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Introduction and Outline

Topics in Presentation
= What does it take to build a GP computer?
= Limits of semiconductor/computer scaling
= Introduce idealized model of computational costs
= |ntroduce Quantum computing
= Information is Physical
= Compare/Contrast Classical Comp vs. QuComp
= Computing Myths
= Business Predictions
= Conclusions

Nov 7, 2006 DIM 2




=25 Years in semiconductor company (HW/SW)
PhysComp 1981, 1992, 1994, 1996 (chairman)

Billion Transistor issue of Computer Sept 1997
Ph.D in area of Quantum Computing May, 2002
Quantum Computing Research contract 2003-2004

Conventional semiconductors will stop scaling in next 10+ years
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End of Silicon Scaling

“Manufacturers will be able to produce chips
on the 16-nanometer* manufacturing process,
expected by conservative estimates to arrive

In 2018, and maybe one or two manufacturing
processes after that, but that's it.”

This is actually a power density/heat removal limit!!

Quote from News.com article “Intel scientists find wall
for Moore’s Law” and Proc of IEEE Nov 2003 article:
“Limits to Binary Logic Switch Scaling—A Gedanken Model”

*gate length of 9 nm, 93 W/cm? & 1.5x10? gates/cm?
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ITRS: International Technology
Roadmap for Semiconductors

Near-term Years

YEAR oF PRODUCTION 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2000
Technology Node hp90 hp65
15 year forecaSt from DRAM % P 100 | 90 80 | 70 65 | 67 | 50
. M 22 Pitch (nm)
2003 ITRS - International _
MPU/ASIC M1 ¥ Pitch (nm) 120 | 107 | 95 | 85 | 756 | 67 | 60

Technology Roadmap for
Semiconductors at:
http://www.itrs.net/

MPUVASIC Poly Si % Pitch (nm) | 107 | 90 | 80 | 70 | 65 | 57 | 50
MPU Printed Gate Length (nm) 65 | 53 | 45 | 40 35 | 32 | 28
MPU Physical Gate Length (nm) 45 | 37 32 | 28 25 | 22 | 20

Long-term Years

YEAR OF PRODUCTION 20010 | 2012 2013|2015 | 2016 | 2018
These sizes are close Teclmology Node hp45 hp32 hp22
to physical limits and DRAM % Pitcl: (nm) 45 | 35 | 32 | 25 | 22 | 18
technological limits. MPU/ASIC M1 ¥ Pitch (nm) 54 | 42 | 38 | 30 | 27 | 21
MPUVASIC Poly Si %2 Pitch {nm) 45 | 35 | 32 | 256 | 22 | 18
MPU Printed Gate Length (nm) 25 | 20 | 18 | 14 | 13 | 10
MPU Physical Gate Length (nm) 18 14 13 10 9 T
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Computer Scaling Limits gg

= Physical Limits

= Power density/Dissipation: max is 100 W/cm?

= Thermal/noise: E/f = 100h

= Molecular/atomic/charge discreteness limits

= Quantum: tunneling & Heisenberg uncertainty
= Technology Limits

= Gate Length: min ~18-22 nm

= Lithography Limits: wavelength of visible light

= Power dissipation (100 watts) and Temperature

= Wire Scaling: multicpu chips at ~ billion transistors
= Materials
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Charts and Tables Galore

transistors
100 * % . - =
MOORE'S LAW intel® itaniumn 2 Pracessor, | 1:000,000,000 a0 t'*.\ A \ i L
Intel® Maniume Processar % X % 1 \"\\ .
= 80 . NN "
INteln Pentiums 4 Processor 100,000,000 % Y xx_x : Y % 16 clocks
Inteln Pentiuma il Processor E ?n B W ."'-__ l"‘_é\ "\"‘\_
Intel R Pontium® it Processor fo 2 1 10,000,000 :%..-‘ 60 N, \'\ B
Inteln Pantium Processor a‘ a &g |- b 9 \\\ o
Intel4Bo™ Procossor r "‘..E_ \\ \ ' x.\ 5
% - S5l 1,000,000 .E -'ll'_i | \\ o N " gflﬂfkﬁ
Intel386™ Processor i b \ “1; i\\
. . £ 5t L
Pl et i T} 100000 = L L X
Lot EX - %l . 1y 4clocks
A A - B L et 2 docks
;?WQ ;::" 10,000 i ' -+ 1 clock
BOOH e A e R = | | | |
4004 & :‘“;“@§ﬁ1 ]
' 5 1,000 035 D018 013 01 |O008 006
1970 1975 1980 1985 1990 1995 2000 2005 Frocessor generatinn {pm}
1000 — Bacterium
———uPchanL (-
—A&—DRAM 1/2 p [_]
) P Year of Introduction 2001 2003 20006 2009
—8— min Tox -
o ‘m B max Tox L virus Minimum Feature size (nm) 150 120 90 65
@ S - i ' Overlay {nm) 55 45 35 25
g N \\A >
§ \’%\Wir {_'Iptii;nl 193 nm 4 w
s . Protei
g %K > e Y molecule Optical 157 nm v
® n . T
g ﬁ‘\ ——A4 Extreme Uleraviolet v v
a - B
& - I K-rays v
1 . DNA molecu
thickness Flectron beam »'
- _ lon beam v v
Atom
Printing v
0.1
1995 2000 ' 2005 2010 2015 130 2035 2040 2045 2050

