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ABSTRACT 
 
We recently discovered when two ensembles of N qubits are initialized to random phases, then the Cartesian distance 
metric between the ensemble states is approximately 2N , with a standard deviation of ½. This research relates inner 
product and quantum ensemble metrics to the “standard distance” metrics defined by correlithm object theory.  
 
Correlithm object theory describes how randomly selected points (or COs) in high dimensional bounded spaces can be 
used as soft tokens to represent states at the ensemble level. The initial CO research was performed using unit N-cubes, 
but under Air Force SBIR contract, we extended this theory for other bounded metric spaces such as binary N-spaces, 
complex N-spaces and Hilbert spaces. A quantum encoded CO can be created by initializing an ensemble of qubits 
based on a phase ensemble of uniformly distributed, randomly chosen phases with values from 0 to 2π. 
 
If a quantum encoded CO token is created as a qubit ensemble Q initialized using a specific phase ensemble P, upon 
quantum measurement using another phase ensemble of basis states B it produces a binary ensemble A of measurement 
answers. Multiple trials using the exact same ensembles P and B generate answer ensembles that are correlated with 
each other, since their distance metric is 70.7% of the binary standard distance of N 2 . This means that quantum 
encoded CO tokens survive this measurement process. In contrast, choosing new random ensembles P or B for each 
trial generates uncorrelated answer ensembles. This paper describes and demonstrates how quantum measurement acts 
as a noise injection process from the correlithm object perspective. 
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survive measurement, probabilistic geometry 
 
 

1. INTRODUCTION 
 
The idea of relating distinguishable states and statistical distance metrics for quantum ensembles was discussed in the 
influential paper “Statistical distance and Hilbert space” [1]. Their definition of statistical distance is the count of the 
distinguishable states between two given states. Wootter’s paper defined the problem of using a finite ensemble of 
identically prepared quantum systems to distinguish (in a fixed number of trials) between two slightly different 
preparations. This is problematic for a low number of trials because of the unavoidable statistical fluctuations due to 
quantum measurement. Wootter showed that the statistical distance is unexpectedly the same as the angle between the 
states. The angle is the only Riemannian metric that is invariant under all unitary transformations.  
 
This idea was refined further in another paper “Information and Distinguishability of Ensembles of Identical Quantum 
States” [2]. This paper shows that by using Shannon’s 12th theorem, the number of distinguishable states for a single 

qubit is ( )1 2 1 2
2N, ,W n

e
α α α α

π
= − . The two angles are 1α  and 2α  while N is the number of identically prepared 

quantum states forming either ensemble. The authors’ requirement for success was that the ability to distinguish 
between two states would approach 1 as the number N of identical state copies in the ensemble approaches infinity. The 
authors also defined the number of distinguishable states of larger sized Hilbert spaces formed by multiple qubits. The 
reason behind this exercise is to encode the relevant state as a qubit phase, which is not observable except thru 
sampling, due to the statistically nature of quantum measurement.  
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Both of the previous papers make the supposition that each of the N qubits defining the ensembles are identically 
prepared to the same phases either 1α  or 2α . The major idea discussed in this paper is to initialize each of the qubits in 
an ensemble to randomly chosen phases rather than the same phase. This simple variation encodes the state at the 
ensemble level rather than the individual qubit phase, which allows many more unique states and produces other 
interesting properties. An ensemble of N qubits can then be viewed as an N-dimensional space, since each qubit acts as 
an independent cell or dimension with a phase value in the range of 0 to 360 degrees. This kind of N-dimensional space 
is different than the tensor product space of the entangled quantum register. We call a randomly generated point defined 
in any N-dimensional ensemble a correlithm object (or CO). For COs in random ensembles, Correlithm Object theory 
describes metrics and properties that are invariant of the range/type of cell values.  
 
