sim-
ilar way Q(N3/?) and QN2 log™! N), respectively.)

<

ExaMPLE 2 (CUBE-CONNECTED CYCLES)

The binary n-cube has the drawback of unbounded
node degree. Therefore, in the fixed degree version of
it, each node is replaced by a cycle of n trivalent nodes,
[4] whence the name cube-connected cycles or CCC. If
N = n2", then the CCC version, say CCC = (V, E),
of the binary n-cube has N nodes, 3N/2 edges, and
diameter D < 2.5n. Theorem 1 shows: The average
Euclidean length of edges in a 3-space embedding of
CCC is at least 7TR/(120n).

The total edge length is Q(N*/3log™" N) and the
average edge length is Q(N'/3log™! N). (In 2 dimen-
sions Q(N3/2log™* N) and Q(N/2 log~! N), respec-
tively.) I expect that similar lower bounds hold for
other fast permutation networks like the butterfly-,
shuffle-ezchange- and de Bruijn graphs. <

ExAMPLE 3 (EDGE-SYMMETRIC GRAPHS) Recall
that a graph G = (V, E) is edge-symmetric if each
edge is mapped to every other edge by an automor-
phism in . We set off this case especially, since it
covers an important class of graphs. (It includes the
binary n-cube but excludes CCC.) Let |V| = N and
D be the diameter of G. Substituting R,m = 1, and
d = 3 in Theorem 2 (i) we obtain: The average Eu-
clidean length of edges in a 3-space embedding of an
edge-symmetric graph is at least 7R/(16D).

For the complete graph K, this results in an
average wire length of > 7TR/16. Le., the average
wire length is 2(N'/3), and the total wire length is
Q(NT/3).

For the complete bigraph Kj y-; (the star graph
on N nodes) we obtain an average wire length of >
7TR/32. le., the average wire length is Q(N1/3), and
the total wire length is Q(N*/3).

For a N-node 6-dimensional mesh with wrap-
around (e.g., a ring for § = 1, and a torus for § = 2;
for a formal definition see Appendix), this results in
an average wire length of > TR/(8N'/%). Le., the av-
erage wire length is Q(N(6=3)/3) ‘and the total wire
length is QSN (46-3)/38), o

ExAMPLE 4 (COMPLETE BINARY TREE) The com-
plete binary tree T, on N — 1 nodes (N = 2") has
n — 1 orbits Ey, ..., E,_,. Here E; is the set of edges
at level ¢ of the tree, with F; is the set of edges incident
with the leaves, and E,_; is the set of edges incident
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with the root. Let I; and ! be as in Theorem 2 with
m=n—1. Then |E;] =2""% i=1,..,n— 1, the or-
bit skew coefficient M = 2/(2" — 2), and we conclude
from Theorem 2 (i) that [ is Q(N~2/3 log™! N) for
d = 3. This is consistent with the known fact [ is O(1).
However, we obtain significantly stronger bounds us-
ing the more general part (i) of Theorem 2. In fact, we
can show that 1-space embeddings of complete binary
trees with o(log N) average edge length are impossi-
ble. Theorem 1 shows: The average Euclidean length
of edges in a d-space embedding of a complete binary
tree is (1) for d = 2,3, and Q(log N) ford=1. <

There is evidence that the lower bound of Theo-
rem 1 is optimal in the sense of being within a constant
multiplicative factor of an upper bound for several ex-
ample graphs of various diameters, [6].

3 The Problem with Random Net-
works

Since low-diameter symmetric network topologies
lead to high average interconnect length, it is natu-
ral to ask what happens with irregular topologies. In
fact, it is sometimes proposed that since symmetric
networks of low diameter lead to high interconnect
length, one should use random networks where the
presense or absence of a connection is determined by
a coin flip. We shall show here that such networks will
also have impossibly high average interconnect length.