Year

Nov 7, 2006 DIM




No Limits to Limits

= Space/Time/locality/Complexity limits

= Architectures/circuits: logic/memory tradeoffs, Von Neumann
= Algorithmic: sequential/parallel superscalar/vliw etc
= Gate Fanin/Fanout and chip Pin/packaging limits
= Communications Latency/bandwidth limits
= Dimensionality Limits: pointers and interlinking
= Clocking and Synchronization
= Grain size: hw/sw/fpga
= Noise/Error Correction
= Deterministic vs. Probabilistic
= Automatic Learning and meaning
= Programming and representation: bits, qubits and ebits
= NP Complete/hard: Black Hole threshold or age of universe.
= ... etc
= Economic Limits
= Research, fab build, wafer build, chip design, chip test, etc
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What does it take to build a
general purpose computer?

Computing isthe time-evolution of physical systems.

= Model of Computation
= Representation of Information Software

= Distinguishability of States / \
= Memory/Algorithms Architecture

= Physical Computers
= Matter/energy %ﬁ %‘_\ Gates
= Space/time | -
= Noise/defect iImmunity LLM LLM | ' - HMemory
= Common Examples
= Classical Mechanical/Semiconductor
= Neurological/Biological/DNA

= Quantum Computer — a Paradigm Shift
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Introduce idedlized model <
of computational costs o

= Space: Information is in wrong place — Move it
= Locality metrics are critical - context
= Related to number of spatial dimensions - anisotropic
= l.e. Busses, networks, caches, paging, regs, objects, ..

= Time: Information is in wrong form — Convert it
= Change rate and parallelism are critical (locality)
= Related to temporal reference frame (i.e. time dilation)
= l.e. consistency, FFT, holograms, probabilities, wholism
= All other physical costs

« Creation/Erasure, Noise/ECC, Uncertainty, Precision, ...
= Decidability, Distinguishabllity, Detection, ...

See my paper on this subject from 1986

Nov 7, 2006 DIM 10



|dealized Smarter Computers?%

= If Information is always in right “local” place(s)
= Possible higher number of dimensions
= Possible selective length contraction

= If Information is always in “correct” form(s)
= Multiple consistent wholistic representations
= Change occurs outside normal time

= If other costs mitigated
= Arbitrarily high precision and distinguishabillity, etc
= Arbitrarily low noise and uncertainty, etc

Possible solutions may exist with quantum bits
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s Quantum the Solution?

= Pros (non-classical)

P ;. '| %‘ 7 : = Q%
= Superposition - qubits || fth fc;hwé;
= Entanglement - ebits - 'E” "i”*f‘\ | ;}@ma_,_
= Unitary and Reversible A

= Quantum Speedup for some algorithms

= Cons (paradigm shift)
= Distinct states not distinguishable
= Probabilistic Measurement
= Ensemble Computing and Error Correction
= Decoherence and noise
= No known scalable manufacturing process
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Classical vs. Quantum Bits

Topic Classical Quantum
Bits Binary values 0/1 |Qubits ¢,|0)+c,|1)
States Mutually exclusive |Linearly independ.