This paper introduces some of the metrics and information theoretic properties of COs encoded as random phase 
quantum ensembles. Most notably, a qubit ensemble Q initialized using a specific phase ensemble P produces a binary 
ensemble A of measurement answers, upon quantum measurement using another phase ensemble of basis states B. 
Multiple trials using exactly the same ensembles P and B generate answer ensembles that are correlated with each other 
since their distance metric is 70.7% of the expected binary standard distance of N 2 . This means that quantum 
encoded CO tokens survive this measurement process, since this process is phase invariant. In contrast, choosing new 
random ensembles P or B for each trial generates uncorrelated answers. This paper describes and demonstrates how 
quantum measurement acts as a noise injection process from the correlithm object perspective.  
 

2. RANDOM VALUED ENSEMBLES 
 
The book “Correlithm Object Technology” [3] describes Correlithm Object theory extensively. It defines COs as 
randomly chosen points in bounded N-spaces, where usually N > (~20). An ensemble of N cells, dimensions, indexes or 
addresses, can be viewed as a bounded N-space, where each dimension contains a bounded value.  Three different kinds 
of N-spaces must be defined to discuss quantum ensembles: phase ensembles with real number cell values between 
[0°..360°], binary N-spaces with binary valued cells [0, 1] and qubit ensembles with each qubit initialized to a random 
phase.  This paper starts with the process for the generation of the prototypical CO concepts and metrics using unit      
N-cubes with real number cell values between [0..1] and then varies that process for these other kinds of cell values. 
 
To build an ensemble, first establish the ensemble size N, for example N=100, then randomly pick uniformly distributed 
values (or other distributions) for each of the N cells and label that point in the space ‘A’. Repeat the random generation 
process for another point ‘B’.  Compute and record the Cartesian distance between points A and B (see Figure 1).  
 

 
Figure 1 Unit N-cube containing two random points A and B 



Performing this process with cells of real values [0..1] for I=104 iterations creates a distribution with the average 
expected distance of N / 6 4.082≈ ⇒  and standard deviation of 0.2415 7 /120= . We call this expected distance 

metric standard distance. Repeating this process for N=200 produces the average distance of N / 6 5.77≈ ⇒  and 
the same standard deviation. Figure 2 contains the combined histogram plots for many values of N.  
 

 
Figure 2 Histograms of unit N-cube Standard Distances for N= 20, 50, 100, 200, 500 and 1000 

 
This is an unintuitive result. Any two randomly chosen points in a unit N-space are approximately the same distance 
apart (for a specific N). That distance is approximately N / 6 . This raises an important question. Given a specific sized 
ensemble N, how does a virtually constant Cartesian distance metric emerge from purely random values? A quick peak 
at the mathematics provides the understanding. Represent two points as A = [a1, a2, …, aN] and B = [b1, b2, …, bN]. The 

Cartesian distance is cdist(A, B) 2( )i ia b= −∑  2( )ix= ∑ . Since i i ix a b= −  is the difference of two random 

numbers it is also a random number, and its square 2
i iy x=  is another random number, both with different bounds and 

means. Table 1 details how these bounds, distributions and averages change as the computation proceeds. The last four 
columns were produced by building two representative points A and B using N = 106. These statistical results match the 
analytical results produced using symbolic polynomial expansions in Mathematica (see Appendix I in [3]). 
 

Table 1 Bounds and Distributions for steps in distance computation 

Distribution for real values 0 1 Step Expression 
lower upper average distribution 

1 ai, bi 0 1 ≈  1/2 uniform 

2 xi = ai – bi –1 1 ≈  0.0 not uniform 

3 ix  0 1 ≈  1/3 not uniform 

4 yi = xi
2 0 1 ≈  1/6 not uniform 

5 iz y=∑  ≈  N/6 

6 d = z  Cartesian distance(A, B) N / 6≈  

7 e = z/N    Expected value or Avg of yi ≈  1/6 

single value with 
standard deviation 



How the average of the distributions change as the computation proceeds from the original random values is the key to 
understanding how an expected distance results from a specific N. Step 5 is the key because the sum z is used to 
compute the both the Cartesian distance d or the average e. Therefore, in order to compute a Cartesian distance for 
random points, an intermediate sum causes the cell level randomness to cancel out, just as when computing the average. 
The last step is the only difference between computing an average (step 7) or a Cartesian distance (step 6). A similar 
intermediate sum occurs when computing the inner product computation again leading to nearly constant ensemble 
phase angle results using randomly selected cell values. 
 
