
Impact of Locality
and Dimensionality Limits
on Architectural Trends

by
Douglas J. Matzke

Texas Instruments
P.O. Box 655474, MS 446

Dallas, Texas 75265
matzke@hc.ti.com

Abstract

Since computing is a physical activity, all forms of
computing must obey locality constraints imposed by
physics. Unknowingly, many software abstractions violate
locality constraints because they represent high dimen-
sional topologies that have higher degrees of freedom
than is uniformly implementable by the underlying physi-
cal architecture. This semantic gap between abstractions
implemented in the virtual architecture and the physical
machine resources results in poor performance for certain
classes of computing problems. This paper will discuss
and analyze the impact of locality constraints and dimen-
sionality limits upon software and architecture trends with
the specific goals of improved performance, lower cost,
and the longevity of architectural investments.

1.0 Importance of Locality to Architecture

Much work in the physics and computing community
focuses on physical limits to computing, but very little
effort is spent on the applying the consequences of those
limits to architecture and software design. In the not too
distant future, the computing industry will reach the point
were lithographic scaling is either not cost effective or not
possible any more. Many semiconductor experts state that
this “post shrink era” is at least 15 years away.

Therefore, the next 15 years represents a
“semiconductor time of plenty” compared to the low tran-
sistor density our industry was able to achieve during the
last 25 years. Will this bounty of computing resources re-
sult in more of the same kinds of architectures that have
been historically developed? Can we use the insight from
physics and computing research to develop a truly modu-
lar, scalable, parallel architecture that can survive this
entire time period?

Traditional computer system design has evolved in an
environment where computing resources were scarce and
expensive. Semiconductor densities have reached the point
of no longer being limited by the number of transistors but
by the ability to cool them. Heat density will be a major
concern for all future semiconductor generations.

Each successive semiconductor generation must add
transistors without increasing the total power usage, in
order to continue using packages with similar power rat-
ings. For the next several generations, an easy solution
exists of lowering the power supply voltage. After that
grace period, the only long term approach to maintaining
a constant power per die area is to limit the drive power
(and thus the drive distance) of most gates in the design.

Architectures that depend on increasing amounts of
circuit locality are therefore a direct consequence of power
limitations. Since computation is a physical process and
physics mandates locality, this guideline should not be
surprising. In his 1981 paper, Daniel Hillis stated[1] that
“computer science is missing many of the qualities that
make the laws of physics so powerful: locality, symmetry,
and invariance of scale.” Of these, locality is the most
critical and this perspective is used for the remainder of
this paper to judge computer architectures trends and fea-
tures.

Locality arguments are the motivation behind the cellu-
lar automata (CA) efforts[2] and coincides with the quan-
tum dot requirements[3]. Despite their impressive results,
neither of these research areas has had a major impact on
the mainstay computing industry. The MIT CAM8 ma-
chine has demonstrated supercomputer performance for
certain kinds of simulations, yet other proposed simula-
tions can execute faster on conventional sequential com-
puters.

Spatial locality goals alone appear not to be sufficient
to make machines that are both universal and high per-

formance over many classes of problems. Simple thought
experiments demonstrate that locality is important to high
performance architectures. This paper is the result of an
effort to understand the importance of locality to conven-
tional architectures. Hopefully this understanding will
become a guidepost for spotting which architectural trends
will remain critical over time.

The approach of this document is to investigate the
impact of locality on memory systems, grain size, scal-
ability, the dimensionality of an algorithm, and the impact
on the virtual architecture. Out of this analysis, some im-
portant software and architectural trends will be isolated
and discussed.

2.0 Spatial Locality within Virtual Memory

Virtual memory is now taken for granted on all mod-
ern computers large and small. Before virtual memory,
programmers where much more aware of the physical
nature of memory resources, especially when there were
insufficient amounts of it. With the introduction of virtual
memory and multiple processes (virtual CPU’s), pro-
gramming became more abstract and less tied to physical
resources, which is both good and bad. The good part is
programming became generally easier. The bad part is
virtual resources are an abstraction based on physical re-
sources and plus some important underlying assumptions.
It is easy to write code that violates those assumptions and
executes poorly.

