

The Higgs and the Pervasive Nature of Quantum Entanglement

Dallas IEEE Computer Society Mar 8, 2013 UT Dallas Campus

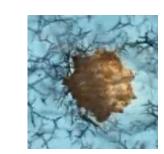
> Doug Matzke, PhD matzke@IEEE.org <u>www.QuantumDoug.com</u> <u>www.TauQuernions.org</u>

Abstract

Are you curious about the Higgs boson that captured everyone's attention last year? This talk discusses a new model of the Higgs Boson based entirely on quantum entanglement's Bell and Magic states (see <u>www.TauQuernions.org</u>). I will introduce and discuss:

- > How entanglement originates from quantum computing (qubits are NOT part of the Standard Model),
- > The nature of quantum non-locality for ebits (many things acting non-locally as one),
- Why entanglement is irreversible (due to information erasure),
- How entanglement becomes the basis for 3+1d space itself (TauQuernions are entangled Quaternions),
- How the entangled TauQuernions form the Higgs.

Additionally, we predict "dark bosons" (3D rotations of TauQuernions) that combine to form 4 variants of dark matter. We also predict two Higgs decay forms using our novel state classification system.

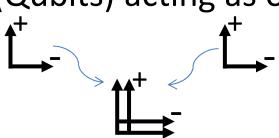

During the talk, I will demonstrate the custom Python-based symbolic math tools we developed. These tools allowed an information-theoretic analysis over all the states of our finite and discrete algebras (Geometric Algebra), leading ultimately to a novel entropically-driven Bit Bang model of the universe.

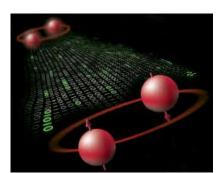
This presentation is intended for an audience of non-technical, CS, EE and Physics personnel. So everyone curious about the informational nature of entanglement, the Higgs and dark matter is welcome. This presentation is being recorded and will be available on YouTube.

Summary of Talk

> Quantum Entanglement is:

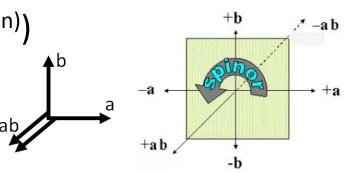
- From Qubits/Ebits (not classical nor standard model)
- High Dimensional for $n \ge 4$
- Probability amplitudes (non-local waves)
- Non-local correlations (EPR/Bell's Theorem)
- Pervasive and stable due to irreversibility
- Quantum Entanglement underlies:
 - Quantum Computing (e.g. Shor's algorithm)
 - Entangled 3D+1 TauQuernion Space
 - Higgs Field and Higgs Boson
 - Dark Bosons and Dark Matter

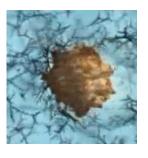



Definition of Entanglement:


Entanglement is a quantum property:

- > Only Quantum systems (not classical)
- Non-local due to high dimensions
- Einstein's "Spooky action at a distance"
- EPR and Bell/Magic states/operators are well defined
- Property known as inseparable quantum states
- Bell/Magic Operators are irreversible in GALG*
- > Multiple things (Qubits) acting as one thing (Ebit)

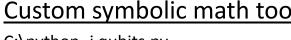


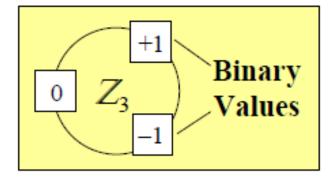


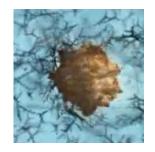
Geometric Algebra Summary

- > Vectors, bivector, trivectors, n-vectors, multivectors
- \succ Multivector Spaces (for G_n size is $3^{(2^{**n})}$)
 - G₀ is size 3: {0, ±1}
 - G₁ is size 9: {0, ±1, ±a}
 - G₂ is size 81: {0, ±1, ±a, ±b, ±ab}
 - G₃ is size 6,561: {0, ±1, ±a, ±b, ±c, ±ab, ±ac, ±bc, ±abc}
 - G₄ is size 43,046,721: {0, ±1, ±a, ±b, ±c, ±d, ..., ±bcd, ±abcd}
- Anti-commuting vector space
 - $ab = -ba \rightarrow (ab)^2 = abab = -1$ so any bivector $xy = \sqrt{-1}$ is spinor *i*
- > Arithmetic Operators over $Z_3 = \{\pm 1 = T/F, 0 = \text{does not exist}\}$
 - +, * (geometric ~ ⊗), outer (a^a=0,a^b=ab), inner (a•a=1,a•b=0)
- Co-occurrence (+) & co-exclusion: (a-b)+(-a+b)=0 implies ab
- \succ Row vector truth table duality (e.g. $\pm(1+a)(1+b)=[0\ 0\ 0\ \pm]$).