Now repeat this process using binary cell values (of 0 or 1) for, say, I = 106 iterations. This average distance between 
random binary ensembles is N / 2 7.07≈ ⇒  with a standard deviation of 0.333 1/ 9= . Repeating this for N=200 
produces the average distance of N / 2 10.0≈ ⇒  and the same standard deviation. Since the cell values are binary, the 
distances are not continuous, but result in only the square roots of integer values. The binary values are effectively 
randomly chosen corners of the unit N-cube and the distances follow the binomial distribution of Pascal’s triangle. 
 
The key to understanding these results is to explore the geometry and topology of randomly chosen points inside the 
unit N-space, as well as its random chosen corners. Since all the points/corners are at approximately equal distance to all 
other points/corners, the essential topology here is a high dimensional version of a tetrahedron (which is quite hard to 
visualize for N>3). Perhaps the best way to visualize this geometry is as a roughly spherical cloud of points, where the 
points are all about equally spaced. The key relevant landmarks are any two opposite corners of the N-space (such as     
C = [0, 0, …, 0] and O = [1, 1, …, 1]) plus the midpoint of the space (such as M = [½, ½, …, ½]). The main diagonal 
has a length of cdist(C, O) = N  and the half diagonal is cdist(C, M) = cdist(M, O) = cdist(C, O)/2 = N 2  = N / 4 . 
 
Now compute the Cartesian distance from each randomly chosen point inside the unit N-space to the midpoint and the 
expected distance for N=100 is N /12 2.886≈ ⇒ . Compute the distance from any randomly chosen corner to the 
midpoint, and the expected distance is N / 4 5≈ ⇒ . These metrics have constant standard deviations. Both of these 
distances can be thought of as a radius for the respective high dimensional tetrahedron, which we call the standard 
radius. Figure 3 depicts how all randomly chosen points (or COs) are approximately the same distance from the 
midpoint M of the unit N-cube space. Also depicted are the randomly chosen corners of the unit N-cube space (or 
binary space). Remember, even though this figure cannot illustrate it, all related COs shown are approximately equally 
spaced forming two high-dimensional tetrahedrons of different sized radius.  In addition, all randomly chosen COs are 
approximately the same distance from corners C and O ( N / 3≈  for random points and N / 2≈  for random corners).  
 

 
Figure 3 Distances of random corners and points from perspective of corners C & O and midpoint M 



The columns labeled unit edge in Table 2 summarize the various metrics we have just described. The rows are 
organized with larger metrics listed first, where the shortest is the standard radius. Dividing by the standard radius 
normalizes all these metrics and produces the two columns labeled unit radius. This ensemble metric normalization 
procedure (unit radius) is mathematically similar to the unitarity constraint imposed on qubit Hilbert spaces. 

Table 2 Unit Edge and Unit Radius Standard Metrics 

Unit Edge Unit Radius (Normalized) 
Type Cartesian 

Distance 
Standard 
Deviation 

Cartesian 
Distance 

Standard 
Deviation 

Major Diagonal: maximum corner to corner = cdist(C, O) 
Exact N  0 12≈  0≈  
Corner Distance: random corner to random corner = cdist(C, R) = cdist(O, R) 
Probabilistic N / 2≈  1/ 9≈  6≈  4 / 3N≈  
Corner-Point Distance: random corner to random point = cdist(C, P) = cdist(C, Q) 
Probabilistic N / 3≈  1/15≈  4≈  4 / 5N≈  
Half Diagonal: midpoint to corner = cdist(M, C) = cdist(M, O) = cdist(C, O)/2 
Exact N / 4  0 3≈  0≈  
Standard Distance: random point to random point = cdist(P, Q) 
Probabilistic N / 6≈  7 /120≈  2≈  7 /10N≈  
Standard Radius: midpoint to random point = cdist(M, P) = cdist(M, Q) 
Probabilistic N /12≈  1/ 60≈  1≈  1/ 5N≈  
Edge: length of size 
Exact 1 0 12 / N≈  0≈  