The physical basis of the virtual memory system is a
set of physical memory pages. When a page is referenced,
it is retrieved from disk and placed in some physical
memory resources. Parts of this page are then loaded into
the fast caches of the processor which enable it to be ac-
cessed very fast. These pages are arranged in a large one
dimensional address space that is accessible via a memory
pointer. In order to achieve good performance from this
virtual resource, the program must be well behaved by
achieving good locality of references on a limited number
of pages per unit time.

The spatial and temporal locality is a prerequisite for
good program performance within a virtual memory sys-
tem. Any pages that are active “appear close” to the proc-
essor and thus are fast to access. As demonstrated in the
next paragraph, very simple programs can defeat the ap-
parent locality of the pages to the processor. Some compil-
ers detect and optimize the following kind of array refer-
ence code to enable good performance.

As shown in the following figure, mapping a two di-
mensional array (1000 x 1000) into virtual memory results
in a preferred orientation. If the memory is laid out in
memory by rows, then initializing the array row by row
results in good performance with many accesses per page.
Alternatively, accessing down the columns causes many
page misses with 10x worse performance. This example
assumes the entire data set does not fit into the physical
memory of the machine and relies on the virtual memory
mechanisms. Similar performance degradation can also
occur as a result of the CPU data caches. Notice that any
mapping will cause this non-symmetrical time perform-
ance, which is a direct result of mapping 2D semantics
into a 1D implementation.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Right

Wrong

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

Memory Pages Mapping

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

 Initialize
2 Dim Array

This example illustrates that virtual resources can dis-
rupt the apparent locality (and execution speed) required
by the application semantics. This non-symmetrical (or
anisotropic) time performance is a direct result of trying
to mimic a two or more dimensional space by embedding
it in a one dimensional virtual memory. Applications that
sweep across an entire large multidimensional data set
will produce this effect because the memory pages create a
preferred orientation or direction due to violating the lo-
cality of references. This becomes even more of a problem
as the number of dimensions increases because the effec-
tive locality of each array element depends on the number
of independent degrees of freedom required of the algo-
rithm.

Densely packed data structures are represented using
multidimensional arrays. Alternatively, sparsely packed
data structures, such as object oriented graphs, are best
represented using virtual memory pointers. Since a pointer
represents a direct relationship between two unrelated
pieces of physical memory, it semantically represents an

independent degree of freedom. This desired locality can
be effected by the performance of the virtual memory sys-
tem.

With modern object oriented programming tools it is
easy to build objects with 8 or more outbound pointers.
Each pointer represents a unique local direction that must
be embedded into a one dimensional virtual memory sys-
tem. Dynamic reclustering of active objects onto memory
pages can improve performance [4] by reducing the total
size of the working set, but requires readjusting of all the
pointers in the memory space.

Pointers also point to program functions stored in vir-
tual memory. Object oriented programming environments
make it easier to build complex data structures and also
makes it easy to build large, complex program structures.
Functions are accessed by using pointers, and these de-
grees of freedom are above and beyond the explicit data
dimensions. The following paragraph illustrates this point.

Imagine a distributed, 3D, object oriented, particle
simulation, where each processor manages a volume of the
simulation space. As each particle moves across a proces-
sor boundary, the current conditions it encounters would
determine what functions are paged in from the common
program store. Therefore, each object must have 3 regular
data dimensions, plus a hidden dimension within each
object to point to its private object functions. Even straight
forward 3D data applications require 4D semantics when
the program space is considered. Program size considera-
tions have become a serious performance issue, because
many applications automatically generate source code for
compilation and execution. This practice results in very
poor cache performance since the code size is much large
than handwritten applications.