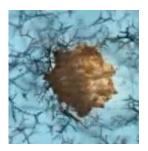
Geometric Algebra Tools

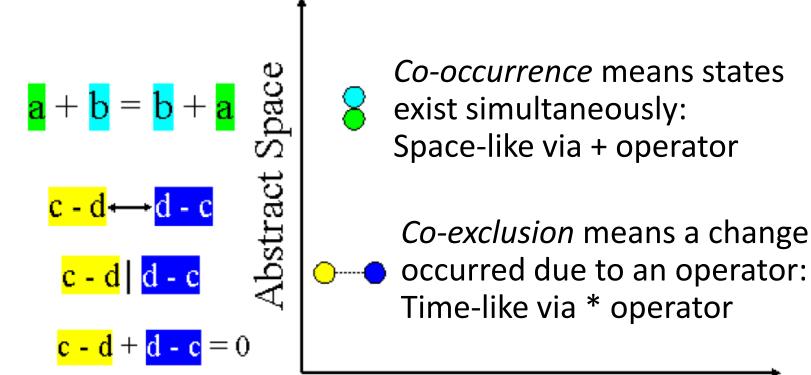

Custom symbolic math tools in Python (operator overloading):

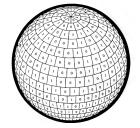

C:\python -i qubits.py ← Mod3 addition for change based logic (xor) >>> a+a - a \leftarrow anticommutative bivectors >>> b^a - (a^b) \leftarrow anticommutative trivectors $>>> c^ha$ - (a^b^c)

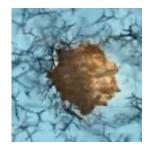

 $+1 + a + b + c + (a^b) + (a^c) + (b^c) + (a^b^c) \leftarrow Row vector state equivalent [0000 000+]$

```
← Single Qubit State
>>> a0
                                >>> gastates(ab)
                                (table for +
                                              (a^b)>
+a0
                                  PUTS: a b ¦ OUTPUT
         ← Classical Qubit A
>>> A
                                    ΩО:
+ a0 - a1
                                                      ← Truth Table of row vector output states
         ← Qubit Spinor
>>> Sa
+(a0^{1})
                                Counts for outputs of ZERO=0, PLUS=2, MINUS=2 for TOTAL=4 rows
                                    report2(ab)
>>> Sa*Sa   so Spinor = sqrt(-1)
                                        (0, 2, 2), 1 [+ - - +] = + (a^b) \leftarrow Bits, sig, vector, = expr
                                    report2((1+a)(1+h))
-1
                                      ((0, 1, 3), 3) [0 \ 0 \ 0 +] = +1 + a + b + (a^b)
                                   report2((1+a)(1+b)+(1-a)(1-b))
>>> A*Sa   Superposition
                                   70((0, 2, 2), 1)[+00+] = -1 - (a^b)
+ a0 + a1
>>> A^*B  \leftarrow Quantum Register (where B = + b0 - b1)
```


 $+(a0^{b0}) - (a0^{b1}) - (a1^{b0}) + (a1^{b1})$




Space and Time Proto-Physics


(or cannot occur)

Abstract Time

"Information is Physical" by Rolf Landauer "It from Bit" in Black Holes by John Wheeler

Coin Demo: Act I

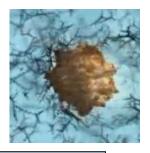
Setup:

Person stands with both hands behind back

Act I part A: [

Person shows hand containing a coin then hides it again

Act I part B:


Person again shows a coin (indistinguishable from 1st)

Act I part C:

Person asks: "How many coins do I have?"

Represents one bit: either has 1 coin or has >1 coin

Coin Demo (continued)

Act II:

Person holds out hand showing two identical coins

We receive one bit since ambiguity is resolved!

Act III:

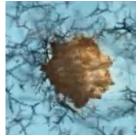
Asks: "Where did the bit of information come from?"

Answer: Simultaneous presence of the 2 coins!

Non-Shannon space-like information derives from simultaneity!

Complexity Signatures

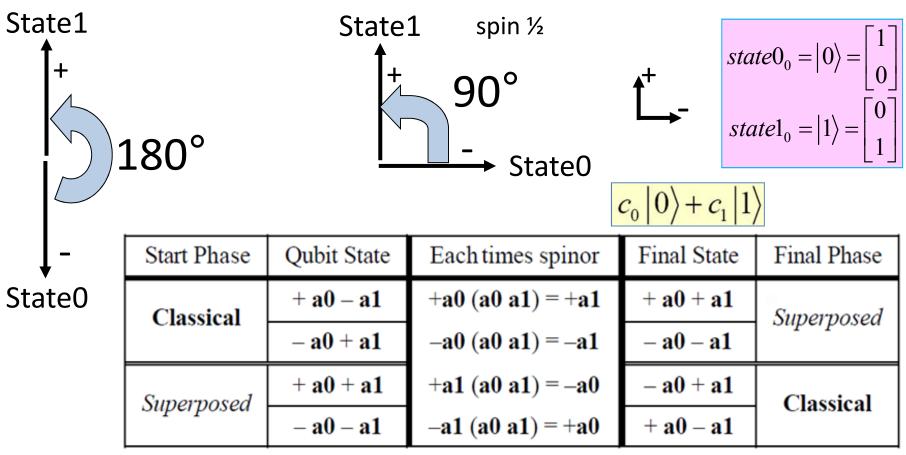
Multivector = Equivalent Row Vector	Multivector = Equivalent Row Vector	XX
abc = [-++-+-+]	abc = [-++-+-+]	→(0, 4, 4)
+1 = [+ + + + + + + +]	<u> </u>	
abc +1 = [0−−0−00−]	abc -1 = [+ 0 0 + 0 + + 0]	→(0, 4, 4)