 
We find this result amazing, because all normalized standard metrics are constants, the square roots of small integers or 
ratios. Remember, these results are approximately constants, because they actually are statistically derived and have a 
non-zero standard deviation. Notice how the normalized standard deviations all contain N in the denominator! This 
means the normalized standard deviations approach 0 as the size N of the ensemble increases. This table can be 
illustrated as the graphic in Figure 4, where ‘C’ represents a random corner, ‘O’ the opposite corner, ‘M’ the midpoint 
and ‘R’ a randomly chosen corner. Random CO points ‘P’ and ‘Q’ are shown with unit radius distances to midpoint M. 
 

 
Figure 4 Geometrical representation of Unit N-cube normalized distance metrics 



This graphic makes one fact more apparent. Random points are approximately orthogonal! Consider triangle PQM. The 
length of line PQ, the normalized standard distance metric, is 2≈ . It forms the hypotenuse of the triangle with the 
other two sides the unit radius 1≈ . These normalized metrics form a right triangle, where the two points P and Q can 
be considered the end points of vectors. If the starting end of the vectors is the midpoint M then these standard radius 
vectors are almost orthogonal. This probabilistic angle metric has less variation with increasing N due to decreasing 
standard deviations. Figure 5 illustrates the angle observed to be ~90° (or ~41.4°) depending on the reference point of 
the vectors as either the midpoint (or corner) of the unit N-cube. Many other angles are also nearly orthogonal. Because 
of the geometry we can show that the angle between two random COs is proportional to the distance between them. 
 

 
Figure 5 Probabilistic angle for two COs from midpoint and corner perspectives 

 
From the perspective of the center of the high-dimensional tetrahedron (usually the midpoint of the space) vectors 
formed using any two random COs are nearly orthogonal! Symmetric spaces (where the midpoint M = [0, 0, …, 0] 
automatically makes this the default perspective. This property of near mutual orthogonality of randomly generated 
points means that ensemble spaces can produce a very large number of CO points that become closer and closer to 
orthogonal with increasing N. For example, with N > 3000 the standard deviation of the 90° angle between any two 
randomly selected COs is < 1°.  
 
These normalized CO metrics are invariant to the scaling size or displacement of the bounded spaces and have been 
observed for all bounded spaces we have investigated during this research. These CO metrics define a measure for how 
random something can be compared to maximum randomness, which is known as the standard distance of CO theory.  
 

3. QUANTUM ENSEMBLES 
 
This section describes the phase ensemble and qubit ensemble. A phase ensemble is simply an array of randomly 
generated phases that are stored classically so the values can be used repeatedly. The phase ensemble is identical to the 
unit N-cube where the values in the range [0..1] are mapped to phase angles [0°..360°] (or [0..2π]). The only difference 
is these values represent a phase ring that circles back to the starting location where 0°=360°. This ring means two 
distances are possible, the short way and the long way around the circle. If the shortest distance were always chosen, 
then the maximum phase difference between two randomly chosen phases would be ½ of the overall range or 180°.  
 
We can determine the impact of using the shortest distance. For example, using an ensemble size of N=104, the average 
phase difference (using shortest route) between two random phases in the range of [0°..360°] is ~¼ of that range or 
~90°, which is slightly smaller than the expected difference of ~1/3 (see step 3 in Table 1) the range of the non-wrapped 
distances. If the four quadrants of phase are mapped to quadrant 1 by ignoring the coefficient signs (allow only 
[0°..90°]), then the expected angle difference is ~22.5° = 90°/4. Just from this analysis, we could conclude that large 
random phase ensembles of qubits may be useful since the average phase difference is not 45°. A phase difference of 
45° would produce the maximum amount of randomness for quantum measurement. 