The MIT CAM8 group understands the relationship
between locality and the number of explicit dimensions of
the data set. The CAM8 machine is configurable to have
1D linear pages, 2D area pages, or a 3D volumetric mem-
ory configuration and the corresponding locality assump-
tions. The CAM8 machine has virtualized the memory
dimensions and virtualized the number of cells per proces-
sor. The CAM8 does not have a true virtual memory facil-
ity thus limiting the maximum size problem for each piece
of hardware[5]. The CAM8 does not directly address the
virtual program size requirements because each processor
can only contain two sets of global rules at a time.

Clearly virtual resources are valuable, but ignoring
higher dimensional semantics (both data and program)
can lead to performance problems in conventional virtual
memory systems. Allowing layers of abstraction, without

maintaining control over physical facilities impacting lo-
cality, can degrade performance. Pointers are an example
of a primitive implementation feature with insufficient
abstraction facilities and program controls.

3.0 Locality Impact on Grain Size

This section will discuss locality concerns regarding
architecture grain size. Choosing the correct virtual grain
size for an architecture can dramatically impact the cost,
performance and flexibility. For example, many super-
computers manufacturers build high speed 32 bit wide
microprocessors boards as their basic grain size. Field
Programmable Gate Arrays (FPGAs) have a 1 bit wide
grain size block that runs from 5 to 25 logic gates per
block.

Conventional computers are made of transistors, logic
gates, and wires that creates a discrete locality grid for
both space and time. The light cone defines locality in
physics by linking unit space and time together. Likewise,
the distance (through wires and gates) that a signal must
propagate determines the maximum frequency it can op-
erate. Therefore, smaller grain computational elements
can run faster than larger grain ones. Since each compu-
tational element has an area (or volume), all of these met-
rics are related for a specific lithography size.

Besides basic grain size impacting the maximum op-
erating frequency, it also directly impacts the maximum
performance due to parallelism. William Dally of MIT[6]
has shown that cost balanced machines can have 50 times
the overall memory bandwidth of conventional processors
by maintaining the memory to logic die area ratio to be 10
(or about 1 Mbyte per 32 bit processor). His argument is
that conventional processors are performance biased re-
sulting in very large caches and very poor MIPS per unit
area of total silicon. At fault is the traditional trend of
CPU architects being performance oriented and memory
systems being cost oriented.

Dally’s approach is to look at cost and performance in
relationship to the total die area of both the processor and
memory. This idea of a basic building block containing
both memory and logic at a 10 to 1 ratio is important be-
cause it suggests that the basic building block should be an
“active memory”. This approach is consistent with a mod-
ern relativity notion of a unified spacetime where space (or
memory) and time (or CPU) are inseparable. Both cellular
automata and object oriented paradigms have adopted an
“active data” orientation to data structures.

Dally’s parallel architecture approach concludes that
smaller grain size “active memory” building blocks can
result in higher performance for lower cost. The mono-
lithic Von Neumann architecture results in the “Von-
Neumann bottleneck” between the CPU and memory. This
bottleneck should be relabeled the “Newtonian bottleneck”
because computer architects are using last century’s
Euclidean notions of segregated space and time. Consider-
ing locality and scalability arguments, modular active
memory building blocks align with modern notions of a
unified spacetime.

Addressability of elements within a specific grain size
is another important architectural decision. As the number
of transistors per die has increased, the conventional proc-
essors have moved from 32 to 64 bit wide addresses and
datapaths. Any increase in the number of computational
element requires a wider address datapath in order to al-
low more address bits. The pointer size of a memory ad-
dress is important because many object oriented applica-
tions use pointers to express relationships. In some appli-
cations, pointers occupy more bits expressing the relation-
ships between data than is occupied by the data itself. For
applications with lots of pointers, it might be more effi-
cient to place two 32 bit processors per die than one 64 bit
processor.

Applications with many pointers existing inside large
monolithic address bases have the problem that they are
not relocatable without translating all the pointers. Physics
always acts in a local manner and has nothing that
matches the nonlocal behavior of a pointer. Cellular auto-
mata machines are modeled after physics and therefore
only represent directions without any pointers. Unfortu-
nately, it is difficult and cumbersome to program without
pointers, especially when pointers act as object ids for de-
termining when two instances are the exactly the same
object.