Given any multivector in \mathbb{G}_n and its corresponding row vector, compute a tuple (#0s, #+s, #-s) based on the counts of elements in the row vector. The sorted tuple, represents the state complexity of the multivector.

Space	Signature	Count	Description	Structural complexity	Bits
n=0	(0, 0, 1)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm]$	0	0
n=1	(0, 0, 2)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm]$	0	1.58
all=9	(0, 1, 1)	6	Vectors $\pm \mathbf{x} \& \pm 1 \pm \mathbf{x} \rightarrow [\pm \mp]$	1	0.58
n=2	((0, 0, 4), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm \pm \pm]$	0	4.75
all=81	((0, 1, 3), 3)	24	Row Decode ±(1± x)(1± y)	3	1.75
	((0, 2, 2), 1)	18	Singletons ± x and ± xy	1	2.17
	((1, 1, 2), 2)	36	± x ± y and ±1 ± x ± y	2	1.17

Add structural complexity (singleton count) to the signature to support larger spaces.

* Coin Demo 1.000 bit = 2.17 – 1.17


More Signatures in $\mathbb{G}_3 \& \mathbb{G}_4$

Space	Signature	Count	Description	Bits	
n=3	((0, 0, 8), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm \pm \pm \pm \pm \pm]$	11.1	
6,561	((0, 1, 7), 7)	48	Row Decode $\pm (1\pm \mathbf{w})(1\pm \mathbf{x})(1\pm \mathbf{y}) \rightarrow [\pm 000\ 0000]$	7.09	
	((0, 2, 6), 3)	168	±x ±y ±xy	5.29	
	((0, 3, 5), 6)	336	±x ±y ±xy ±xz ±yz ±xyz	4.29	
	((0, 4, 4), 1)	42	Singletons ± x , ± xy and ± xyz	7.29	
	<mark>((0, 4, 4), 4)</mark>				
	((2, 2, 4), 2)	252	Co-occurrence ±x ±y is a qubit	4.70	
	((2, 3, 3), 3)	672	Co-occurrence ±x ±y ±z is a photon	3.29	
	<not 5="" s<="" shown="" td=""><td>ignature</td><td>es of 14 total bins></td><td></td></not>	ignature	es of 14 total bins>		
	((1, 3, 4), 4)	1,344	Smallest information content in G ₃ (e.g. ±a±b±c±xy)	2.29	
n=4	((0, 0, 16), 0)	3	Scalars $\{0, \pm 1\} \rightarrow [\pm \pm $	23.8	
3 ^(2**n)	((0, 1, 15), 15)	96	Row Decode $\pm (1\pm \mathbf{w})(1\pm \mathbf{x})(1\pm \mathbf{y})(1\pm \mathbf{z})$	18.8	
	((0, 8, 8), 1)	90	Singletons ± x , ± xy , ± xyz and ± wxyz	18.9	
	((4, 4, 8), 2)	1,260	Co-occurrence ±x ±y, ±wx ±yz , ±w ±xyz	15.1	
	<not 81<="" shown="" td=""><td>signatur</td><td>es of 86 total bins></td><td></td></not>	signatur	es of 86 total bins>		
	((4, 5, 7), 11)	5,040K	Smallest information content in \mathbb{G}_4 (11 singletons)	3.09	

Qubit: a bit in Superposition

Classical bit states: Quantum bit states: Mutually Exclusive Orthogonal

Ebits: Entangled Qubits

 $\mathsf{M}_{(i+1)mod4} = \mathsf{M}_i \left(\mathsf{S}_A - \mathsf{S}_B\right)$

 $M_0 = A_0 B_0 Magic = + S_{01} - S_{10}$

 $M_1 = M_0 Magic = -S_{00} - S_{11}$

 $M_{2} = M_{1} Magic = -S_{01} + S_{10}$

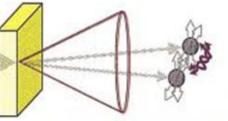
 $M_{3} = M_{2}$ Magic = + $S_{00} + S_{11}$

 $M_0 = M_3$ Magic = + $S_{01} - S_{10}$

> Bell/Magic Operators (in \mathbb{G}_4):