Now we define a quantum ensemble Q as an array of N qubits Q = [q1, q2, …, qN], where each qn is initialized using a 
phase gate using a randomly generated phase. Create two quantum ensembles A = [a1, a2, …, aN] and B = [b1, b2, …, bN] 
and compute the standard radius and standard distance. Since the internal complex valued states of the qubits are not 
directly accessible in physical quantum systems, the distance metrics on quantum ensembles can only be computed 
using tools that model qubit ensembles. We have built quantum modeling libraries in Python, C++ and Block Diagram 
Toolset1 during the SBIR contracts. The Block Diagram tool will be demonstrated later in this presentation. 
 

 
Figure 6 Geometrical representation of Quantum Ensemble normalized distance metrics 

 
The bounding box for a qubit ensemble is a symmetric space bounded by [–1..+1]. Each qubit is defined by two 
complex numbers meeting the unitarity constraint. Cartesian distance can be computed for complex numbers of qubit 
states as well as real numbers. Due to unitarity constraint, where the radius for each qubit is 1, the expected standard 
radius for a quantum ensemble of N qubits is simply N , which is the same size as the major diagonal of the unit      
N-cube. CO theory predicts, that the standard distance is 2  larger than the standard radius, or 2 * N 2N= . This 
is confirmed with measurements on modeled qubit ensembles. The standard deviation of the standard distance is 
measured to be ½. Interestingly, if each cell in the ensemble is a quantum register of q>1 qubits, then the standard 
distance and standard radius remain the same, because a quantum register of any size has the unitarity constraint 
applied, essentially pre-normalizing each cell radius to 1. In general, the standard deviation for any quantum ensemble 
is 1

1 2
q+ , where q is the (same) number of qubits in each cells’ quantum register. Figure 6 summaries the normalized 

metrics for quantum ensembles where q is the number of qubits in each of the cells. 
 

4. COS SURVIVE MEASUREMENT 
 
Now create a quantum ensemble Q = [q1, q2, …, qN] as an array of N qubits, where each qubit qn is initialized using a 
phase gate to the corresponding phase pn from the phase ensemble P = [p1, p2, …, pN]. When each qn is measured from 
the corresponding basis angle bn, where B = [b1, b2, …, bN] is another random phase ensemble, then the corresponding 
binary values an are recorded in the binary answer ensemble A = [a1, a2, …, aN]. Figure 7 illustrates these ensembles. 
Incidentally, since the randomness of P makes this process phase invariant (all phases are present), then the cells of B 
can all have the same basis phase value without changing the results. Randomizing B does not increase the randomness. 
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Figure 7 Pictorial view of ensembles P, B, Q, Q’ and A 

 
We just have shown it is possible to encode classical COs as quantum COs by converting random values to phases. It is 
also possible to decode a quantum CO back into a classical CO or binary bit array by measuring the quantum CO over 
multiple trials. If the above process is repeated I times while cell-wise averaging the recovered binary ensembles, then 
the resulting real unit N-cube ensemble U = [u1, u2, …, uN] contains the probabilities n niu a I

i
=∑  related to the 

measurement of qn using basis bn. This average of many trials produces the average of 1s/0s that represents the qn and bn 
phase difference as a probability. Assuming U is known, the distance measure between any A and U is approximately 
the standard radius for that cluster. It can be determined with high likelihood in a single trial (with N>(~20)) if a 
quantum encoded CO P was transmitted thru this process if either A or U are previously known and we assume that 
there are no other noise sources. We believe this result is so significant that we have filed a provisional and final US 
patent on the idea. Here is the sequence of steps and the process details. 
 
First, randomly choose a phase ensemble P with N=100 and store away for reuse later. We choose N=100 for 
illustration but any N>(~20) can be used. Second, initialize the qubit ensemble Q by applying the phases in P to phase 
gates. Third, choose a random (or constant) phase ensemble B with N=100 and store away for reuse later. Measure 
ensemble Q using the basis angles from ensemble B and store the binary answers in binary ensemble A. As expected, A 
appears to have a random number of 1s and 0s because generally random-in gives random-out. Remember these results 
are due to the averaged results of a uniform phase qubit ensemble as measured from another uniform phase basis 
ensemble. The next step is to use exactly the same classically stored ensembles P and B for another trial. Figure 8 
graphically shows the setup for two trials. 
 