Operators Nand/Nor gates Matrix Multiply

Reversibility |Toffoli/Fredkin gate | Qubits are unitary

Measurement | Deterministic Probabilistic

Superposition | Code division mlpx |Mixtures of |0) & |1)

Entanglement none Ebits C,|00)+c,|11)
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Abstract Notions of Space & Time -

Co-Occurrence and Co-Exclusion
A

O . Cq-occurrlenc_e mleans staées
h=h S exist exactly simultaneously:
a+p=b+@a & Spatial prim. with addition operator
oo mdd - C -I%' _
g 7 Co-exclusion means a change
c-d|CEE f: O—e occurred due to an operator:
Temporal with multiply operator
c-d+5fE=0 R

(0 means can not occur) Abstract Time

More & coin demonstration in my Ph.D dissertation
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Quantum Bits — Qubits

Statel

1800 = 900
State1<$ T State 5 State0
Classical states Qubits states are

co-exclude others

Quantum States are orthogonal:
not mutually exclusive!
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Phases & Superposition

Qubits primary representation is Phase Angle
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Qubit and Ebit Detalls %

ot - -
Co 10>+ ¢, [1> ¢y [0>+c, [1>

= Qureg R | OAqlAq

C,|000>+ ¢,|001>+ ¢,|010>+ c,|011>+ ¢,|100>+ c.|101>+ c4|110>+ c,|111>

= Ebit qo [ at | bell* (O A ql)

C,|00>+c,|11> or C, [01> + ¢, [10>
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Matrices 101 (Quick Review)%

< vy =B buéa u_ éaa +bb 0
& di& 8 &a +db
i €0 1luelu_é0*1+1*0u_ €0u
Si \0>-e 0464~ §x140% 0l &Y
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Quregister: Matrices 201

»

state0, =|0) = So“

statel, =|1) = 33
(tensor product) @
state0, =|0) = So“
statel, =|1) = SLU
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Qubit Operators

%{E

Gate

Symbolic| Matrix Circuit
' 1 ¢
Identity o, ¥y o=, J W
i 0 1
Not (Pauli-X) o *yr 51:_1 0} W X
Shift (Pauli-Z) o *y JELLJ UJ W —Z-
Rotate 9%y E?j ;Ztﬂ W —o—
Hadamard e RN y —A—
H*y HﬁL J Y
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Quantum Noise

" u Pauli Spin Matrices

Identity

Bit Flip Error

Phase Flip Error

Both Bit and
Phase Flip Error

éa buzl(a+d)s L1 (b+b)S +—|(b b)s,+= (a d)s,

Nov 7, 2006 DIM

n
WY W PP PR

wn
[EEN

]
w

[
o

7))
N




»

Quantum Measurement

1 .
D \\\\\\\\\\\ ) Destructive and
Probabilistic!!
CO
C,
0 X then
= |0) or 50/50 random!

vov7 2006 v Ml€@SUrement operator is singular (not unitary)
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Quregisters Operators

Gate Symbolic Matrix Circuit
Cnot = |1 000
% 01 0 0 w
Control-not MOL=Y 1 s 00 1) | @ J
001 0
Cnot2 [t 000 R}
cnot2¥y | 000 1 Y o
0010 | P —
01 0 0
swap= IEE
cnot*cnot2*cnot | © L Y o1 0o (j[):::jl=
100 0 1]
00 |0y |10 1]
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a —— L A a —— A
b—1F —8 3in&3out b— ] F—8
C C C C

C A C b

0 0 0] 0

0 0 01 0

0 | 0 |

0 | 0 1

1 0 | 0

1 | | 0

1 0 | 1

1 | | 1

Fredkin Gate c=control

2 gates back-to-back gives unity gate: T*T =1 and F*F =1
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Reversible Quantum Circults

ate Symbolic | Matrix Circuit
Toffoli = e ol Y
control-control- T*y E . Y ,——
not 0 " 1 Y3 o
é 1 0g
Fredkin= e ol Y
control-swap F*y ¢+ Yo
o 1o 1@ Y 35—
Deutsch oo U Yy
D*y et Y
o imoami| Y 3—D—

Nov 7, 2006 DIM

»

600 [0 (a0 [0y [ o) (1) [ o



Entangled Bits — EDbits

= EPR (Einstein, Podolski, Rosen)

= Bell States
B, =F " =¢,(|00)+[11)),

B, =F
B,=Y " =g, (|01)+|10)), B,=Y =g, (|01)- |10))
= Magic States
M, =¢,(|00)+[11)), M, =c (|00)- |11))
M, =¢,(|01)+[10)), M, =¢,(|01)- |10))

&=YV2 ¢ =i/2

27



= Stepl: Two qubits ~\ /~ ‘Oo>"01>

| % F* =(00) +|11)
= Step2: Entangle —>Ebit
Y* =|01) +|10)

= Step3: Separate ~/ _____________ \ ~ ‘,,> ‘,,>

entangled

= Step4d: Measure a qubit
+
= Otheris sameif F ~ answer =1,other =1
= Other is opposite if Y : answer =1,other =0

Linked coins analogy
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Why Is quantum information special?
Quantum Computing requires a paradigm shift!!