 $B_0 = A_0 B_0 Bell = -S_{00} + S_{11} = \Phi^+$

 $B_1 = B_0 Bell = + S_{01} + S_{10} = \Psi^+$

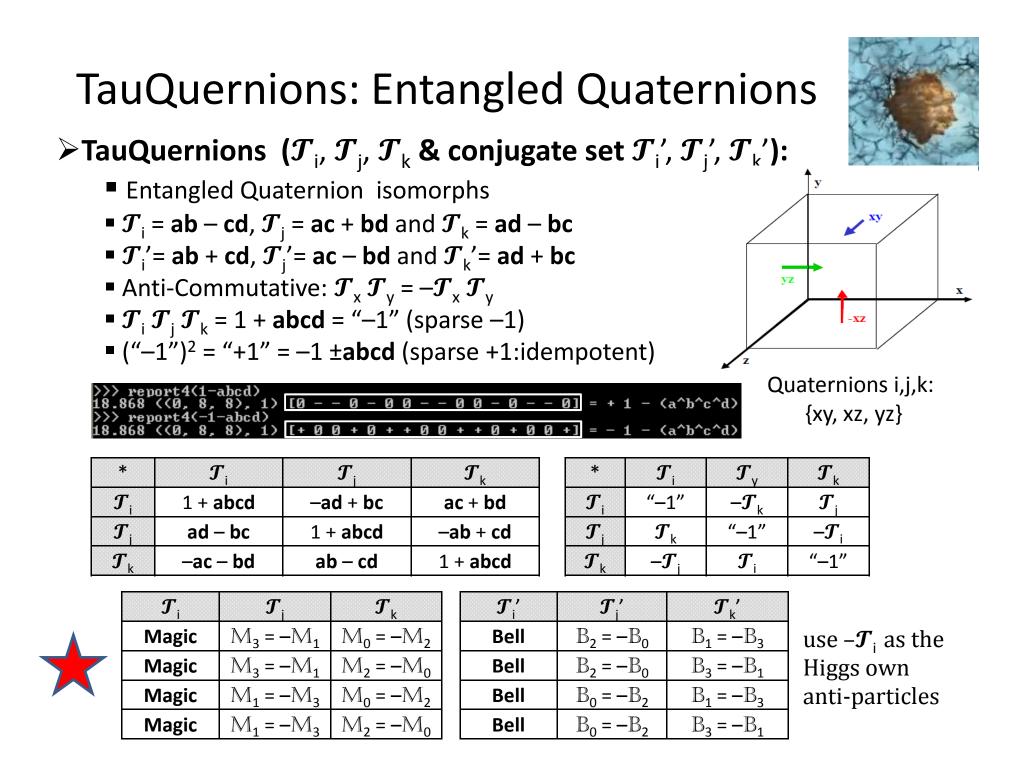

 $B_2 = B_1 Bell = + S_{00} - S_{11} = \Phi^-$

 $B_3 = B_2 Bell = -S_{01} - S_{10} = \Psi^-$

 $B_0 = B_3 Bell = -S_{00} + S_{11} = \Phi^+$

 $B_{(i+1)mod4} = B_i (S_A + S_B)$

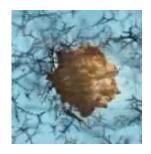
- Bell operator = S_A + S_B = a0 a1 + b0 b1
- Magic operator = S_A S_B = a0 a1 b0 b1
- Bell/Magic States B_i and M_i form rings:



Entangled photon pair $|\Psi\rangle_{12} = |\diamondsuit\rangle_1 |\diamondsuit\rangle_2 + |\leftrightarrow\rangle_1 |\leftrightarrow\rangle_2$

$\Phi^{\pm} =$	$ 00\rangle\pm 11\rangle$
$\Psi^{\pm} =$	$ 01\rangle\pm 10\rangle$

- Cannot factor: a0 b0 + a1 b1 (Inseparable)
- \succ Bell and Magic operators are irreversible in \mathbb{G}_4 (different from Hilbert spaces)
 - See proof that 1/(S_A ± S_B) does not exist for Bell (or Magic) operators
- > Multiplicative Cancellation *Information erasure is irreversible*
 - Qubits $A_0 B_0 = +a0 b0 a0 b1 a1 b0 + a1 b1 = B_3 + M_3$
 - $0 = \text{Bell} * \text{Magic} = \text{Bell} * M_j = \text{Magic} * B_i = B_i * M_j$



Bosons X²=0 (Nilpotents)

Find all bosons in G using: gasolve([a,b, ...], lambda X: X*X, 0)

