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Abstract

Interest in quantum computation started growing significantly since 1994 when
Peter Shor showed that quantum computers could solve some problems such
as factoring, faster than classical computers. This capability is possible
because quantum computers represent information state differently than
classical computers. This talk will present a new set of modeling tools and
concepts that can be used explore this complex yet captivating topic.

Lawrence Technologies is building a quantum computing tool set/library under
Air Force contract that allows exploration of quantum computing circuits.
Besides the traditional quantum operations, we have designed this library to
implement quantum ensembles.

With this infrastructure in place, the topic of quantum ensembles can be
expanded to include the unintuitive properties of Correlithm Objects. Correlithm
Objects Theory is based on mathematical modeling of neural systems and has
lead to numerous patents. | will discuss the Quantum ensemble and Correlithm
Objects research, tools and results.
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Outline of Talk

« Quantum computation basics
* Need for quantum modeling tools
* Demo of new quantum toolset

 Ensembles and Correlithm Objects
— Standard distance and radius
— Unit N-Cube and Hilbert spaces
— Quantum Ensembles

e QuCOs survive measurement
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Quantum Computation Basics

Topic Classical Quantum
Bits Binary values 0/1 |Qubits ¢,|0)+c,|1)
States Mutually exclusive |Linearly independ.

Operators Nand/Nor gates Matrix Multiply

Reversibility | Toffoli/Fredkin gate | Qubits are unitary

Measurement | Deterministic Probabilistic

Superposition [ Code division mlpx | Mixtures of \0>&\1>

Entanglement none Ebits ¢,|00)+c,|11)
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Hilbert Space Notation

° QUbIt qO q1l not*qo
G loso > olosio s Phase*ql
* Qureg q0 | q1 | q2 q0®ql® g2

C,|000>+ ¢,|001>+ ¢,|010>+ c,|011>+ ¢,|100>+ c;|101>+ c4|110>+ ¢,|111>

» Ebit 0 | o bell * (G0 ® q1)

C,|00>+c, [11> or C, /01> + ¢, [10>
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|

* Actual quantum computers are unavailable

Highly mathematical paradigm shift

— Qubits, Hilbert Space and Bra-Ket notation

— Reversibility: unitary and idempotent operators

— Superposition: linearly mixing of orthogonal states
— Entanglement: no classical counterpart

* Facilitate learning
— Learn notation, primitives and concepts
— Build understanding and intuition

Support application design
— Model/view states not accessible in laboratory

Next slides give examples of qubits, quregs
and ebits with various operators
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Quantum Qubit Circuits

Gate Symbolic| Matrix
|dentity o, *y o = 1 o Y
Not (Pauli-X) | sy, | 5 _ } %

Shift (Pauli-Z)

JB*W O3 = {O _J W L

Rotate cosd —sind B
Q*Iﬂ Lin@ cos&’} Ve

Hadamard * 11 1]y —Ee
H>y H_\/E_l a0 4
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Quantum Toolset Demo

Qubit Operators: not, Hadamard, rotate & measure gates

% Hypersignal Block Diagram - [IEEEqubit.Lst]
File Edit Wiew Control Blocks Real-time Tools Options  Project  ‘window  Help
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Qubit State after Measurement

Meazure Gate

|Complete [ [F#: 356 [3.345 5 v
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Quantum Qureg Circuits

Gate Symbolic| Matrix Circuit
Cnot = (100 0

0O 1 0O
Control-not Cnot=y | 15 5 ¢ 4 g i

_O 0 1 O_
Cnot2 1000

* o001 | ¥
Cnot2*y | |0 0 0! 4 ﬁ

0100
swap= v |5t yror |
cnot*cnot2*cnot Py 0100 | P -Dedd

O 0 0 1

oo [od) f10) [a)]
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Quantum Registers Demo

Qureg Operators: tensor product, CNOT, SWAP & qu-ops

% Hypersignal Block Diagram - [IEEEqureg.Lst] ;'QIlI
FiIe Edit “iew Control Blocks Real-time Tools Options  Project  Window  Help =17 %
D8] Sl 8] [% ==oxs| & #|2fF BB B[] 2] &) 5 el w2 2]
<gureg {(1.00]00>)
Qubit1 Starting Qubit State
Phase Gals selePhase 1 Phase gate Qubit State
b 4
[For Help, press F1 [F#: 0 [0.0005 5
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Reversible Quantum Circuits [%

Gate Symbolic | Matrix | Circuit
Toffoli = ' o || W —e—
control-control-not Ty E 1 W,—e—
o Wa—o—
Fredkin= o | W
control-swap F*y v W,—x—
0 : 1 Wy—=—
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Toffoli and Fredkin Demo

B Hypersignal Block Diagram - [metroconToffoliLst]
File Edit Wiew Control Blocks Real-time Tools Options Project  Window Help
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After 2 Fredkin Gates
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Ebit Generators

Bell Operators

_________________________________

————————————————————————————————————————————————

Wy ———— 9O
(H®1,®1,)*(Cnot®1,)*(l, ®Cnot) =bell3
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Ebits Generator Demo