 
Figure 8 Experimental setup for Quantum COs survive measurement 



Compute the distance between the answers of the two trials, which will be a distance approximately 70.7% of the 
expected standard distance of N 2  for binary ensembles. Repeat these ensemble pairs for I=1000 iterations and the 
normalized distances produces the distributions displayed in the Figure 9. This experiment was run for N=100 and 
N=1000. Notice how the normalized discrete binary distances show up as explicit bands on the histogram of N=100. 
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Figure 9 Histogram of Normalized Distances showing COs survive measurement 

Figure 10 shows the same results produced by running this experiment in the commercial tool called Block Diagram 
using our custom quantum libraries with N=200. This screen capture illustrates that distance between random tokens (as 
the right most Gaussian on lower histogram display) are at standard distance N 2  and correlated tokens are 0.707 of 
standard distance (as the upper Gaussian display and left most Gaussian on lower display). 
 

 
Figure 10 COs survive Measurement using Block Diagram Tool 



This result means that multiple trials produce correlated binary ensembles! The amount of 70.7% of standard distance 
means that 75% of the cells have the same value (compared to 50% for uncorrelated ensembles). This is reasonable 
since ~50% of the uniform phase qubits are producing noise-like patterns (around the 45° phase difference) and ~50% 
are producing constant-like results (away from 45° phase difference). A single pair of ensembles P0 and B0 produces 
clustered results X from multiple trials. Likewise another pair of ensembles P1 and B1 produces clustered results Y from 
multiple trials that are standard distance away from cluster X, as shown in Figure 11. Because of these distances, 
answers from the X cluster are easily distinguished from answers from the Y cluster when N is large enough. 
 

 
Figure 11 Cluster distances proving that COs survive measurement 

The midpoint of each cluster is the expected value for related trials and is a unit N-cube ensemble U containing the 
expected probabilities. The measurement process introduces noise that generates points with a standard radius from that 
expected midpoint U. The points in each cluster are only 70.7% of the global binary standard distance apart from each 
other. A CO point in one cluster is standard distance apart from any CO point in another cluster. This localized 
clustering of points due to measurement indicates that this process introduces less than the maximum noise into the 
uniform phase qubit ensembles, so the results are correlated. Therefore, a quantum encoded CO token subjected to this 
measurement process is easily distinguished from other standard distance CO tokens and therefore survives 
measurement. In contrast, choosing new ensembles P or B for each trial generates uncorrelated answers and states. 
Quantum measurement acts as a noise injection process into a quantum CO’s phase invariant representation. 
 
 

5. APPLICATIONS 
 
Our company is creating general-purpose computational systems using correlithm object technology. The word 
“Correlithm” is a contraction made of the words “Correlational Algorithm”. Correlithm Object theory was developed as 
a model for how brains represent and manipulate information using natural randomness of neuronal connectivity and 
firing. Bundles of neurons are readily viewed as very large ensembles. Likewise, groups of photons produced by laser 
(or molecules in NMR) are readily viewed as very large ensembles. Each ensemble can be thought of as a separate 
space and operations can transform COs in one subspace into other CO tokens in another space.  
 
For example, Figure 12 illustrates how the “NOT” operation is represented using two spaces s1 and s2, each with 
predefined random CO tokens labeled T and F. Our CO “rules” based only on distance metrics can map any state near 
either of the CO tokens in s1 to the equivalent CO tokens in s2. The rules for this “NOT” operation can be expressed as 
the illustrated pair of linearly independent and concurrent state transformations. We have also shown that sets of CO 
rules are possible for other logic operations (including AND, OR, XOR & LATCH) but not restricted to purely classical 
computation states. Thus CO theory is both Boolean and Turing Complete. 