		Boson Multivector	Boson Description		
$\mathbb{G}_{0} \& \mathbb{G}_{1}$	Total 0	Exclude 0 from this table	0 ² =0		
G ₂	Total 8		(qubit space)		
	8	$\pm \mathbf{x} \pm \mathbf{x}\mathbf{y} = \pm \mathbf{x}^* (1 \pm \mathbf{y})$	Weak Force Bosons W/Z		
G 3	Total 80	*quarks are: ±x ±yz	(Standard model Space)		
8		±a ±b ±c	Photonic Boson (Qutrit)		
	24	±x ±xy	Weak Force Bosons in \mathbb{G}_3		
	8	±ab ±ac ±bc	Quaternions are bosonic		
	24	±x ±z ±xy ±yz	Mesons are two quarks		
16		±x ±y ±z ±xy ±xz ±yz	Strong Force (Gluons)		
\mathbb{G}_4	Total 7,280		30 Different signatures		
	80	± x ± xy and ± w ± xyz	Weak and Dark Bosons		
528		(ab - cd) + (ac + bd) + (ad - bc) &	16 Higgs Boson & others		
			28 more signatures		
\mathbb{G}_{3} is equiv	alent to Pauli	Algebra and \mathbb{G}_4 contains Dirac Algebra	a. Also Parsevals Identity		

Particles X²=1 (Unitary)

Find all Unitaries in G using: gasolve([a,b, ...], lambda X: X*X, 1)

Space	Count	Unitary Multivector	Particle Description		
\mathbb{G}_1	Total 2	± a	Exclude scalar value of ±1		
\mathbb{G}_2	Total 12		(qubit space)		
	4	±x	Vectors are distinctions		
	8	±a ±b ±ab	Neutrinos		
G ₃	Total 90	*quarks are: ±x ±yz	(Standard model Space)		
	6	±x	Vectors are distinctions		
	24	±x ±y ±xy	Neutrinos (3x8=24)		
	12	±xy ±xz	Electrons (3x4=12)		
	48	±x ±y ±z ±xy ±xz	Protons (neutrons = xyz protons)		
G ₄	Total 12,690		17 Different signatures		
	10	±x and ±wxyz	Vectors and Mass Carrier		
			16 more signatures		

For $X^2 = X$ (Idempotent) and $U^2 = 1$ (Unitary) then $X = -1 \pm U$ (proof $X^2 = (-1 \pm U)^2 = X$)

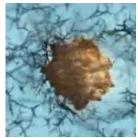
Standard Model in $\mathbb{G}_2 \& \mathbb{G}_3$

														1	242	100.00
Name	U	D	\bar{U}	\bar{D}	Name	C		S	\bar{C}	\bar{S}	Name	Т	В	\bar{T}	\bar{B}	
Form	a + bc	-a + bc	-a - bc	a - bc	Form	b + ac	-b	+ac	-b-a	b - ac	Form	c + ab	-c + ab	-c-ab	c-ab] _
Charge	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	Charge	$+\frac{2}{3}$	-	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	Charge	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	$ Z_5 $
Color	r	\bar{r}	\bar{r}	r	Color	g		\overline{g}	\bar{g}	g	Color	b	\overline{b}	\overline{b}	b	1.
									•							9
Name	For	m	Vector (S_2) Si	gnature	Bits				I	II		III			
ν	a+b	+ ab	[0] (0	,1,3),3	1.75					1.27 Ge		74 0 0 11/2			
ν_{μ}	a-b	-ab	[0]	-1						2.4 MeV/c ²			71.2 GeV/d	0		
ν_{τ}	-a+b	-ab	[-0-	-1					arge→		2/3	3/		$\sim \gamma$		
$\Sigma =$	a+b		$[0 + + \cdot$	⊥ 1					spin→ <mark></mark>	∕₂ U	1/2 U	1/2	ź L	1		
4 -	u + 0	- 40	[0 + +					n	ame→	up	charr	n 📕	top	phot	on	
$\bar{\nu}$	-a-b	-ab	[+++	0]					\rightarrow	-1-						
$\bar{ u}_{\mu}$	-a+b	+ ab	[++0.	+]						.8 MeV/c ²	104 MeV	16 4	.2 GeV/d	0		
$\bar{\nu}_{\tau}$	a-b	+ ab	[+0+]	+]						1/3	- ^{1/3} C	1926	1/3 h			
$\Sigma =$	-a-b	+ ab	[0 0]	-]	"					2° C	1/2 S	S	D		,	
Name	Form	Ţ	Vector (\mathcal{G}_3) S_i	gnature	Bits	ר		ua	down	strang		bottom	gluc	in	
e	ab + c	ac [-	-00 + +00	-] (2	(2, 2, 4), 2	4.70			OL							
\bar{e}	-ab-a	Letter Letter	-0000-			н				<2.2 eV/c	<0.17 M		15.5 MeV/c	91.2 Ge	N/m	
e^{-}	ab-a	ac = [0]	-+00+-	-0]	н	н			>	<2.2 ev/c	<0.17 M			91.2 00		
\bar{e}^{-}	-ab+a	ac = [0]	+ -00 - +	-0]	n	н				$^{\rm J} V_{\rm e}$	\mathbb{V}	0		07		
μ	ab + b	bc [-	0 + 00 + 0	-1	н						½ ♥			1 4	-	
$\overline{\mu}$	-ab-b	bc [+	0 - 00 - 0	+]	н					neutrino	neutrii		tau neutrino	Z bos		
μ^{-}	ab-b	bc = [0 -	-0 + +0 -	- 0]					_	ricalino	nearn		neaunio			ü
$\bar{\mu}^{-}$	-ab+b	bc [0 -	+00 +	- 0]	- n2				o	.511 MeV/c	105.7 Me	V/c 1	.777 GeV/c	80.4 Ge	v/c	Gauge bosons
au	ac+b	bc [-	+0000 +	-]	- m2				S S	10	-1			+ 1		q
$\overline{ au}$	-ac-b	bc = [+	-0000 -	+]	(n)				5		¹ / ₂ μ	14	T		V	0 D
$ au^-$	ac-b	bc [00]) - + + - ([00	. H .				eptons	2	100 Contraction (1997)	A				'n
au –	-ac+b	bc = [00])++(00]		т. П			e l	electron	muoi	ר ו	tau	W bo	son	G