= Quantum states are high dim (Hilbert space)
= Can be smarter in higher dims with no time
= Superposition creates new dims (tensor products)

= Quantum states are non-local in 3d & atemporal
« Causality and determinacy are not the primary ideas
= Large scale unitary consistency constraint system

Quantum information precedes space/time
and energy/matter - Wheeler’s “It from Bit”
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Information Is Physical

Rolf Landauer & N A
et | T A e
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Wheder's“It from Bit”
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Quantum
Information is
consistent with
Black Hole
Mechanics

I Bits as
entropy
(Planck's
areas on
surface)
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Quantum Computing Speedup

= Peter Shor’s Algorithm in 1994

= Quantum Fourier Transform for factoring primes
= Quantum polynomial time algorithm

A A A
@ @ @
B0 & || G 3
@@ L \s' OLIHI:HJMJ'HD
 time - time 2 time
: > >
Spatially bound Quantum polynomial Tempord bound'
exceeds universe life time can solveiit. exceeds black hole
classical guantum classical

Solutions to some problems don't fit in classical universe!!
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Ensemble Computlng

= Ensemble i] r] G 'j D‘ r] G r] CL !
= A set of “like” things
= States can be all the same or all random!! sdst = sqrt(2N)
= Examples LUL 0.2
= Neurons: pulse rate 'l l; sdevesar(ti) "
= Photons: phase angle :l :I ol

= Qubits: used in NMR quantum computing
= Kanerva Mems: Numenta, On Cognition, Jeff Hawkins
= Correlithm Objects: Lawrence Technologies

Ensembles can use randomness as a resource.
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Computing Paradoxes

Property [Choices Contradiction

Size Larger/Smaller | Larger is less localized

Speed Faster/Slower |Faster is more localized

Power Less/more Less power is slower

Grain Size |Gates/wires No distinction at quantum level
Dimensions |[More/less Physical vs. mathematical dims
Parallelism |Coarse/fine Sequential vs. Concurrent
Complexity [Less/More Makes programming hard
Noise Less/More Use noise as resource

Velocity Fast/Slow Time Dilation slows computing

Nov 7, 2006 DIM
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Computing Myths

»

= Quantum/Neural/DNA don’t solve scaling
= Quantum only applied to gate level
= Not generalized computing systems — niches
= Nano-computers (nanites) are science fiction

= Smarter Computers? What is Genius?
= No generalized learning — Failure of Al
= No general parallel computing solutions

= Com
= Com
= Com

Nov 7, 2006 DIM

puters don’t know anything (only data)
puters don’t understand (speech&image)

puters have no meaning (common sense)
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What Is Genius? § S

= Single Cells
= Virus, Ameba, paramecium, neurons, jelly fish, etc

= Insects
= Motion, sight, flying, group activity
= Small Children
= Learning by example, abstraction
= Motion, walking, running, emotions
= Image and speech understanding, talking
=« Languages, music, mathematics, etc
= Accommodation, design, planning

= Deep Blue — Chess??
= No understanding, no meaning, no insight
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Business Predictions

»

= Semiconductors will stop scaling in ~10 yrs

Nanocomputers won't stop this; only delay it
Breakthrough required or industry stagnates

= College students consider non-semiconductor careers
= Research needed In these areas:
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Deep meaning and automatic learning

Programming probabilistic parallel computers

Noise as valued resource instead of unwanted
Higher dimensional computing rﬁwkf s
Investigate non-local computing _

Biological inspired computing — Quantum Brain?
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Conclusions

= Computer scaling creates uncertainty

= Quantum Computing not yet a solution

= Watch for unexpected aspects of noise

= Industry Is not open on scaling problems
= Research money Is lacking

= Costs may slow before limits
= Must think outside 3d box

= Focus on Human Acceleration
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