One way to express irregularity or randomness of an
individual network topology is by a modern notion of
randomness called Kolmogorov complexity. We refer
the reader to the textbook [2] for definitions and ba-
sic facts of Kolmogorov complexity. For the purpose
of reading this article, it is sufficient to know that
the Kolmogorov complezity K(z) of a finite string
is simply the length of the shortest program, say in
FORTRAN? encoded in binary, which prints z with-
out any input. A similar definition holds conditionally,
in the sense that K(z|y) is the length of the shortest
binary program which computes z given y as input.
It can be shown that the Kolmogorov complexity is
absolute in the sense of being independent of the pro-
gramming language, up to a fixed additional constant
term which depends on the programming language but
not on z. We now fix one canonical programming lan-
guage once and for all as reference and thereby K().

A simple counting argument shows that for each
y in the condition and each length n there exists at

20r in Turing machine codes.




least one z of length n which is incompressible in the
sense of K(z|y) > n, 50% of all z’s of length n is
incompressible but for 1 bit (K (z|y) > n—1), 75%th of
all z’s is incompressible but for 2 bits (K (z|y) > n—2)
and in general a fraction of 1—27¢ of all strings cannot
be compressed by more than ¢ bits, [2].

Each graph G = (V,E) onn nodes V = {0,...,n—
1} can be coded (up to isomorphism) by a binary
string of length n(n — 1)/2. We enumerate the
n(n — 1)/2 possible edges in a graph on n nodes in
standard order and set the ith bit in the string to 1
if the edge is present and to 0 otherwise. Conversely,
each binary string of length n(n—1)/2 encodes a graph
on n nodes. Hence we can identify each such graph
with its corresponding binary string.

We shall call a graph G on n nodes random if it
satisfies

K(GIn) > n(n —1)/2 — o(n). (6)

Recall that f(n) = o(n) iff lim,—o, f(n)/n = 0. Ele-
mentary counting shows that a fraction of at least

1—-o(n/2")
of all graphs on n nodes has that high complexity.

LEMMA 2 The degree d of each node of a random
graph satisfies |d — (n — 1)/2| = o(n).

PROOF. Assume that the deviation of the degree d
of a node v in G from (n — 1)/2 is at least k. From
the lower bound on K(G|n) corresponding to the as-
sumption that G is random, we can estimate an upper
bound on &, as follows.

Describe G given n as follows. We can indicate
which edges are incident on node v by giving the index
of the connection pattern in the ensemble of
l[d=(n-1)/2|2k

possibilities. The last inequality follows from a general
estimate of the tail probability of the binomial distri-
bution, with s,, the number of successful outcomes in
n experiments with probability of success 0 < p<l1
and ¢ = 1 - p. Namely, Chernoff’s bounds, (2], pp.
127-130, give
Pr(|sn — np| > k) < 2¢~**/4npq, (8)
To describe G it then suffices to modify the old code
of G by prefixing it with

o the identity of the node concerned in [log n] bits,
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e the value of d in [logn] bits, possibly adding non-
significant 0’s to pad up to this amount,

o the index of the interconnection pattern in log m+
2loglogm bits in self-delimiting form (this form
requirement allows the concatenated binary sub-
descriptions to be parsed and unpacked into the
individual items: it encodes a separation delim-
iter, at the cost of adding the second term, [2]),

followed by the old code for G with the bits in the
code denoting the presence or absence of the possible
edges which are incident on the node v deleted.

Clearly, given n we can reconstruct the graph G
from the new description. The total description we
have achieved is an effective program of

logm + 2loglogm £ O(logn) + n(n — 1)/2 — (n — 1)

bits. This must be at least the length of the shortest
effective binary program, which is K(G|n) satisfying
Equation 6. Therefore,

logm + 2loglogm > n — o(n).
Since we have estimated in Equation 7 that
logm < n—(k?/(n—1))loge,

it follows that
k = o(n).
a

Note that we can, for concreteness sake, replace
o(n) everywhere by say 5n/logn. The lemma shows
that each node is within two edges of about 50% of all
nodes in G. Hence G contains a subgraph on about
50 % of its nodes of diameter 2. 3 Therefore, we have
the following Theorem.