N
% Hypersignal Block Diagram - [IEEEebit.Lsk]
File Edit Wiew Control Elocks Real-time Tools Options Project  Window Help
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Quantum Ensembles

* N qubits that are arrayed but not entangled

* If random phase for each qubit:
— Represents a point in high dimensional space
— Phase Invariant
— Orthogonal
— Distance between two random ensembles+/2N
— Standard deviation isv1/2""
— Same results if each N is a quantum register
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Ensembles: Spaces and P

% Hypersignal Block Diagram - [IEEEensemble.Ls! — |EI|1|
FiIe Edit ‘iew Control Blocks Real-time Tools Opbions Project  Window Help _|5’|£|
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Standard Distance for QuEnsembles

% Hypersignal Block Diagram - [IEEEQudistance.Lst]
File Edit “iew Control EBlocks Real-time Tools Options Project  Window Help
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Correlithm Objects

* Points in a Space (Unit cube, Hilbert Space)

e Cartesian Distance between Points

— Same for all random points/corners of space
« Standard Distance, Standard Radius and other metrics
» Related to field of probabilistic geometry

— Follows a Gaussian Distribution

 Mean: grows as \/W
« Standard deviation: independent of N

» Key concept/IP of Lawrence Technologies
— Patents issued and several pending
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“~Unit Length |

1 point in 3 dimensions 2 points in N dimensions

for X :[X]_!"'!XN] and Y :[yl""’ yN]
dist(X,Y) = (X = Yo)2 + ot (X = Vi )°

Randomly chosen points are standard distance apart.
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Cartesian Distance Histograms

“Standard” Distance = \/% Standard Deviation = ‘/ﬁ
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For N=96, Standard distance = 4 For N=2400, Standard distance = 20

Two plots are scaled/normalized to same relative size
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Property

Edge:

Cartesian
Distance

Standard
Deviation

Cartesian
Distance

Standard
Deviation

Unit Edge

. Exact 1 0 ~ J12UN ~ ()
length of side 12/ '
Major diaconal: _
lajor diagonal Exact 0 _J -0
max corner to corner
R corner to R corner Prob 1/9 = JE
Standard diameter:
) Prob 15 =~ afl
R corner to R point 1/15 "E
Half diagonal: _
T Exact 0 _ W = ()
Halt major diagonal V3
Standard distance:
. . iy ') ‘} - — -}
R point to R point Hal "'[
Standard Radius: —
Unadirc i \ Prob . ’l /60 | = / SN

Midpoint to R point
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Equihedron Topology

Probabilistically forms high dimensional tetrahedron

Exact Points

C = Corner Reference
M = Mid point of space
O = Opposite Corner

Random Points

P = Random CO 1
Q = Random CO 2

D = Random Corner

Normalized Distances
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random corners

random
points

All random CO points are equidistant from each other and
all random CO points are equidistant from center point and
all random CO corners are equidistant from each other ...
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Accessing Quantum COs

* Quantum COs are not directly visible
(except thru simulation)

* Measure of QuCQOs produces classical CO

— Answer is binary CO
— End state is another QuCO

« Multiple trials reveals underlying QuCO
 Measurement is noise injection CO process
« CO tokens survive this process!
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COs Survive Measurement //

Start real
array S,

%\ Encode as random /y
Trial 1 phase Qubits Q Trial 2

So |51 ]+ [Ses || Seg

Starting Qubit
Qo || & ‘%’ Qos| Qoo arrags Q S ‘-E» ——
J LProbabiIistic Measurement of Qubits QJ L
Endin bit
Qo | [ Q)]+ >[Qug| [ Qs St;tgefé‘i' Qo || Quf+>|Qug|| Qo

oll 11«01l Answer Binary ollolesl11]1
states A,

Answers are 50% same from multiple trials of same S;!!

Repeat Multiple Trials for sets S, => X and sets S, =>Y
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Topology of COs Survival

DJM Sept 29, 2004



Model Quantum CO process ’v/ e

Description of next slide:

* Multiple trials of same CO (top left)

* Multiple trials of random CO (bottom left)
 Make measurements (mid)

 Compare Rand-COs to same CO distances
» Generate histograms (mid)

 Display histograms (right)

* 70% of expected standard distance (right)
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Quantum Measurement as COs

Quantum encoded tokens are identifiable after measurement

= Hypersignal Block Diagram - [Corobs survive.Lst*]
File Edit Wiew Control Blocks Real-time Tools Opkions Project  Window Help
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Quantum Ensemble Summary [ 2%

* New tools help explore complex topics
— Quantum Computation domain
— Correlithm Object domain
— Quantum Correlithm Object mixtures

* Quantum & Correlithm theories are related
— Both depend on probabilities and info. theory
— Same standard distance for all Qu ensembles
— Superposition appears in both domains

— QuCQOs survive measurement (patent pending)
* QuMeasurement cast as correlithm noise process
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Quantum and Correlithms

Unit N-cube Topology Quantum Register Topology

Normalized Distances
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