Higgs Bosons are Entangled



- $\mathcal{H} = \mathcal{T}_i + \mathcal{T}_j + \mathcal{T}_k$ (where $\mathcal{H}^2 = 0$)
- Eight triples: $\pm T_i \pm T_j \pm T_k$ (and 8 more for $\pm T_i' \pm T_j' \pm T_k'$)
- > Also various factorizations:
 - H = (±1 ±abcd)(ab + ac + bc) Time-like mass acts on Space
 - $\mathcal{H} = (\mathbf{a} + \mathbf{b} \mathbf{c})\mathbf{d} + \mathbf{ab} + \mathbf{ac} \mathbf{bc}$ Light and space
 - \mathcal{H} is its own anti-particle (when using $-\mathcal{T}_i$)


 \succ The Higgs $\mathcal H$ and proto-mass $\mathcal M$ cover even subalgebra:

• $\mathcal{H} = \{\mathbf{X} = \pm \mathbf{ab} \pm \mathbf{ac} \pm \mathbf{bc} \pm \mathbf{ad} \pm \mathbf{bd} \pm \mathbf{cd} \mid \mathbf{X}^2 = 0\}$ (16) For $\mathbf{X} = \mathcal{H}$ then $\mathbf{X} = \mathbf{abcd} = \mathbf{X} = \pm \mathbf{X}$

■
$$\mathcal{M} = \{ \mathbf{X} = \pm \mathbf{ab} \pm \mathbf{ac} \pm \mathbf{bc} \pm \mathbf{ad} \pm \mathbf{bd} \pm \mathbf{cd} \mid \mathbf{X}^2 = \pm \mathbf{abcd} \} (48)$$

For X = \mathcal{M} then only **X abcd** = **abcd X**
sig ((4, 6, 6), 6) = 32 and sig ((0, 6, 10), 6) = 16

Dark Bosons are also Entangled

Energy

22% Dark

Matter

4% Atoms

w ± xy

w ± xyz

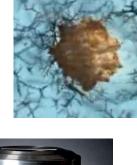
(wx+yz)(xyz) = (-x+wyz) and also (w+xyz)(wxy) = (wz+xy)

State Name	Entangled State	\mathcal{D}_{B} = State * (wxy)†
Bell	+ wx + yz	- y - wxz
B0	– wy + xz	- x + wyz
B1	+ wz + xy	– w – xyz
B2	+ wy – xz	+ x – wyz
B3	- wz - xy	+ w + xyz
Magic	+ wx – yz	-y+wxz
M0	+ wz – xy	+ w – xyz
M1	-wy-xz	- x - wyz
M2	– wz + xy	– w + xyz
M3	+ wy + xz	+ x + wyz

+ Results are dark bosons \mathcal{D}_{B} where $(\mathcal{D}_{B})^{2} = 0$ and are entangled since \mathcal{D}_{B} are not separable.

Dark Matter is Entangled

> Define set \mathcal{D} as sum of 4 dark bosons (count 256) : $\mathcal{D} = \{(\pm \mathbf{w} \pm \mathbf{x}\mathbf{y}\mathbf{z}) + (\pm \mathbf{x} \pm \mathbf{w}\mathbf{y}\mathbf{z}) + (\pm \mathbf{y} \pm \mathbf{w}\mathbf{x}\mathbf{z}) + (\pm \mathbf{z} \pm \mathbf{w}\mathbf{x}\mathbf{y})\}$