THEOREM 2 A fraction of at least 1 — o(n/2") of
all graphs on n nodes (the incompressible, random,
graphs) have average interconnect length of Q(nl/3)
in each 3-dimensional Euclidean space embedding (or
n'/2) in each 2-dimensional Euclidean space embed-
ding).

Since both the very regular symmetric low diameter
graphs and the random graphs have high average in-
terconnect length which sharply rises with n, the only
graphs which will scale feasibly up are symmetric fairly
high diameter topologies like the mesh—which there-
fore will most likely be the interconnection pattern of
the future massive multiprocessor systems.

3A similar extended argument shows that high complexity
(random) graphs have a subgraph containing almost all nodes
which has diameter 3.




4 Interpretation of the Results

An effect that becomes increasingly important at
the present time is that most space in the device exe-
cuting the computation is taken up by the wires. Un-
der very conservative estimates that the unit length
of a wire has a volume which is a constant fraction
of that of a component it connects, we can see above
that in 3-dimensional layouts for binary n-cubes, the
volume of the N = 2" components performing the ac-
tual computation operations is an asymptotic fastly
vanishing fraction of the volume of the wires needed
for communication:

volume computing components

= : € o(N~/3)
volume communication wires

If we charge a constant fraction of the unit volume
for a unit wire length, and add the volume of the wires
to the volume of the nodes, then the volume necessary
to embed the binary n-cube is Q(N*/3). However, this
lower bound ignores the fact that the added volume
of the wires pushes the nodes further apart, thus ne-
cessitating longer wires again. How far does this go?
A rigorous analysis is complicated, and not important
here. The following intuitive argument indicates what
we can expect well enough. Denote the volume taken
by the nodes as V,,, and the volume taken by the wires
as V,,. The total volume taken by the embedding of
the cube is V; = V, + V,,. The total wire length re-
quired to lay out a binary n-cube as a function of
the volume taken by the embedding is, substituting
V, = 47R3/3 in Equation 5,

TN [3V,\M?
> (2t
L) 32 (47r>

Since limy, o V/Vs — 0, assuming unit wire length
of unit volume, we set L(V;) ~ V;. This results in
a better estimate of Q(N3/2) for the volume needed
to embed the binary n-cube. When we want to in-
vestigate an upper bound to embed the binary n-cube
under the current assumption, we have a problem with
the unbounded degree of unit volume nodes. There is
no room for the wires to come together at a node.
For comparison, therefore, consider the fixed degree
version of the binary n-cube, the CCC (see above),
with N = n2" trivalent nodes and 3N/2 edges. The
same argument yields QN3/? 1og_3/2 N) for the vol-
ume required to embed CCC with unit volume per
unit length wire. It is known, that every small de-
gree N-vertex graph, e.g., CCC, can be laid out in a
3-dimensional grid with volume O(N3/2) using a unit
volume per unit wire length assumption, [3, 4]. This
neatly matches the lower bound.
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Because of current limitations to layered VLSI tech-
nology, previous investigations have focussed on em-
beddings of graphs in 2-space (with unit length wires
of unit volume). We observe that the above analysis
for 2 dimensions leads to (N?) and Q(N? log™2 N)
volumes for the binary n-cube and the cube-connected
cycles, respectively. These lower bounds have been ob-
tained before using bisection width arguments, and are
known to be optimal, [4]. In [3] it is shown that we
cannot always assume that a unit length of wire has
O(1) volume. (For instance, if we want to drive the
signals to very high speed on chip.)

The lower bounds on the wire length above are
independent of the ratio between the volume of a
unit length wire and the volume of a processing el-
ement. This ratio changes with different technologies
and granularity of computing components. Previous
results may not hold for optical communication net-
works, intraconnected by optical wave guides such as
glass fibre or guideless by photonic transmission in free
space by lasers, while ours do. The arguments we have
developed are purely geometrical, apply to any graph;
and give optimal lower bounds in all cases we have
examined. Our observations are mathematical conse-
quences from the noncontroversial assumptions on 3
dimensional space and the Laws of Physics.
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