Once the grain size sets a limit on the maximum speed
and number addressable elements (per unit volume), than
additional parallelism and additional elements must come
from multiple instances of that basic building block. Inside
and outside addressability via a network are both impor-
tant issues resulting from grain size issues. It is clear from
this discussion that grain size, pointers, and networks are
intimately related. Somehow future architectures and
compilers must deal with the grain size and pointer issues
to allow a family of grain size options giving high per-
formance and low cost for a variety of applications.

4.0 Locality Impact on Scalability

Despite of the size of the physical universe, locality
dominates its organization. Therefore it would seem that
locality should be a prerequisite for scalability. In reality,
two kinds of scalability exist and their locality arguments
must be addressed separately. Upward scalability deals
with maximum system size concerns and downward scal-
ability deals with grain size and fabrication size issues. As
discussed earlier, power restrictions and circuit locality
dominates downward scalability concerns.

4.1 Locality and Degrees of Freedom

As architects of hypercube machines have discovered
the hard way, not all computer network configurations can
scale in size in 3 dimensions. Franco Preparata [7] has
formally shown that only the mesh architecture is truly
upward scalable in 3D. In addition, Preparata showed that
downward scalability results in many unforeseen architec-
tural restrictions (e.g. ineffectiveness of latency hiding)
can surface when fundamental physical limits are reached.

Due to scalability reasons, Preparata concluded that
parallel computer architectures will become more uniform
over time. It is obvious that no company would want to
invest in a suboptimal or short lived architecture. If per-
formance and cost are also considered, the individual ac-
tive memory nodes will also become more uniform over
time.

Potentially a uniform, spatially oriented, computational
work metric based on locality measures could define the
degree of boundedness for both algorithms and architec-
tures. For example, the number of implicit dimensions d,
represents the measure of the amount of locality seen per
node, but also represents a discrete choice of 2d directions.
This choice requires log 2d addressing bits. Locality and
scalability metrics could ultimately determine most archi-
tectures decisions.

Architects build networks of high degree because the
problems they are attacking can benefit from more band-
width and higher degrees of freedom. Unfortunately these
systems are not scalable. This simply is the ultimate se-
mantic gap between application semantics and physically
realizable architectures. An architecture must either limit
its degrees of freedom to 3 dimensions or limit its scal-
ability. This restriction to computer architecture is intrigu-
ing since some theories underlying physics suggest that
the universe has a 10 dimensional symmetry [8], which
represents a better locality metric.

Locality issues completely control algorithm scalability
(both performance and cost) for high dimensional algo-
rithms. Languages that are designed to specifically to deal
with high dimensional semantics may emerge [9,10]. This
geometrical approach could remove raw pointers from
being directly programmed to manage physical topology
issues. Using this geometrical information, real time
compiler techniques may allow execution costs to be pre-
dicted and managed.

Pointers are useful because they implement degrees of
freedom for software and architecture, but they are se-
mantically very weak. Pointers are the spatial equivalent
of microcode and applications programmers should not
need to use them. The development of stronger locality
based geometrical abstractions and languages would allow
virtual memory pointers to be relegated to the architectural
dungeons where they belong.

4.2 Locality Impact on Virtual Architecture

Building architectures that deal more effectively with
larger amounts of locality will present a smaller semantic
gap for high dimensional languages and applications.
Similar in nature to the CAM8 and FPGAs, the trend to-
wards locality constrained volumetric computers will con-
tinue at the system architecture level and also at the device
fabrication level. Mapping high dimensional algorithms
into 3D mesh architectures will move from supercomput-
ers down into workstations and personal computers as
application specific compilers effectively deal with scal-
able, smaller grain size, active memory chip organization.
Cost and performance issues will dictate the remaining
architecture choices regarding grain size and total
amounts of parallelism.

This product concept is already emerging in custom
computing machines by using VHDL to program accelera-
tor boards full of FPGA chips[11]. Currently program-
ming these devices involves writing logic schematics and
using automatic place and route tools. More general pur-
pose medium grain, parallel systems, programmed by
geometrically oriented object languages may be the future
of custom computing accelerators.