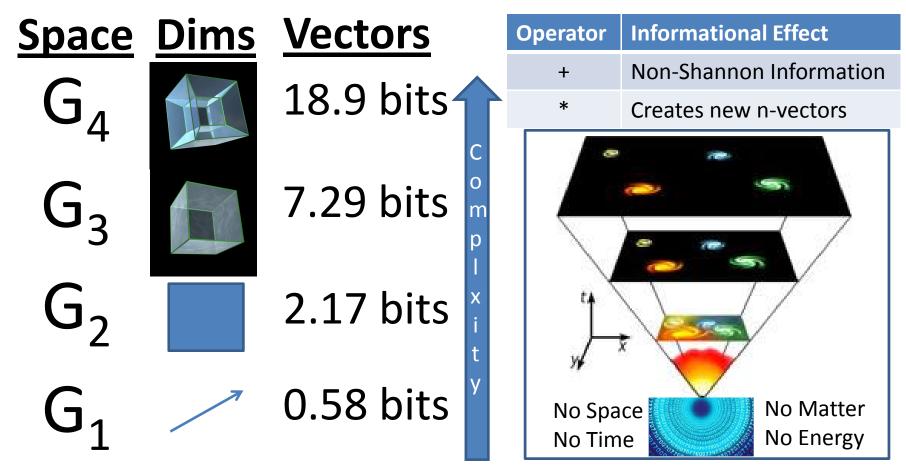

where \mathcal{D} is the largest *odd sub-algebra* of \mathbb{G}_4 and rotations {**xyz** \mathcal{D} } = {-1 + **wxyz** + $\mathcal{H} \cup \mathcal{M}$ }

> The elements of \mathcal{D}^2 form three (four) subsets: $\mathcal{D}_q = \{\mathcal{D} \in D \mid D^2 = xy + xz + yz\}$ (count 128, sig ((2, 7, 7), 8), 6.87 bits)

 $\mathcal{D}_0 = \{ \mathcal{D} \in D \mid D^2 = 0 \}$ (Bosons) (count 32, sig ((4, 4, 8), 8), 5.53 bits)

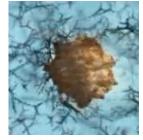
 $\mathcal{D}_{u} = \{\mathcal{D} \in D \mid D^{2} = (\mathbf{w} + \mathbf{x})(\mathbf{y} + \mathbf{z}) \& D^{8} = 1 (2 \text{ qubits}) \text{ (count 96)} \}$


- \mathcal{D}_{u} with (count 80, sig ((4, 4, 8), 8), 5.53 bits)
- *D*_u with (count 16, sig ((1, 1, 14), 8), 15.9 bits)



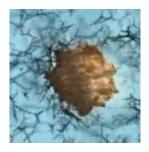
Big Bang Energy from Bit Bang?

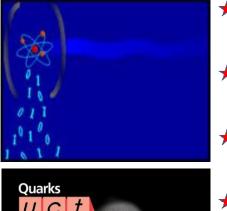
Bit Bang information growth as source of energy:

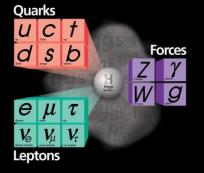

- Space-like co-occurrence of vectors (+) creates non-Shannon bits
- Time-like operator (*) creates new n-vectors, increasing diversity

Big Bang Fueled by Bit Bang

	TX The										
Particle/	Form	Vector samples (G ₃)	Signature(s)(G ₃)	G1	G ₂	G3	G4				
₲ ₀ (o	of size 3)										
Void $\rightarrow 0$ is		[0 0 0 0 0 0 0 0]	∈ ((0, 0, 8), 0)	1.58	4.75	11.1	23.8				
±1	are	$[\pm \pm \pm \pm \pm \pm \pm \pm]$	\in ((0, 0, 8), 0)	1.58	4.75	11.1	23.8				
G1 (0	of size 9)				•						
а	±exist	[+++]	\in ((0, 4, 4), 1)	0.58	2.17	7.29	18.9				
1 -a	measure	[0000]	\in ((0, 4, 4), 1)	0.58	2.17	7.29	18.9				
Row 0 (1	l-w)(1-z)	[+000000] (0,1,1),(0,1	,3),(0,1,7),(0,1,15)	0.58	1.75	7.09	18.8				
G2 (0	of size 81)										
ab	±spin carrier	[++++]	\in ((0, 4, 4), 1)	-	2.17	7.29	18.9				
1+ab		[0000]	\in ((0, 4, 4), 1)	-	2.17	7.29	18.9				
a+b+ab	neutrino	[00]	∈ ((0, 2, 6), 3)	-	1.75	5.29	15.6				
a+b	qubit, co-occ	[++0000]	∈ ((2, 2, 4), 2)	-	1.17	4.70	15.1				
<u>a+ab</u>	Weak W,Z†	[0 0 + + 0 0]	∈ ((2, 2, 4), 2)	-	1.17	4.70	15.1				
G₃ (o	of size 6561)										
abc ±	charge carrier	[-++-+]	\in ((0, 4, 4), 1)	-	-	7.29	18.9				
a+bc	quarks	[0 + + 0 - 0 0 -]	∈ ((2, 2, 4), 2)	-	-	4.70	15.1				
ab+ac	electron	[-00++00-]	∈ ((2, 2, 4), 2)	-	-	4.70	15.1				
a+b+c+a	b+ac proton	[0++-]	∈ ((1, 2, 5), 5)	-	-	2.70	11.5				
<u>a+b+c</u>	photon	[0 + - + + 0]	∈ ((2, 3, 3), 3)	-	-	3.29	12.1				
ab+ac+b	<u>c</u> 3-space	[00]	∈ ((0, 2, 6), 3)	-	-	5.29	15.6				
a+b+c+ab+ac+bc gluon [0 +		$[0 + + 0 + 0 0 0] g^{**2} = \pm abc$	∈ ((0, 3, 5), 6)	-	-	4.29	13.1				
a+b+c+at	o-ac+bc EMF	$[+0-0+-]g^{**}2=0$	∈ ((2, 3, 3), 6)	-	-	2.70	7.08				
† Tenta	tive; <u>boson</u>	<u>s (nilpotent)</u>	Higher Entropy	Lower E	ntropy						