 

 
 

s1.T  >:  s2.F 
s1.F  >:  s2.T 

 
 

NOT rules 

 
0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
NOT operator 

 
Figure 12 NOT operator state mappings using subspaces, CO tokens and rules 

 
Since the CO tokens are nearly orthogonal, it is possible to express a state that is the combination of tokens T and F as a 
point approximately half the distance between them and at standard radius from the space midpoint. This mixed token is 
the classical equivalent of quantum superposition but is better known in the literature as code division multiplexing. 
Therefore, as with qubits, CO systems can naturally represent the superposition of states. This programming paradigm 
is a fertile area in which to explore state transition systems that contain both classical and quantum concepts. In fact, the 
NOT gate example from above is actually equivalent to the matrix version of the quantum NOT operator and works 
correctly for both classical states (mutual exclusion of states T/F) or quantum states (superposition of states T/F). 
Remember, this CO rule programming style works for any ensemble with either classical or quantum cells. 
 
This result is significant because large random (yet repeatable) qubit ensembles should be much easier to build (using 
for example a laser and various thicknesses of optical glass) compared to large entangled quantum registers. Since 
quantum ensembles can evidently represent classical states and perform classical operations, this CO approach may be 
useful as a fault tolerant solution for classical computers as semiconductor process scaling continues into the 10s of 
nanometer size. CO theory insures that it is highly unlikely that two tokens could be significantly closer than standard 
distance. So if a state does appear near a CO token it is almost certainly produced by the same process that generated the 
original token, even if some amount of noise has been inserted. For this reason CO tokens are considered to be soft or 
fuzzy tokens that allow robustness in the face of noise (due to manufacturing or operation). They can also represent 
mixtures of states in superposition, which at times may be considered to be paradoxical. Both of these properties are 
found in human cognition. Quantum encoded CO ensembles may be an interesting and pragmatic alternative to qubit 
encoded states that rely on reversible logic gates for classical operations and ebit entanglement for error correction.  
 
Even though CO systems can represent superposition we have not observed any CO property equivalent to the 
inseparable entanglement properties of ebits (or EPR bits). We have explored using ensembles of ebits using the amount 
of partial entanglement as the primary random variable for the ensemble, but we have no interesting results to report at 
this time. 
 

6. CONCLUSIONS 
 
We believe that ensembles of states are ubiquitous in nature in classical, neural, quantum and many other forms. By 
understanding that randomly chosen points in ensembles with N>(~20) always exhibit the standard distance and 
standard radius metrics, we obtain new analytical tools for evaluating randomness and correlations. Quantum theory and 
Correlithm Object theory are synergistic because each adds insight and richness to the other domain, even though they 
both depend on randomness, probabilities, bit capacity and distance metrics. Quantum superposition and matrix 
operators are naturally built into CO theory using tokens and rules but are not limited solely to unitary operations. 



In fact, Correlithm Object Theory states that it is possible to use randomness as a resource for constructing data tokens. 
We have built a set of multiplatform tools and an application-programming interface to aid in the construction, 
modeling and execution of large CO systems and applications. We can build large sets of named tokens at standard 
distance (or less) and the corresponding rules to model systems that have fault tolerant or fuzzy logic behaviors using 
both classical and quantum cell types. Our original goal for developing CO theory was to show that CO systems act 
more like humans because they respond similar to examples they have previously been exposed to. We find it 
fascinating the same CO metrics and properties relate to ensembles in both neural and quantum systems.   
 
We have shown that applying CO thinking and understanding to quantum ensembles leads to previously unrecognized 
properties of phase invariance in random phase quantum ensembles. We have shown that the standard distance for any 
quantum ensemble is 2N  and standard deviation of 1

1 2
q+ . We have also shown that random phase COs encoded in 

quantum ensembles survive measurement even when using random basis angles. This result leads to the quite 
interesting CO interpretation of quantum measurement as noise injection process. Because of these properties, it is 
possible to distinguish (with certainty approaching 1 as N increases) a specific quantum encoded ensemble in a single 
trial when measuring the qubits using a random basis angle(s). 
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