Unless some breakthrough occurs in compiler technol-
ogy, programming will become more physical and less
abstract, in order to gain performance in parallel systems.
Being able to predict performance, partition, and make
space/time tradeoffs would require real time compiler
techniques based on intimate knowledge of the architec-
ture performance. Some new algebraic logic systems
[12,13] uniformly represent both space and time resources

and may be the key to better compiler technology. Most
complex architectures are worthless without good lan-
guages and compilers.

5.0 Conclusion

The computer industry and its customers will continue
to expect computer performance to double every year and
a half. In the face of physical limits, this will only occur if
the semantic gap between applications and architectures
decreases. For the most demanding applications with
higher dimensional semantics, this will only occur if the
memory architectures become more physical, especially to
support the 2D and 3D data volumes seen by physical
simulations using finite element analysis.

Software languages and programming also must be-
come more physical by adding geometrical based abstrac-
tions and reducing the dependency on semantically weak
implementation mechanisms, such at virtual memory
pointers and globally shared memories. Medium grain
parallel, mesh connected, active memory architectures will
be the targeted output from the real time, geometrically
oriented object compilers.

These results were obtained by analyzing upward and
downward scalability concerns to many key architectural
ingredients of modern computers. Virtual memories will
grow from one dimensional to three dimensional (or
more). Languages will evolve from relational to geometri-
cal and from sequential to distributed. Compilers and
software tools will bridge the semantic gap, not the archi-
tectures. The architectures will be trying to support com-
putational spaces that have more performance, locality,
symmetry, and scalability requirements then current archi-
tectures.

Low cost and low power silicon solutions with these
architectural characteristics will emerge, that others must
either follow or lose market share. Locality concerns will
ultimately impact all performance and cost decisions
driving future systems to be architecturally more uniform,
resulting in the longevity of architecture investments.

References

[1] Daniel Hillis, 1981, “New Computer Architectures and
their Relationship to Physics or Why Computer Science is No
Good”, International Journal of Theoretical Physics, Vol. 21,
Nos 3/4, Pages 255-262.

[2] Norman Margolus and Tom Toffoli, December 1993: "CAM-
8: A Computer Architecture based on Cellular Automata",
Technical Report MIT CAM8 Group.

[3] Robert Bate, Gary Frazier, William Frensley, and Mark
Reed, July/Aug. 1989: “An Overview of Nanoelectronics” , TI
Technical Journal.

[4] Doug Johnson, April 1991: “The Case for a Read Barrier”,
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV),
Pages 96-107.

[5] N. Margolus, 1994: "Virtual Processor Emulation of Large
Cellular Logic Systems", Technical Report MIT CAM8 group.

[6] William Dally, 1993: "A Universal Parallel Computer
Architecture", New Generation Computing, vol. 11, pages 227-
249.

[7] Franco Preparata, May 1993: "Horizons of Parallel Compu-
tation", Brown University, Technical Report No. CS-93-20.

[8] Kaku, Michio. 1994. Hyperspace, A Scientific Odyssey
Through Parallel Universes, Time Warps, and the Tenth Dimen-
sion. Oxford University Press

[9] Theodore Omtzigt, 1991: “SagaDB: The Domain C Graphi-
cal Debugger”, Dept. of Electrical Engineering Report, Yale
University.

[10] Theodore Omtzigt, Nov. 1994: “Computational Space-
times”, Proceedings of Workshop on Physics and Computation,
IEEE Computer Society Press.

[11] Jonathan Babb, et al, April 1994: “Emulation of the Spar-
cle microprocessor with the MIT Virtual Wires Emulation Sys-
tem”, Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, IEEE Computer Society Press.

[12] G. Spencer Brown, 1994: Laws of Form, Bookmasters,
Ashland Ohio.

[13] Dick Shoup, Oct. 1992: “A Complex Logic for Computa-
tion with Simple Interpretations for Physics”, Proceedings of the
Workshop on Physics and Computation, IEEE Computer Society
Press.