Entanglement, Mass & Higgs in \mathbb{G}_4


Particle/Form	Vector samples (G ₄)	Signature(s)(G ₄)	G1	G ₂	G3	G4	1
G ₄ (of size 43,046,7	21)						1
abcd ±mass carrier	[++++-++-+]	∈ ((0, 8, 8), 1)	-	-	-	18.9	
1 – abcd	[0 0 - 0 0 0 0 - 0 - 0]	∈ ((0, 8, 8), 1)	-	-	-	18.9	
A ₀ B ₀ 2-qubits	$[0\ 0\ 0\ 0\ 0\ +\ -\ 0\ 0\ -\ +\ 0\ 0\ 0\ 0\ 0]$	∈ ((2, 2, 12), 4)	-	-	-	14.1	
a+b+c+d	[-++0+00-+00-0-+]	∈ ((5, 5, 6), 4)	-	-	-	10.1	
(a+b+c)d	$[0\ 0 + - + + + + - + 0\ 0]$	∈ ((4, 6, 6), 3)	-	-	-	12.1	
${\cal M}_1$ (16/64) proto-mass	[0 0 0 + 0 + + 0 0 + + 0 + 0 0 0]	∈ ((0, 6, 10), 6)	-	-	-	13.1	
\mathcal{M}_{2} (32/64) proto-mass	[++-0-0-++-0-0-++]	∈ ((4, 6, 6), 6)	-	-	-	7.08	*
<u>H</u> (16/64) Higgs	[-0 + + 0 - + + - 0 + + 0 -]	∈ ((4, 6, 6), 6)	-	-	-	7.08	*
$ab+cd = Bell = T_{\chi}'$	[-00-0++00++0-00-]	∈ ((4, 4, 8), 2)	-	-	-	15.1	
ab–cd = Magic = T_{χ}	[0 0 + 0 0 + + 0 0 + 0 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1	
$-\mathbf{ac} + \mathbf{bd} = \mathbb{B}_0$	[0 + - 0 + 0 0 0 0 + 0 - + 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1	
$\operatorname{ad} - \operatorname{bc} = M_0$	[0 + -0 - 0 0 + + 0 0 - 0 - + 0]	∈ ((4, 4, 8), 2)	-	-	-	15.1	
a+bcd dark boson	[+00+0++000-00-]	∈ ((4, 4, 8), 2)	-	-	-	15.1	
$\underline{\mathcal{D}}_0$ dark matter	[-0-00-0+-0+00+0+]	∈ ((4, 4, 8), 8)	-	-	-	5.53	*
\mathcal{D}_{q} dark matter	[++-0++++0+]	∈ ((2, 7, 7), 8)	-	-	-	6.87	*
${\cal D}_{ m u}$ (80/96) dark matter	[0000-+-+0000++]	∈ ((4, 4, 8), 8)	-	-	-	5.53	*
${\cal D}_{ m u}$ (16/96) dark matter	[+00000000000000000-]	∈ ((1, 1, 14), 8)	-	-	-	15.9	

* Higgs & dark matter states are *very common*; simple entangled states & others are *less so*

Novel Conclusions & Predictions

- ★ Geometric Algebra is useful computer science paradigm for quantum computing, and enables tool construction
- ★ Space/time proto-physics is connected to non-Shannon space-like information creation and release (Coin-Demo)
- ★ Data mining of nilpotents/idempotents/unitaries in G₁− G₃
 identifies the *Standard Model* bosons/fermions (*4 neutrinos*)
- ★ Qubits (in G₂) construct ebits (in G₄) and lead to novel results about *irreversibility* of Bell/Magic operators/states
- ★ TauQuernions form entangled 3-space with its entangled Higgs field supporting the proposed Higgs Boson in G₄
- ★ Odd sub-algebra of rotated Higgs produces entangled *Dark Bosons* and 4 forms of proposed *Dark Matter* (some bosons)
- ★ Complexity *Signatures* and Bit Content in $G_1 G_4$ fuel information creation of *Bit Bang*
- ★ *Particle/Antiparticle* are co-exclusions (P+A=0)
- ★ Entanglement pervades Space, Higgs & Dark States

★ Means *novel* results reported in Dec 2012